Electronic Supplementary Information "Structural and Chemical Features Giving Rise to Defect Tolerance of Binary Semiconductors"

Rachel C. Kurchin,^{†,||} Prashun Gorai,^{‡,¶,||} Tonio Buonassisi,[§] and Vladan Stevanović^{*,‡,¶}

†Dept. of Materials Sci. & Eng., Massachusetts Institute of Tech., Cambridge, MA, USA

[‡]Dept. of Metallurgical and Materials Eng., Colorado School of Mines, Golden, CO, USA

¶National Renewable Energy Laboratory, Golden, Colorado 80401, USA
§Dept. of Mechanical Eng., Massachusetts Institute of Tech., Cambridge, MA, USA
|| These authors contributed equally to this work.

E-mail: vstevano@mines.edu

GW Band Edge Shifts

Table S1: Valence (ΔE_{VBM}) and conduction (ΔE_{CBM}) band edge shifts (in eV) calculated with GW. Band edge shifts due to spin-orbit coupling (calculated with DFT-PBE) are also included. The band edge shifts are relative to the DFT-PBE Kohn-Sham energies corresponding to the band edges.

Compound	Space Group	ΔE_{VBM} (eV)	ΔE_{CBM} (eV)
т. т.	60	0.414	0.010
InI	63	-0.414	0.313
TlI	63	-0.458	0.287
SnI_2	14	-0.293	0.295
PbI_2	164	-0.423	0.354
SbI_3	148	-0.010	0.358
BiI_3	148	-0.104	-0.468
TlBr	221	-1.204	-0.094
TlI	221	-0.819	-0.445
InI	221	-0.575	0.224
PbI_2	224	-0.251	0.559
WO_3	14	-0.366	1.003

Comparison of Calculated and Measured Band Gaps

Table S2: Calculated (GW method) band gaps (in eV) are in good agreement with measured band gaps.

Compound	Space Group	$\mathrm{E}_{\mathrm{g},\mathrm{GW}}$	$\rm E_{g,expt}$
InI TlI SbI $_3$ BiI $_3$ TlBr TlI	$ \begin{array}{c} 63\\ 63\\ 148\\ 148\\ 221\\ 221\\ 221 \end{array} $	$2.0 \\ 2.9 \\ 2.5 \\ 2.1 \\ 3.0 \\ 2.1$	$2.0^{1} \\ 2.9^{2} \\ 2.3^{3} \\ 2.0^{4} \\ 2.7^{5} \\ 1.9^{5}$

Dielectric Constants

Space Group	Dielectric Constant
63	42
63	30
14	44
164	17
148	15
148	11
221	79
221	90
221	8
224	12
14	14
	Space Group 63 63 14 164 148 148 221 221 221 221 224 14

Table S3: Calculated dielectric constants, including electronic and ionic contributions.

Defect Formation Energies: Cubic TlBr (CsCl Structure)

Figure S1: Defect energetics of cation and anion vacancies, antisites, and interstitials in the CsCl structure of TlBr. Interstitial defects are not the dominant (lowest-energy) defects owing to their high formation energy at the position of the equilibrium Fermi energy.

References

- (1) Bhattacharya, P.; Groza, M.; Cui, Y.; Caudel, D.; Wrenn, T.; Nwankwo, A.; Burger, A.; Slack, G.; Ostrogorsky, A. Growth of InI single crystals for nuclear detection applications. J. Jpn. Assoc. Cryst. Growth 2010, 312, 1228–1232, The 17th American Conference on Crystal Growth and Epitaxy/The 14th US Biennial Workshop on Organometallic Vapor Phase Epitaxy/The 6th International Workshop on Modeling in Crystal Growth.
- (2) Treusch, J. Electronic Band Structure, Bonding, and Ionicities of Polymorphous Thallous Halides. *Phys. Rev. Lett.* **1975**, *34*, 1343–1346.
- (3) Lefebvre, I.; Lannoo, M.; Allan, G.; Ibanez, A.; Fourcade, J.; Jumas, J. C.; Beaurepaire, E. Electronic Properties of Antimony Chalcogenides. *Phys. Rev. Lett.* **1987**, *59*, 2471–2474.

- (4) Takeyama, S.; Watanabe, K.; Miura, N.; Komatsu, T.; Koike, K.; Kaifu, Y. Magneto-optical effects of excitons in BiI₃ crystals under pulsed high magnetic fields: Indirect and direct excitons. *Phys. Rev. B* 1990, 41, 4513–4523.
- (5) Jurgensen, C. W.; Drickamer, H. G. High-pressure studies of the absorption edges of three thallous halides. *Phys. Rev. B* 1984, *30*, 7202–7205.