Supporting Information

Efficient Defect Healing of Transition Metal Dichalcogenides by Metallophthalocyanine *Hyeyoung Ahn*,^{*1} *Yu-Chiao Huang*,¹ *Chang-Wei Lin*,¹ *Yi-Lun Chiu*,¹ *Erh-Chen Lin*,² *Ying-Yu Lai*,² *and Yi-Hsien Lee*²

¹Department of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan. ²Institute of NanoEngineering and MicroSystems, National Tsing-Hua University, Hsinchu 30010, Taiwan.

E-mail: <u>hyahn@mail.nctu.edu.tw</u> (Hyeyoung Ahn)

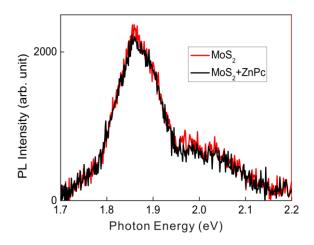


Figure S1. PL spectra of CVD-grown monolayer MoS_2 before and after functionalization with ZnPc measured at room temperature. Broad two peaks are related to the spin-orbit split B-exciton. Due to unfavorable charge transfer from MoS_2 , the PL signal remains nearly unchanged after MPc functionalization.

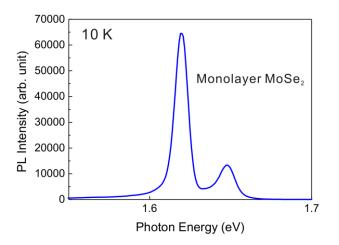
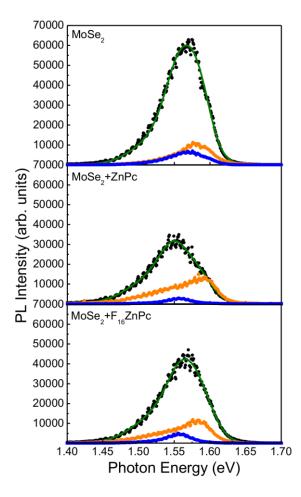



Figure S2. PL spectrum of mechanically exfoliated monolayer $MoSe_2$ measured at 10 K. Narrow and well-separated trion and exciton peaks can be observed. Details of exfoliation and transfer process can be found in Ref. [1].

Figure S3. PL spectra of as-grown MoSe₂, MoSe₂+ZnPc, and MoSe₂+ F_{16} ZnPc measured at 10 K (black dots), 60K (orange dots), and 200 K (blue dots). Although the PL quenching rate is different, thermal evolution of PL of trions and excitons are very similar for MoSe₂+ZnPc and MoSe₂+ F_{16} ZnPc.

References

 Desai, S. B.; Madhvapathy, S. R.; Amani, M.; Kiriya, D.; Hettick, M.; Tosun, M.; Zhou, Y.; Dubey, M.; Ager III, J. W.; Chrzan, D.; Javey, A. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers, *Adv. Mater.* 2016, *28*, 4053–4058.