Supporting Information Computational design of functionalized substrate for capturing nanoparticles with specific size and shape Lin Shen, 1 Hong-ming Ding 1,* and Yu-qiang Ma 1,2,* ¹ Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China. ² National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China. Figure S1. The capture efficiency of spherical nanoparticles as a function of the nanoparticle size under different interaction parameters. (a) The strength of the attractive interaction (ϵ_1) between the nanoparticle and the specific part of copolymers changes from 0.1 k_BT to 2.0 k_BT, where the strength of the repulsive interaction (ϵ_2) between the nanoparticle and the non-specific part of copolymers is fixed as 1.0 k_BT. (b) The repulsive interaction (ϵ_2) changes from 0.1 k_BT to 2.0 k_BT, where the strength of attractive interaction (ϵ_1) is fixed as 1.0 k_BT. Figure S2. The capture efficiency of nanoparticles with different shapes under different interaction parameters when the hole in the substrate is sphere. (a) The strength of the attractive interaction (ϵ_1) between the nanoparticle and the specific part of copolymers changes from $0.1~k_BT$ to $2.0~k_BT$, where the strength of the repulsive interaction (ϵ_2) between the nanoparticle and the non-specific part of copolymers is fixed as $1.0~k_BT$. (b) The repulsive interaction (ϵ_2) changes from $0.1~k_BT$ to $2.0~k_BT$, where the strength of attractive interaction (ϵ_1) is fixed as $1.0~k_BT$.