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S1 Density Functional Terms

The DFT XC energy contribution is

EDFT
XC =

∫
f [ρ (r) , γ (r)] dr (S1)

where we have assumed that f is a GGA functional which
depends, in the closed-shell case, on the electronic density ρ
and its gradient invariant γ expressed using the SCF density
matrix P as

ρP =
∑
µν

Pµνϕµϕν =
∑
µν

PµνΩµν (S2)

γP = |∇ρP|2 (S3)

∇ρP =
∑
µν

Pµν∇Ωµν (S4)

where Ωµν is the overlap distribution of the AOs ϕµ and ϕν .
The Fock matrix therefore also contains an XC potential
term:S1

Fµν = hµν +
∑
κλ

Pκλ
[
(µν |κλ)− cX

2
(µλ |κν)

]
+ V XC

µν

(S5)

V XC
µν =

∫ [
∂f

∂ρ
Ωµν + 2

∂f

∂γ
∇ρP∇Ωµν

]
dr (S6)

Note that the DFT exchange and correlation scaling coef-
ficients – (1− cX) and cC, respectively – are implicitly in-
cluded in the definition of f .

VXC depends on the MO coefficients through P and there-
fore minimizing the MP2 Lagrangian with respect to orbital
rotations gives rise to the additional Fock response termRXC

in eq 16 (in the main text) which is given by

RXC [D]pq = 4
∑
µν

cµpcνq

∫ {[
∂2f

∂ρ2
[P] + 2

∂2f

∂ρ∂γ
[P]

]
ρDΩµν

+

[
∂2f

∂γ∂ρ
[P] + 2

∂2f

∂γ2
[P]

]
γP∇ρD∇Ωµν

}
dr

(S7)
where ρD =

∑
µν DµνΩµν .

Most common DFs do not have an explicit dependence
on the external magnetic field. However, when using GI-
AOs, the electronic density and its gradient depend on the

magnetic field through both P and the basis functions:

PB
µν = 2

∑
pi

UB
pi (cµicνp − cµpcνi) = −PB

νµ (S8)

ΩB
µν =

i

2
(RMN × r) Ω0

µν = −ΩB
νµ (S9)

(∇Ωµν)B =
i

2
(RMN × r)

(
Ω0
µν +∇Ω0

µν

)
= − (∇Ωνµ)B

(S10)

Where RMN is the distance vector between the centers of
AOs µ and ν. Due to the antisymmetry of the perturbed
quantities, the full derivatives of the density and its gradient
vanish:

ρBP =
∑
µν

PB
µνΩµν +

∑
µν

PµνΩB
µν = 0 (S11)

(∇ρP)B =
∑
µν

PB
µν∇Ωµν +

∑
µν

Pµν (∇Ωµν)B = 0 (S12)

γB
P = 2∇ρP (∇ρP)B = 0 (S13)

Hence, the RXC(B) contribution to the first order z-vector
equations RHS (eq 20) is

RXC(B) [D]pq = 4
∑
µν

cµpcνq

∫ {[
∂2f

∂ρ2
[P]

+ 2
∂2f

∂ρ∂γ
[P]

]
ρDΩB

µν +

[
∂2f

∂γ∂ρ
[P]

+ 2
∂2f

∂γ2
[P]

]
γP∇ρD (∇Ωµν)B

}
dr

(S14)

Note that, unlike for geometric perturbations,S2 terms which
include third derivatives of the XC functional vanish.

S2 Perturbed Canonical Orbitals

Due to the last two terms in eq 18, the calculation of the
MP2 response density becomes a formally O

(
N6
)
scaling

step. In addition, if the amplitudes are calculated in mul-
tiple batches, such that T ijab are only available for i within
the batch, the last term in eq 18 requires amplitudes out-
side the batch. This was noted by Kollwitz and Gauss in
their direct GIAO-MP2 implementation,S3 who suggested
the use of perturbed canonical orbitals,S4–S6 i.e. choosing
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UB
ij coefficients such that the internal block of FB vanishes:

0 ≡ FB
ij = UB

ij εi − UB
jiεj + F

(B)
ij

= UB
ij εi −

(
UB
ij + S

(B)
ij

)
εj + F

(B)
ij (S15)

UB
ij =

F
(B)
ij − S

(B)
ij εj

εj − εi
(S16)

Thus the internal Fock matrix contribution toTij,B vanishes
and the formal scaling is reduced to O

(
N5
)
. A complication

arises when (near-)degenerate orbitals i and j are present
which would make the denominator of eq S16 (near-)zero.
In these cases UB

ij are chosen according to eq 29 and the cor-
responding contributions to the perturbed amplitudes are
calculated. Hence, only those amplitudes Tkj (Tik) are re-
quired for which εk ≈ εi (εk ≈ εj). In our implementation
these amplitudes are either precalculated and stored on disk
or reevaluated on the fly. The latter option leads to signifi-
cant computational overhead and should only be used in the
unlikely case (for feasible system sizes) of insufficient disk
space.

S3 Frozen Core Terms

Use of the frozen core approximation introduces minor addi-
tional complications to MP2 (and therefore DHDFT) second
derivatives.S5 The extra terms are derived for RI-MP2 in the
context of geometric and magnetic perturbations in refs S7
and S8, respectively. They are given here for consistency
with our notation. An additional constraint enters the La-
grangian, which ensures the block-diagonality of the Fock
matrix:

L =
∑
i≥j

[〈
YjYi,TT̃ij

〉
+
〈
Yj∗Yi†T̃ij∗

〉]
+
〈
D′′FT

〉
+
∑
ai

zaiFai +
∑
ik

žikFik

(S17)

where valence and core orbitals are denoted by an over- and
underline respectively. The matrix D′′ is only non-zero in
the valence and virtual blocks:

D′′ij = −
∑
k

(
1 + δjk

) 〈
T̃kj∗Tik

〉
(S18)

D′′ab =
∑
i≥j

(
T̃ji∗Tij + T̃ij∗Tji

)
ab

(S19)

Minimizing L with respect to rotations between valence and
core orbitals gives a closed-form expression for the coeffi-
cients ž:

žik =
2
∑
aP ΓP

ia
BPka

εi − εk
(S20)

The RHSs for the z-vector equations are also different for
the virtual-valence and virtual-core blocks:

Xbj =
∑
iP

Y j
iP

ΓibP −
∑
aP

Y baPΓjaP −
1

2
R
[
D′
]
bj

(S21)

Xbj =
∑
iP

Y
j

iP
ΓibP −

1

2
R
[
D′
]
bj

(S22)

where

D′ab = D′′ab (S23)

D′ij = D′′ij (S24)

D′ij = D′′ij = 0 (S25)

D′ij = D′ji =
1

2
žij (S26)

Analogously, for first order z-vector equations:

X
B
bj =

∑
aP

[
Γj,BaP Y

b
aP + ΓjaPY

b,B
aP

]
−
∑
iP

[
Γi,BbP Y

i
jP + ΓibPY

i,B

jP

]
− 1

2

∑
a

zajF
B
ab +

1

2

∑
i

zbiF
B
ji +

∑
pq

Dpq
(
pq || bj

)(B)

+
1

2
RXC(B) [D]bj +

1

2
R
[
D′B

]
bj
− 1

2

∑
p

UB
pbR [D]pj

+
1

2

∑
p

R [D]bp U
B
pj −R

[
UBD

]
bj

(S27)

X
B
bj = −

∑
iP

[
Γi,BbP Y

i
jP + ΓibPY

i,B
jP

]
− 1

2

∑
a

zajF
B
ab +

1

2

∑
i

zbiF
B
ji +

∑
pq

Dpq
(
pq || bj

)(B)

+
1

2
RXC(B) [D]bj +

1

2
R
[
D′B

]
bj
− 1

2

∑
p

UB
pbR [D]pj

+
1

2

∑
p

R [D]bp U
B
pj −R

[
UBD

]
bj

(S28)

where

D′Bab = D′′Bab (S29)

D′Bij = D′′Bij (S30)

D′Bij = D′′Bij = 0 (S31)

D′Bik = −D′Bki =
1

2
žBik (S32)

žBik =

(
2
∑
aP

Γi,BaP Y
k
aP + 2

∑
aP

ΓiaPY
k,B
aP

−
∑
j

žjkF
B
ji +

∑
l

žilF
B
kl

)
(εi − εk)−1 (S33)

S4 Implicit Solvation

If an implicit solvation model is used, such as the conductor-
like polarizable continuum model (CPCM) implemented in
ORCA,S9 the Fock matrix is corrected with an additional
term:

Fµν ← V sol
µν = vsolnucSµν +

∫
vsolP (r) Ωµν (r) dr (S34)
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where

vsolnuc (r) = −fε
∑
st

(
A−1)

st
| r− rs |−1

∑
K

ZK
|RK − rt |

(S35)

vsolP (r) = fε
∑
st

(
A−1)

st
| r− rs |−1

∫
ρP (r′)

| r′ − rt |
dr′ (S36)

ZK is the charge of nucleus K and RK is its position; the
indices s and t denote surface tesserae; fε is a function,
which depends on the dielectric constant of the solvent; and
the matrix A (defined as S in ref S9) depends on the ar-
eas and relative positions of the surface tesserae. Both the
nuclear and the electronic terms, vsolnuc and vsolP respectively,
contribute to the CPSCF equations,S9,S10 but only the latter
contributes to the Fock response in the z-vector equations:

R [D]pq ←R
sol [D]pq = 4

∑
µν

cµpcνq

∫
vsolD (r) Ωµν (r) dr

(S37)
where vsolD (for any matrix D) is defined as in eq S36 with
ρD substituted for ρP. An additional term enters the first
order z-vector equations RHS due to the use of GIAOs:

X
B
aj ←

1

2
Rsol(B) [D]aj (S38)

Rsol(B) [D]pq = 4
∑
µν

cµpcνq

∫
vsolD (r) ΩB

µν (r) dr (S39)

S5 Additional Results

Deviations of calculated CSCs and RCSs from empirical
equilibrium data are presented in Figures S1 and S2. Scal-
ing of different calculation parts with system size is shown in
Figures S3–S5. Contributions to the perturbed MP2 density
computation time are presented in Figures S6–S8.
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Figure S1: Deviations of chemical shielding constants (ppm) for groups of nuclei, calculated using different methods, from
empirical equilibrium values. The number of nuclei in each group is given in parentheses. Boxes show the IQREσ, whiskers
show the MinEσ and MaxEσ, orange lines show the MedEσ, and green dashed lines show the MEσ.
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Figure S2: Relative deviations of chemical shifts (%), cal-
culated using different methods, from empirical equilibrium
values. The number of data points is given in parentheses.
Boxes show the IQRREδ, whiskers show the MinREδ and
MaxREδ, orange lines show the MedREδ, and green dashed
lines show the MREδ.
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Figure S3: Scaling with system size of different parts of
the DSD-PBEP86/pS2/cw3C/RIJK(RITrafo) computation
time for linear alkane chains (CnH(2n+2)). The numbers on
the right denote the slope of the linear fit (on a log–log scale)
of the last five points in each series. The calculations were
performed on 8 Intel Xeon E7-8837 2.67 GHz cores with 8 GB
RAM per core.
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Figure S4: Scaling with system size of different parts
of the DSD-PBEP86/pS2/cw3C/RIJCOSX-L computation
time for linear alkane chains (CnH(2n+2)). The numbers on
the right denote the slope of the linear fit (on a log–log scale)
of the last five points in each series. The calculations were
performed on 8 Intel Xeon E7-8837 2.67 GHz cores with 8 GB
RAM per core.
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Figure S5: Scaling with system size of different parts
of the DSD-PBEP86/pS2/cw3C/RIJK(RIJONX) computa-
tion time for linear alkane chains (CnH(2n+2)). The numbers
on the right denote the slope of the linear fit (on a log–log
scale) of the last five points in each series. The calculations
were performed on 8 Intel Xeon E7-8837 2.67 GHz cores with
8 GB RAM per core.
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Figure S6: Contributions, adding up to over 97 %
of the total DB computation time at the DSD-
PBEP86/pS2/cw3C/RIJK(RITrafo) level, for linear alkane
chains (CnH(2n+2)). The calculations were performed on 8
Intel Xeon E7-8837 2.67 GHz cores with 8 GB RAM per core.
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Figure S7: Contributions, adding up to over 97 %
of the total DB computation time at the DSD-
PBEP86/pS2/cw3C/RIJCOSX-L level, for linear alkane
chains (CnH(2n+2)). The calculations were performed on
8 Intel Xeon E7-8837 2.67 GHz cores with 8 GB RAM per
core.
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Figure S8: Contributions, adding up to over 97 %
of the total DB computation time at the DSD-
PBEP86/pS2/cw3C/RIJK(RIJONX) level, for linear alkane
chains (CnH(2n+2)). The calculations were performed on 8
Intel Xeon E7-8837 2.67 GHz cores with 8 GB RAM per core.
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