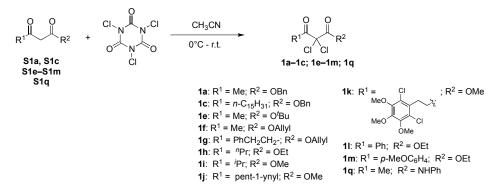
SUPPORTING INFORMATION

Synthesis of Enantioenriched α,α-Dichloro- and α,α-Difluoro-β-Hydroxy Esters and Amides by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation

Long-Sheng Zheng, Phannarath Phansavath* and Virginie Ratovelomanana-Vidal*

PSL Research University, Chimie ParisTech-CNRS Institut de Recherche de Chimie Paris 75005 Paris, France E-mail: phannarath.phansavath@chimie-paristech.fr; virginie.vidal@chimie-paristech.fr

Contents

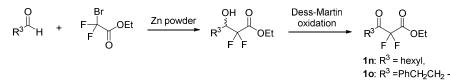

1. General information	S2
2. General procedures for the synthesis of compounds 1a–1r	S2-S3
3. Analytical data for compounds 1a–1r	S4-S7
4. General procedure for the synthesis of 2a–2h and 2j–2r by ATH	S7-S8
5. Analytical data for compounds 2a–2h and 2j–2r	S8-S12
6. Analytical data for compounds 4–6	
7. NMR spectra of compounds 1a–1r	S15-S33
8. NMR spectra and HPLC or SFC chromatograms for 2a–2h and 2j–2r	S34-S69
9. NMR spectra of compounds 4–6	
10. Proposed rationale for the stereochemical outcome of the ATH	

1. General information

All air and/or water sensitive reactions were carried out under an argon atmosphere. THF, Et₂O, CH₂Cl₂, DMF and toluene were dried over alumina columns in a solvent purification apparatus (Innovative technology). Reactions were monitored by thin layer chromatography carried out on precoated silica gel plates (Merck 60 F254) and revealed with either a ultra-violet lamp ($\lambda = 254$ nm) or a potassium permanganate solution. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded using a Bruker AC 300 (300 MHz) or a Bruker AC 400 (400 MHz). The chemical shifts are expressed in parts per million (ppm) referenced to residual chloroform (7.26 ppm). Data are reported as follows: chemical shifts (δ), multiplicity (recorded as s, singlet; d, doublet; t, triplet; q, quadruplet; quint, quintuplet; sext, sextuplet; hept, heptuplet; m, multiplet; and br, broad), coupling constants and integration. Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded using a Bruker AC 300 (75 MHz) or a Bruker AC 400 (100 MHz). The chemical shifts are expressed in parts per million (ppm) relative to the centre line of the triplet at 77.16 ppm for CDCl₃. Mass spectra (MS) were recorded by the ENSCP Mass Spectroscopy Service on a Hewlett-Packard HP 5989 A spectrometer. Ionization was obtained either by electronic impact (EI, 70eV) or chemical ionization with ammonia (CI, NH₃) and data are reported as m/z (relative intensity). Melting points (m.p.) were determined on a Kofler melting point apparatus. Optical rotations were measured on a Perkin-Elmer 241 polarimeter or a Jasco P-1010 polarimeter. High resolution mass spectrometric (HRMS) analyses were measured on LTQ-Orbitrap (Thermo Fisher Scientific) at Pierre et Marie Curie University. β-Dicarbonyl compounds S1c, S1f, S1g, S1j and S1k were prepared according to reported procedures,¹ while the others were commercially available.

2. General procedures for the synthesis of compounds 1a-1r

Method A:²


To a stirred solution of the β -dicarbonyl compound (10 mmol, 1.0 eq) in CH₃CN (40 mL) was added trichloroisocyanuric acid (1.58 g, 6.8 mmol, 0.68 eq) at room temperature in small portions. The reaction was monitored by TLC. After completion of the reaction, the suspension was filtered and the filtrate was concentrated under vacuum. The residue was partitioned between CH₂Cl₂ (30 mL) and satd. NaHSO₃ (20 mL).

¹ (a) Prévost, S.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V. *Adv. Synth. Catal.* **2011**, *353*, 3213. (b) Nakamura, H.; Tsukano, C.; Yasui, M.; Yokouchi, S.; Igarashi, M.; Takemoto, Y. *Angew. Chem. In. Ed.* **2015**, *54*, 3136. (c) Palos Pacheco, R.; Eismin, R. J.; Coss, C. S.; Wang, H.; Maier, R. M.; Polt, R.; Pemberton, J. E. *J. Am. Chem. Soc.* **2017**, *139*, 5125.

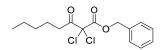
² Mendonça, G. F.; Sindra, H. C.; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S. Tetrahedron Lett. 2009, 50, 473.

The aqueous phase was extracted with CH_2Cl_2 (2 x 30 mL), the combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography afforded pure 1.

Method B:

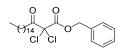
Step1: To a solution of aldehyde (1.0 eq) and ethyl bromodifluoroacetate (1.5 eq) in THF was added zinc powder (1.5 eq) at room temperature in small portions. The reaction was monitored by TLC. After completion, the reaction was quenched with satd. NH₄Cl and filtered through a short pad of celite. The filtrate was concentrated to remove THF. The resulting mixture was extracted with CH_2Cl_2 (3 x 30 mL), the combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography afforded the alcohol. **Step 2**: To the purified alcohol (1.0 eq) in CH_2Cl_2 , was added Dess-Martin periodinane (1.2 eq) at 0 °C. After completion of the reaction monitored by TLC (0.5 ~1 h), the mixture was quenched with satd. NaHCO₃ and extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography afforded the pure keto ester.

Method C:

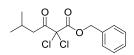

Step 1: To a solution of trichloro ester or amide (4 mmol, 1.0 eq) in THF (20 mL) was added 'PrMgCl (2.0 M in THF, 4.4 mmol, 1.1 eq) at -20 °C and the mixture was stirred at room temperature for 10 min, then cooled to -20 °C and the aldehyde (4.4 mmol, 1.1 equiv) was added. The mixture was stirred for 30 min then warmed to room temperature. After completion of the reaction monitored by TLC, the mixture was quenched with satd. NH₄Cl at 0 °C. After evaporation of THF under reduced pressure, and extraction with CH₂Cl₂, the combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography afforded the pure alcohol.

Step 2: To the purified alcohol (2 mmol, 1.0 eq) in CH_2Cl_2 at 0 °C was added Dess-Martin periodinane (2.4 mmol, 1.2 eq). After completion of the reaction monitored by TLC (1 h), the mixture was quenched with satd. NaHCO₃ and extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the by flash column chromatography afforded the pure ketone.

3. Analytical data for compounds 1a-1r


Benzyl 2,2-dichloro-3-oxobutanoate (1a)

Method A: **1a** (4.4 g, 98% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 5H), 5.32 (s, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.3, 163.3, 134.0, 129.1, 128.9 (2C), 128.5 (2C), 82.0, 70.1, 23.5.


Benzyl 2,2-dichloro-3-oxooctanoate (1b)

Method C: **1b** (340 mg, 45% yield, two steps), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 5H), 5.31 (s, 2H), 2.73 (t, *J* = 7.3 Hz, 2H), 1.62 (quint, *J* = 7.4 Hz, 2H), 1.34 – 1.17 (m, 4H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 163.5, 134.1, 129.1, 128.8 (2C), 128.6 (2C), 82.1, 70.0, 35.9, 31.0, 24.0, 22.4, 14.0.

Benzyl 2,2-dichloro-3-oxoheptadecanoate (1c)

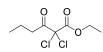
Method A: **1c** (1.02 g, 85% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 5H), 5.31 (s, 2H), 2.73 (t, *J* = 7.3 Hz, 2H), 1.63 – 1.60 (m, 2H), 1.26 – 1.24 (m, 24H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 163.5, 134.1, 129.1, 128.9 (2C), 128.6 (2C), 82.1, 70.0, 36.0, 32.1, 29.8 (5C), 29.7, 29.55, 29.52, 29.4, 28.9, 24.3, 22.8, 14.3.

Benzyl 2,2-dichloro-5-methyl-3-oxohexanoate (1d)

Method C: **1d** (496 mg, 51% yield, two steps), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (s, 5H), 5.32 (s, 2H), 2.62 (d, J = 6.8 Hz, 2H), 2.19 (hept, J = 6.7 Hz, 1H), 0.91 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.3, 163.5, 134.1, 129.1, 128.8 (2C), 128.6 (2C), 82.2, 70.0, 44.4, 24.7, 22.2 (2C).

tert-Butyl 2,2-dichloro-3-oxobutanoate (1e)

Method A: **1e** (2.0 g, 88% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 162.0, 86.5, 82.9, 27.6 (3C), 23.8.



Allyl 2,2-dichloro-3-oxobutanoate (1f)

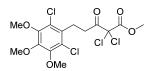
Method A: **1f** (1.58 g, 75% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.93 (ddt, J = 16.4, 10.6, 5.8 Hz, 1H), 5.45 – 5.39 (m, 1H), 5.36 – 5.32 (m, 1H), 4.79 (d, J = 5.8 Hz, 2H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 163.2, 130.2, 120.4, 81.9, 68.8, 23.6.

Allyl 2,2-dichloro-3-oxo-5-phenylpentanoate (1g)

Method A: **1g** (0.68 g, 66% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.2 Hz, 2H), 7.24 – 7.19 (m, 3H), 5.95 – 5.83 (m, 1H), 5.40 (dq, J = 17.2, 1.4 Hz, 1H), 5.33 (dd, J = 10.4, 1.1 Hz, 1H), 4.73 (dt, J = 5.9, 1.2 Hz, 2H), 3.18 – 3.14 (m, 2H), 3.00 (t, J = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.4, 163.2, 139.9, 130.2, 128.8 (2C), 128.5 (2C), 126.7, 120.5, 81.9, 68.8, 37.9, 30.4.

Ethyl 2,2-dichloro-3-oxohexanoate (1h)

Method A: **1h** (1.73 g, 95% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.36 (q, J = 7.1 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 1.72 (sext, J = 7.3 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 163.6, 82.1, 64.7, 37.8, 17.9, 14.0, 13.5.

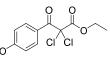


Methyl 2,2-dichloro-4-methyl-3-oxopentanoate (1i)

Method A: **1i** (1.33 g, 78% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 3.29 (hept, J = 6.7 Hz, 1H), 1.26 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 164.2, 82.0, 55.0, 35.8, 21.1 (2C).

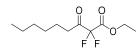
Methyl 2,2-dichloro-3-oxooct-7-ynoate (1j)

Method A: **1i** (1.58 g, 74% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.91 (s, 3H), 2.99 (t, J = 7.1 Hz, 2H), 2.27 (t, J = 6.8 Hz, 2H), 1.99 (s, 1H), 1.90 (quint, J = 6.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 164.0, 83.0, 81.7, 69.7, 55.1, 34.5, 23.0, 17.6.



Methyl 2,2-dichloro-3-oxo-5-(3,4,5-trimethoxyphenyl)pentanoate (1k)

Method A: **1k** (0.68 g, 66% yield), white solid, mp 50 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 3H), 3.93 (s, 3H), 3.90 (s, 6H), 3.29 – 3.25 (m, 2H), 3.07 – 3.03 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 164.0, 149.4 (2C), 146.9, 131.5, 124.2 (2C), 81.7, 61.5, 61.3 (2C), 55.2, 34.3, 26.8.


Ethyl 2,2-dichloro-3-oxo-3-phenylpropanoate (11)

Method A: **11** (0.9 g, 69% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.02 (m, 2H), 7.64 – 7.60 (m, 1H), 7.50 – 7.46 (m, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.3, 164.1, 134.3, 130.9, 130.1 (2C), 128.7 (2C), 82.0, 64.8, 13.7.

Ethyl 2,2-dichloro-3-(4-methoxyphenyl)-3-oxopropanoate (1m)

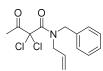
Method A: **1m** (0.62 g, 43% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.02 (m, 2H), 6.96 – 6.91 (m, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.0, 164.4 (2C), 132.8 (2C), 123.4, 114.0 (2C), 82.3, 64.7, 55.7, 13.8.

Ethyl 2,2-difluoro-3-oxononanoate (1n)

Method B: **1n** (0.61 g, 63% yield, two steps), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.39 (q, J = 7.1 Hz, 2H), 2.75 (t, J = 7.2 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.39 – 1.32 (m, 9H), 1.37 (t, J = 7.1 Hz, 3H), 1.34 – 1.23 (m, 6H), 0.91 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6 (t, J = 28.0 Hz), 161.6 (t, J = 30.6 Hz), 108.3 (t, J = 264.0 Hz), 63.8, 36.8, 31.5, 28.6, 22.6 (2C), 14.1, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.9.

Ethyl 2,2-difluoro-3-oxo-5-phenylpentanoate (10)

Method B: **10** (1.31 g, 59% yield, two steps), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.10 – 3.05 (m, 2H), 2.99 – 2.95 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6 (t, *J* = 28.2 Hz), 161.3 (t, *J* = 30.7 Hz), 139.8, 128.7 (2C), 128.4 (2C), 126.6, 108.3 (t, *J* = 264.0 Hz), 63.9, 38.5, 28.5, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.9.



Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (1p)

Following a reported procedure,³ **1p** (0.246 g, 36% yield), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.07 (m, 2H), 7.70 – 7.66 (m, 1H), 7.55 – 7.51 (m, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.6 (t, *J* = 27.5 Hz), 161.9 (t, *J* = 30.6 Hz), 135.2, 131.1, 130.0 (2C), 129.1 (2C), 109.90 (t, *J* = 264.6 Hz), 63.9, 13.9.

2,2-dichloro-3-oxo-N-phenylbutanamide (1q)

Method A: **1q** (2.3 g, 93% yield), white solid, m.p. < 48 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.25 – 7.21 (m, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 161.0, 136.0, 129.3 (2C), 126.0, 120.5 (2C), 83.2, 24.5.

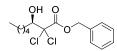
N-allyl-N-benzyl-2,2-dichloro-3-oxobutanamide (1r)

Method C: **1c** (714 mg, 65% yield, two steps), colorless oil. ¹H NMR (400 MHz, CDCl₃, at this temperature, two rotamers (A: major; B: minor) in 60:40 ratio are visible) δ 7.44 – 7.20 (m, 5H) [**A** + **B**], 5.90 [**A**] (ddt, *J* = 16.3, 11.7, 6.0 Hz, 1 H), 5.74 [**B**] (ddt, *J* = 16.2, 11.1, 5.8 Hz, 1H), 5.39 [**A**] (d, *J* = 9.7 Hz, 1H), 5.29 [**A**] (d, *J* = 17.2 Hz, 1H), 5.24 [**B**] (d, *J* = 10.3 Hz, 1H), 5.14 [**B**] (d, *J* = 17.1 Hz, 1H), 4.97 [**B**] (s, 2H), 4.62 [**A**] (s, 2H), 4.25 [**A**] (d, *J* = 5.9 Hz, 2H), 3.89 [**B**] (d, *J* = 5.6 Hz, 2H), 2.56 [**B**] (s, 3H), 2.53 [**A**] (s, 3H). ¹³C NMR (101 MHz, CDCl₃, major rotamer) δ 190.2, 163.7, 135.8, 132.1, 128.9 (2C), 128.0 (2C), 127.9, 120.1, 83.8, 50.3, 48.3, 25.56; ¹³C NMR (101 MHz, CDCl₃, minor rotamer) δ 190.2, 163.8, 135.1, 130.8, 128.9 (2C), 128.1, 127.5 (2C), 118.5, 83.6, 51.4, 48.2, 25.64.

4. General procedure for the synthesis of 2a–2h and 2j–2r by ATH.

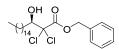
A round-bottomed tube equipped with a balloon of argon was charged with the corresponding dihalogeno β -keto ester (or dihalo β -keto amide) **1** (1.0 mmol [or 0.6 mmol]) and the [RuCl(*p*-cymene)(*R*,*R*)-TsDPEN] complex (0.005 mmol, 0.5 mol% [or 0.006 mmol, 1.0 mol%]). The mixture was subjected to three vacuum/argon cycles before degassed dichloromethane (5 mL [or 3 mL]) was added. The mixture was stirred at room temperature for 3-5 min, then HCO₂H/Et₃N (5:2) azeotropic mixture (168 μ L, 2.0 mmol, 2.0 eq [or 101 μ L, 1.2 mmol, 2.0 eq]) was added dropwise. and the reaction was heated at 30 °C. After complete consumption of the starting material (monitored by TLC or ¹H NMR), the catalyst was removed through a short pad of silica gel (petroleum ether/ethyl acetate 4:1 to 3:1). The filtrate was concentrated under vacuum to give the crude product. The

³ Stavber, G.; Stavber, S. Adv. Synth. Catal. **2010**, 352, 2838.

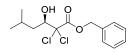

conversion was determined by ¹H NMR analysis of the crude product. After purification of the crude product by flash column chromatography, the enantiomeric excess was determined by SFC or HPLC analysis (CHIRALPAK IA, IB, ID, IE).

5. Analytical data for compounds 2a-2h and 2j-2r.

Benzyl (R)-2,2-dichloro-3-hydroxybutanoate (2a)


Colorless oil, 152 mg, 96% yield, > 99% ee. $[\alpha]_D^{25} = -7.1$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 5H), 5.32 (s, 2H), 4.53 – 4.43 (m, 1H), 2.61 (d, *J* = 7.2 Hz, 1H), 1.44 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 134.4, 128.9, 128.8 (2C), 128.2 (2C), 87.2, 73.6, 69.4, 17.2.

SFC: Chiralpak IA-H, $scCO_2/{}^{t}PrOH 96/4$, 3.0 mL/min, P = 150 bar, $\lambda = 215$ nm, $t_R = 8.86$ min (major), $t_R = 9.86$ min. HRMS (ESI/ion trap): $m/z [M+Na]^+$ calcd for $C_{11}H_{12}Cl_2O_3Na 285.0061$, found 285.0057.


Benzyl (R)-2,2-dichloro-3-hydroxyoctanoate (2b)

Colorless oil, 134 mg, 70% yield, >99% ee. $[\alpha]_D^{25} = +13.4$ (*c* 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 5H), 5.36, 5.28 (ABq, $J_{AB} = 13.5$ Hz, 2H), 4.21 (ddd, J = 9.3, 7.4, 1.9 Hz, 1H), 2.44 (d, J = 7.4 Hz, 1H), 1.84 – 1.74 (m, 1H), 1.59 (m, 2H), 1.43 – 1.23 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 134.4, 128.91, 128.85 (2C), 128.3 (2C), 87.3, 77.5, 69.4, 31.6, 31.2, 25.7, 22.6, 14.1. SFC: Chiralpak IA-H, *sc*CO₂/ ^{*i*}PrOH 96/4, 3.0 mL/min, P = 150 bar, $\lambda = 215$ nm, t_R = 12.44 min, t_R = 14.67 min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₁₅H₂₀Cl₂O₃Na 341.0687, found 341.0682.

Benzyl (R)-2,2-dichloro-3-hydroxyheptadecanoate (2c)

White solid, m.p. < 48 °C. 204 mg, 90% yield, 98% ee. $[\alpha]_D^{25} = +9.8$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.37 (m, 5H), 5.36, 5.28 (ABq, $J_{AB} = 13.0$ Hz, 2H), 4.23 – 4.19 (m, 1H), 2.44 (d, J = 7.4 Hz, 1H), 1.83 – 1.76 (m, 1H), 1.64 – 1.50 (m, 2H), 1.26 (br s, 25H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 134.4, 128.91, 128.85 (2C), 128.3 (2C), 87.3, 77.5, 69.4, 32.1, 31.3, 29.8 (6C), 29.7, 29.6, 29.51, 29.46, 26.0, 22.8, 14.3. HPLC: Chiralpak IB, Hexane/^{*i*}PrOH 97/3, 1.0 mL/min, $\lambda = 215$ nm, $t_R = 7.81$ min, $t_R = 9.48$ min (major). MS (ESI): m/z = 476 [M + NH₄]⁺.

Benzyl (R)-2,2-dichloro-3-hydroxy-5-methylhexanoate (2d)

White solid, m.p. 54 °C, 47.6 mg, 26% yield, >99% ee. $[\alpha]_D^{25} = +16.0$ (*c* 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 5H), 5.42, 5.26 (ABq, $J_{AB} = 13.7$ Hz, 2H), 4.29 (ddd, J = 9.6, 7.4, 2.3 Hz, 1H), 2.45 (d, J = 7.3 Hz, 1H), 1.92 – 1.82 (m, 1H), 1.60 – 1.48 (m, 2H), 0.96 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 134.4, 128.93, 128.86 (2C), 128.4 (2C), 87.5, 75.9, 69.4, 40.2, 24.8, 23.8, 21.6. SFC: Chiralpak IA-H, *sc*CO₂/^{*i*}PrOH 96/4, 3.0 mL/min, P = 150 bar, $\lambda = 215$ nm, t_R = 7.98 min, t_R = 8.94 min (major). HRMS (ESI/ion trap): m/z [M+Na]⁺ calcd for C₁₄H₁₈Cl₂O₃Na 327.0531, found 327.0526.

tert-Butyl (R)-2,2-dichloro-3-hydroxybutanoate (2e)

White solid, m.p. < 50 °C, 192 mg, 84% yield, 99% ee. $[\alpha]_D^{25} = -7.3$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.41 (quint, *J* = 6.3 Hz, 1H), 2.68 (d, *J* = 7.0 Hz, 1H), 1.54 (s, 9H), 1.43 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 88.1, 85.5, 73.6, 27.7, 17.4 (3C). HPLC: Chiralpak IE, Hexane/ⁱPrOH 98/2, 1.0 mL/min, $\lambda = 215$ nm, $t_R = 10.05$ min, $t_R = 13.36$ min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₈H₁₄Cl₂O₃Na 251.0218, found 251.0213.

Allyl (R)-2,2-dichloro-3-hydroxybutanoate (2f)

Colorless oil, 158 mg, 74% yield, >99% ee. $[\alpha]_D^{25} = -7.0$ (*c* 1.06, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 5.95 (ddt, *J* = 17.1, 10.5, 5.7 Hz, 1H), 5.44 (dq, *J* = 17.2, 1.4 Hz, 1H), 5.33 (dq, *J* = 10.5, 1.1 Hz, 1H), 4.78 (dt, *J* = 5.7, 1.3 Hz, 2H), 4.64 – 4.34 (m, 1H), 2.65 (d, *J* = 7.2 Hz, 1H), 1.46 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 130.5, 119.8, 87.1, 73.6, 68.2, 17.2. HPLC: Chiralpak IB, Hexane/ⁱPrOH 98/2, 1.0 mL/min, λ = 215 nm, t_R = 10.80 min (major), t_R = 14.30 min. HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₇H₁₀Cl₂O₃Na 234.9905, found 234.9900.

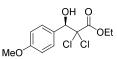
Allyl (R)-2,2-dichloro-3-hydroxy-5-phenylpentanoate (2g)

Colorless oil, 147 mg, 78% yield, > 99% ee. $[\alpha]_D^{25} = +28.0$ (*c* 1.02, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.24 – 7.19 (m, 3H), 5.92 (ddt, *J* = 16.5, 11.0, 5.7 Hz, 1H), 5.42 (d, *J* = 17.2 Hz, 1H), 5.32 (d, *J* = 10.5 Hz, 1H), 4.76 (d, *J* = 5.7 Hz, 2H), 4.23 (ddd, *J* = 9.6, 7.0, 1.7 Hz, 1H), 2.98 (ddd, *J* = 14.1, 9.4, 4.9 Hz, 1H), 2.75 (dt, *J* = 13.9, 8.4 Hz, 1H), 2.64 (d, *J* = 7.0 Hz, 1H), 2.25 – 2.16 (m, 1H), 1.97 (dtd, *J* = 14.2, 9.6, 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 141.1, 130.4, 128.56 (2C), 128.52 (2C), 126.3, 119.9, 86.7, 76.6, 68.2, 32.7, 31.9. SFC: Chiralpak IA-H, *sc*CO₂/^{*i*}PrOH 96/4, 3.0 mL/min, P = 150 bar, λ = 215 nm, t_{*R*} = 12.14 min, t_{*R*} = 14.87 min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₁₄H₁₆Cl₂O₃Na 325.0374, found 325.0370.

Ethyl (R)-2,2-dichloro-3-hydroxyhexanoate (2h)

Colorless oil, 100 mg, 72% yield, >99% ee. $[\alpha]_D^{25} = +15.5$ (*c* 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.36 (q, *J* = 7.1 Hz, 2H), 4.22 (ddd, *J* = 9.3, 7.4, 1.8 Hz, 1H), 2.50 (d, *J* = 7.3 Hz, 1H), 1.87 - 1.78 (m, 1H), 1.71 - 1.55 (m, 2H), 1.50 - 1.42 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 87.2, 77.2, 64.1, 33.2, 19.2, 13.9 (2C). HPLC: Chiralpak IB, Hexane/^{*i*}PrOH 98/2, 1.0 mL/min, λ = 215 nm, t_{*R*} = 8.37 min, t_{*R*} = 9.11 min (major). HRMS (ESI/ion trap): *m*/*z* [M+Na]⁺ calcd for C₈H₁₄Cl₂O₃Na 251.0218, found 251.0213.

Methyl (R)-2,2-dichloro-3-hydroxyoct-7-ynoate (2j)


Colorless oil, 109 mg, 76% yield, > 99% ee. $[\alpha]_D^{25} = +18.5$ (*c* 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.29 – 4.22 (m, 1H), 3.92 (s, 3H), 2.59 (d, *J* = 7.3 Hz, 1H), 2.29 (td, *J* = 6.7, 2.6 Hz, 2H), 2.10 – 2.01 (m, 1H), 1.98 (t, *J* = 2.6 Hz, 1H), 1.92 – 1.82 (m, 1H), 1.78 – 1.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 86.6, 83.8, 77.0, 69.1, 54.7, 30.0, 24.8, 18.2. HPLC: Chiralpak IE, Hexane/^{*i*}PrOH 95/5, 1.0 mL/min, λ = 215 nm, t_R = 10.25 min, t_R = 12.48 min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₉H₁₂Cl₂NaO₃ 261.0061, found 261.0057.

Methyl (R)-2,2-dichloro-5-(2,6-dichloro-3,4,5-trimethoxyphenyl)-3-hydroxypentanoate (2k)

Colorless oil, 127 mg, 48% yield, 98% ee. $[\alpha]_D^{25} = +12.6$ (*c* 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.33 (ddd, *J* = 9.6, 7.7, 1.6 Hz, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 3.90 (s, 6H), 3.27 (ddd, *J* = 13.0, 11.3, 5.0 Hz, 1H), 3.02 (ddd, *J* = 13.2, 11.0, 5.5 Hz, 1H), 2.65 (d, *J* = 7.6 Hz, 1H), 2.19 – 2.11 (m, 1H), 1.84 (ddd, *J* = 13.9, 10.1, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 149.2 (2C), 146.5, 133.1, 124.2 (2C), 86.5, 77.5, 61.5, 61.3 (2C), 54.7, 29.9, 28.4. HPLC: Chiralpak IA, Hexane/^{*i*}PrOH 95/5, 1.0 mL/min, λ = 215 nm, t_{*R*} = 9.93 min, t_{*R*} = 11.62 min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₁₅H₁₈Cl₄O₆Na 456.9755, found 456.9750.

Ethyl (R)-2,2-dichloro-3-hydroxy-3-phenylpropanoate (21)

Colorless oil, 79 mg, 50% yield, 70% ee. $[\alpha]_D^{25} = -11.3$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.40 – 7.36 (m, 3H), 5.42 (d, *J* = 5.2 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.31 (d, *J* = 5.1 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 135.6, 129.3, 129.0 (2C), 127.9 (2C), 86.1, 78.8, 64.4, 13.9. HPLC: Chiralpak IE, Hexane/^{*i*}PrOH 90/10, 1.0 mL/min, λ = 215 nm, t_{*R*} = 7.13 min, t_{*R*} = 8.34 min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₁₁H₁₂Cl₂O₃Na 285.0061, found 285.0057.

Ethyl (R)-2,2-dichloro-3-hydroxy-3-(4-methoxyphenyl)propanoate (2m)

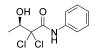
Colorless oil, 59 mg, 33.5% yield, 71% ee. $[\alpha]_D^{25} = -9.5$ (*c* 1.07, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.44 (m, 2H), 6.92 – 6.88 (m, 2H), 5.38 (d, *J* = 5.1 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 3.20 (d, *J* = 5.1 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 160.2, 130.2 (2C), 127.7, 113.3 (2C), 86.6, 78.5, 64.3, 55.4, 13.9. HPLC: Chiralpak IE, Hexane/ⁱPrOH 94/6, 1.0 mL/min, λ = 254 nm, t_R = 18.37 min, t_R = 19.11 min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₁₂H₁₄Cl₂O₄Na 315.0167, found 315.0163.

Ethyl (R)-2,2-difluoro-3-hydroxynonanoate (2n)

Colorless oil, 143 mg, 99% yield, 98% ee. $[\alpha]_D^{25} = +19.7$ (*c* 1.11, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.36 (q, *J* = 7.1 Hz, 2H), 4.07 – 3.97 (m, 1H), 1.96 (d, *J* = 6.0 Hz, 1H), 1.71 – 1.49 (m, 4H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.33 – 1.25 (m, 6H), 0.89 (t, *J* = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –115.0 (dd, *J* = 264.5, 7.4 Hz), – 122.4 (dd, *J* = 264.5, 14.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (t, *J* = 32.0 Hz), 115.4 (t, *J* = 255.4 Hz), 71.8 (t, *J* = 26.1 Hz), 63.2, 31.7, 29.3, 29.1, 25.3, 22.7, 14.1, 14.0.

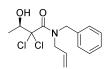
HPLC: Chiralpak ID, Hexane/ⁱPrOH 98/2, 1.0 mL/min, $\lambda = 215$ nm, $t_R = 8.90$ min, $t_R = 10.02$ min (major). HRMS (ESI/ion trap): m/z [M+Na]⁺ calcd for C₁₁H₂₀F₂O₃Na 261.1278, found 261.1274.

Ethyl (R)-2,2-difluoro-3-hydroxy-5-phenylpentanoate (20)⁴


Colorless oil, 153 mg, 99% yield, 98% ee. $[\alpha]_D^{25} = +31.9$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.23 – 7.20 (m, 3H), 4.34 (q, *J* = 7.1 Hz, 2H), 4.09 – 3.95 (m, 1H), 2.93 (ddd, *J* = 14.1, 9.1, 5.2 Hz, 1H), 2.74 (dt, *J* = 13.9, 8.3 Hz, 1H), 2.07 (d, *J* = 7.1 Hz, 1H), 2.05 – 1.97 (m, 1H), 1.89 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –114.88 (dd, *J* = 266.0, 7.6 Hz), –121.89 (dd, *J* = 266.0, 14.5 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, *J* = 31.8 Hz), 140.9, 128.7 (2C), 128.6 (2C), 126.4, 114.7 (t, *J* = 262.0 Hz), 71.1 (t, *J* = 26.2 Hz), 63.3, 31.3, 30.8, 14.0. SFC: Chiralpak IA-H, *sc*CO₂/^{*i*}PrOH 96/4, 3.0 mL/min, P = 150 bar, λ = 215 nm, t_R = 5.06 min, t_R = 5.94 min (major).

Ethyl (R)-2,2-difluoro-3-hydroxy-3-phenylpropanoate (2p)

Colorless oil, 136.7 mg, 99% yield, 56% ee. $[\alpha]_D^{25} = -6.8$ (c 1.0, CHCl₃), [Lit.⁵ $[\alpha]_D^{24} = -13.4$ (c 1.29, CHCl₃, 97% ee)]. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 - 7.40 (m, 2H), 7.41 - 7.38 (m, 3H), 5.18 (ddd, *J* = 15.3,


⁴ Kuroki, Y.; Asada, D.; Iseki, K. *Tetrahedron Lett.* **2000**, *41*, 9853.

7.9, 5.3 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.62 (d, J = 5.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, J = 31.7 Hz), 134.6, 129.3 (2C), 128.5, 127.8 (2C), 113.9 (dd, J = 259.2, 254.2 Hz), 73.8 (dd, J = 27.5, 24.6 Hz), 63.3, 13.9. HPLC: Chiralpak IC, Hexane/^{*i*}PrOH 90/10, 1.0 mL/min, $\lambda = 215$ nm, t_R = 5.70 min (major), t_R = 7.09 min.

(R)-2,2-dichloro-3-hydroxy-N-phenylbutanamide (2q)

White solid, m.p. 78 °C, 230 mg, 93% yield, 98.5% ee. $[\alpha]_D^{25} = -11.9$ (*c* 1.02, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.55 (d, *J* = 7.7 Hz, 2H), 7.39 (t, *J* = 7.9 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 4.64 (quint, *J* = 6.1 Hz, 1H), 3.39 (d, *J* = 5.0 Hz, 1H), 1.50 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 136.3 (2C), 129.3, 125.8, 120.6 (2C), 88.8, 73.2, 17.1. HPLC: Chiralpak IB, Hexane/^{*i*}PrOH 90/10, 1.0 mL/min, λ = 215 nm, t_R = 7.29 min (major), t_R = 8.06 min. HRMS (ESI/ion trap): *m*/*z* [M+Na]⁺ calcd for C₁₀H₁₁Cl₂NO₂Na 270.0065, found 270.0061.

(R)-N-allyl-N-benzyl-2,2-dichloro-3-hydroxybutanamide (2r)

Colorless oil, 179.5 mg, 99% yield, 98% ee. $[\alpha]_D^{25} = +19.7$ (*c* 1.11, CHCl₃). ¹H NMR (400 MHz, CDCl₃, at this temperature, two rotamers (A: major; B: minor) in 60:40 ratio are visible) δ 7.40 – 7.25[A+B] (m, 4H), 7.23 – 7.16 [A+B] (m, 1H), 5.91 [A] (ddt, *J* = 16.5, 11.9, 6.0 Hz, 1H), 5.72 [B] (ddt, *J* = 15.9, 10.6, 5.5 Hz, 1H), 5.34 [A] (d, *J* = 10.2 Hz, 1H), 5.25 [A] (d, *J* = 17.2 Hz, 1H), 5.19 [B] (d, *J* = 10.5 Hz, 1H), 5.15 [B] (d, *J* = 16.3 Hz, 1H), 5.09 [A] (d, *J* = 18.0 Hz, 1H), 5.00 [B] (d, *J* = 16.1 Hz, 1H), 4.69 – 4.55 [A+B] (m, 2H), 4.50 – 4.30 [A+B] (m, 2H), 3.96 – 3.79 [A+B] (m, 1H), 1.50 [A+B] (d, *J* = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, at this temperature, two rotamers (A: major; B: minor) are visible) δ 166.7 [A+B]; 136.0 [A], 135.6 [B]; 132.5 [A], 131.1 [B]; 128.9 [A+B] (2C); 128.0 [B], 127.7 [A]; 127.6 [A+B] (2C); 119.9 [A], 117.9 [B]; 85.6 [A], 85.5 [B]; 74.2 [A+B]; 52.1 [B], 51.2 [A]; 48.5 [A+B]; 16.3 [A+B]. HPLC: Chiralpak IE, Hexane/¹PrOH 98/2, 1.0 mL/min, $\lambda = 215$ nm, $t_R = 15.79$ min, $t_R = 18.88$ min (major). HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₁₄H₁₇Cl₂NO₂Na 324.0534, found 324.0530.

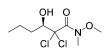
6. Analytical data for compounds 4-6.

`0́

(Z/E)-non-2-en-1-yl (R)-2,2-dichloro-3-hydroxybutanoate (4)

⁵ Iseki, K.; Kuroki, Y.; Asada, D.; Takahashi, M.; Kishimoto, S.; Kobayashi, Y. *Tetrahedron* **1997**, *53*, 10271.

In a round-bottom tube, charged with Grubbs II catalyst (17 mg, 0.02 mmol) under an argon atmosphere, was added a solution of allyl (*R*)-2,2-dichloro-3-hydroxybutanoate (**2e**, 43 mg, 0.2 mmol) and 1-octene (63 μ L, 0.4 mmol) in degassed DCM (2 mL). The mixture was heated to reflux until the conversion was complete as indicated by TLC (24 h). The solvent was removed under vacuum and the residue was purified by flash column chromatography with silica gel (petroleum ether/EtOAc, 20:1 to 15:1) to give compound **4** (40 mg, 67% yield, Z/E = 1/5.8) as a colorless oil.


(Z)-non-2-en-1-yl (R)-2,2-dichloro-3-hydroxybutanoate (4)

¹H NMR (400 MHz, CDCl₃) δ 5.80 – 5.72 (m, 2 H), 4.83 (d, *J* = 6.9 Hz, 2H), 4.47 (quint, *J* = 6.4 Hz, 1H), 2.67 – 2.64 (m, 1H), 2.17 – 2.13 (m, 2H), 1.45 (d, *J* = 6.2 Hz, 3H), 1.40 – 1.28 (m, 8H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 137.8, 121.5, 87.2, 73.6, 63.7, 29.4, 29.0, 28.5, 27.8, 22.6, 17.2, 14.2.

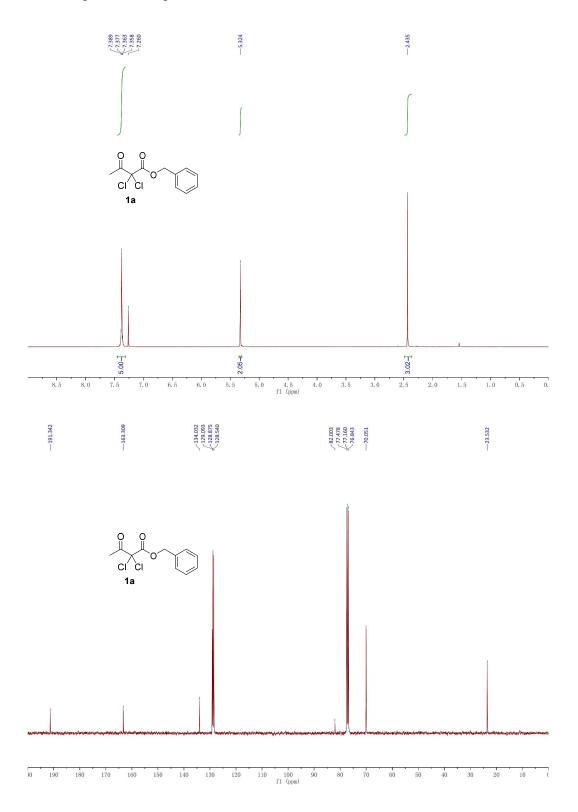
(E)-non-2-en-1-yl (R)-2,2-dichloro-3-hydroxybutanoate (4)

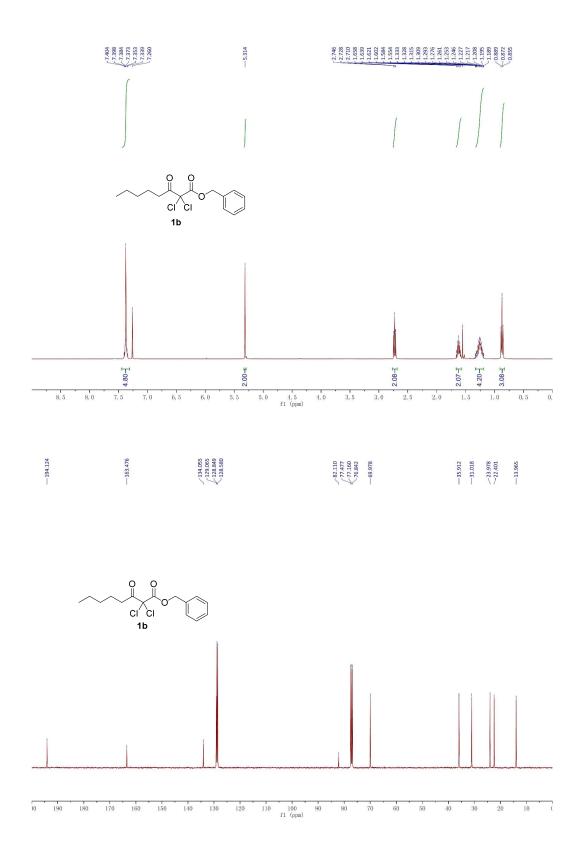
¹H NMR (400 MHz, CDCl₃) δ 5.88 (dt, J = 14.3, 6.6 Hz, 1H), 5.59 (dt, J = 13.9, 6.0 Hz, 1H), 4.72 (d, J = 6.5 Hz, 2H), 4.47 (quint, J = 6.4 Hz, 1H), 2.66 (d, J = 6.9 Hz, 1H), 2.07 (q, J = 7.4, 6.9 Hz, 2H), 1.45 (d, J = 6.2 Hz, 3H), 1.40 – 1.28 (m, 8H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 138.9, 122.1, 87.2, 73.6, 68.7, 32.4, 31.8, 28.9, 28.8, 22.7, 17.2, 14.2.

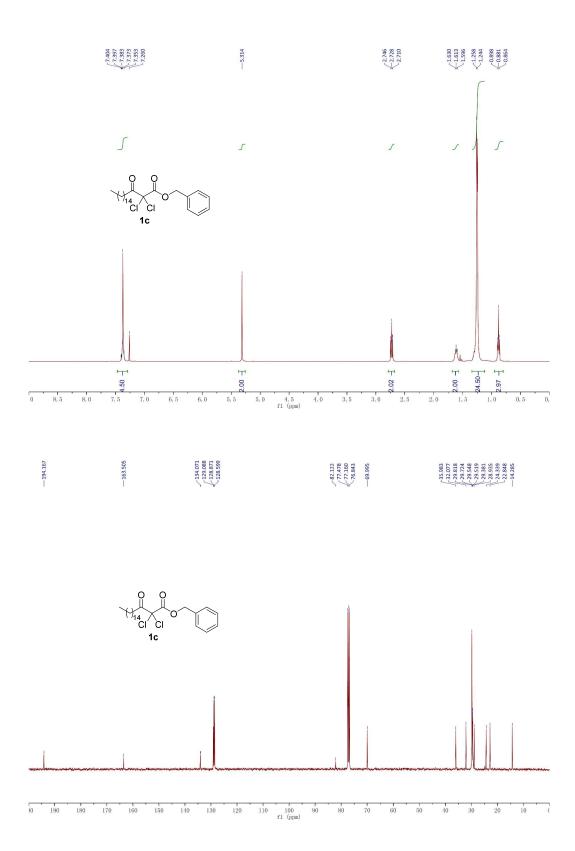
HRMS (ESI/ion trap): m/z [M+Na]⁺ calcd for C₁₃H₂₂Cl₂O₃Na 319.0844, found 319.0839.

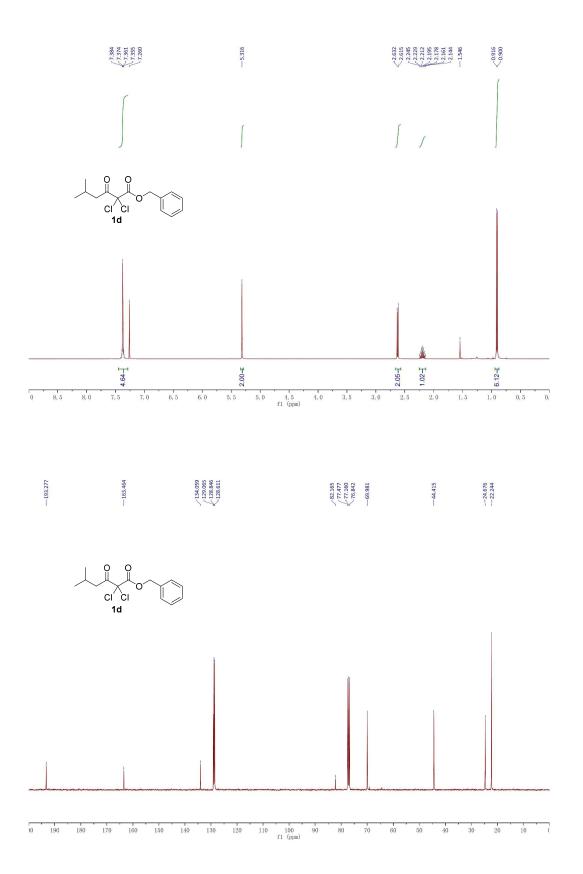
(R)-2,2-dichloro-3-hydroxy-N-methoxy-N-methylhexanamide (5)

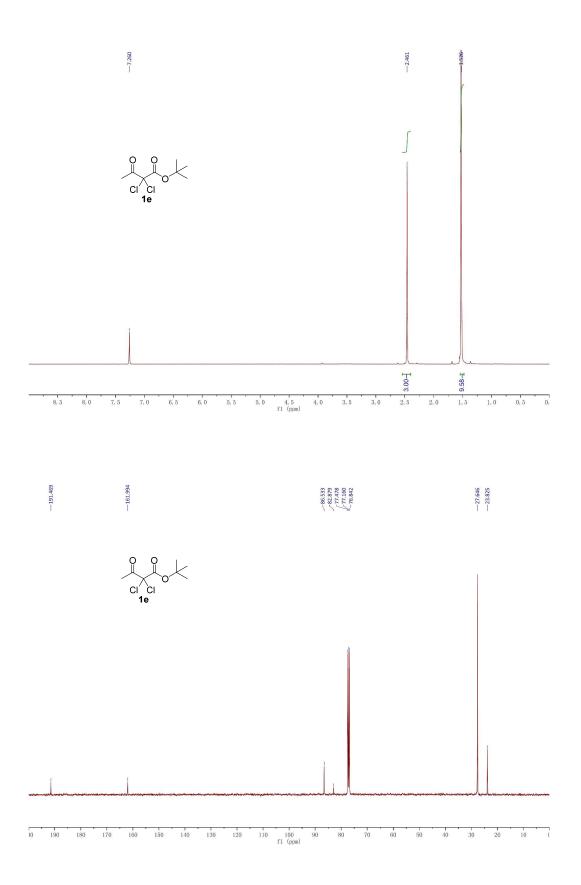
To a solution of *N*,*O*-dimethylhydroxylamine hydrochloride (0.87 g, 8.9 mmol) in THF (15 mL) was added ⁱPrMgCl (2.0 M in THF, 8.9 mL, 17.8 mmol) at -30 °C. The cooling bath was removed for 10 min, then the mixture was cooled again to -30 °C, and a solution of ethyl (*R*)-2,2-dichloro-3-hydroxyhexanoate (**2h**, > 99% ee, 204 mg, 0.89 mmol) in THF (3 mL) was added. The reaction mixture was stirred at -30 °C for 1 h, then warmed to room temperature for 30 min, quenched by satd. NH₄Cl (10 mL), and extracted with ^{*i*}Pr₂O (3 x 20 mL). The combined extracts were dried (Mg₂SO₄), filtered and concentrated. Purification of the residue by flash column chromatography (petroleum ether/EtOAc 12:1 to 8:1) gave **5** (185 mg, 85% yield) as a colorless oil, $[\alpha]_D^{25} = -$ 34.3 (*c* 1.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.25 (ddd, *J* = 9.5, 4.1, 1.9 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 1H), 3.36 (s, 3H), 1.92 - 1.84 (m, 1H), 1.75 - 1.62 (m, 2H), 1.51 - 1.40 (m, 1H), 0.98 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 84.6, 77.3, 60.9, 34.9, 32.2, 19.4, 14.0. HRMS (ESI/ion trap): *m/z* [M+Na]⁺ calcd for C₈H₁₅Cl₂NO₃Na 266.0327, found 266.0323.

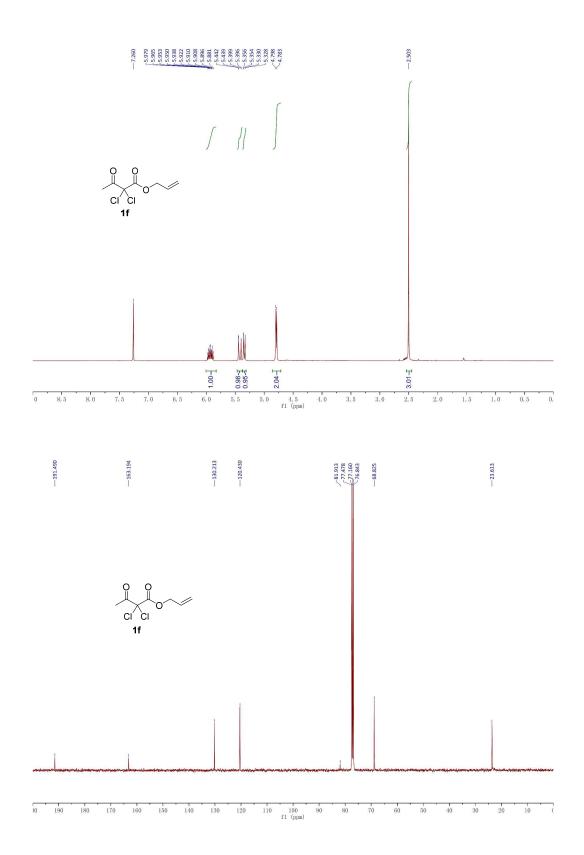

(R)-2,2-dichloro-3-hydroxy-1-phenylhexan-1-one (6)

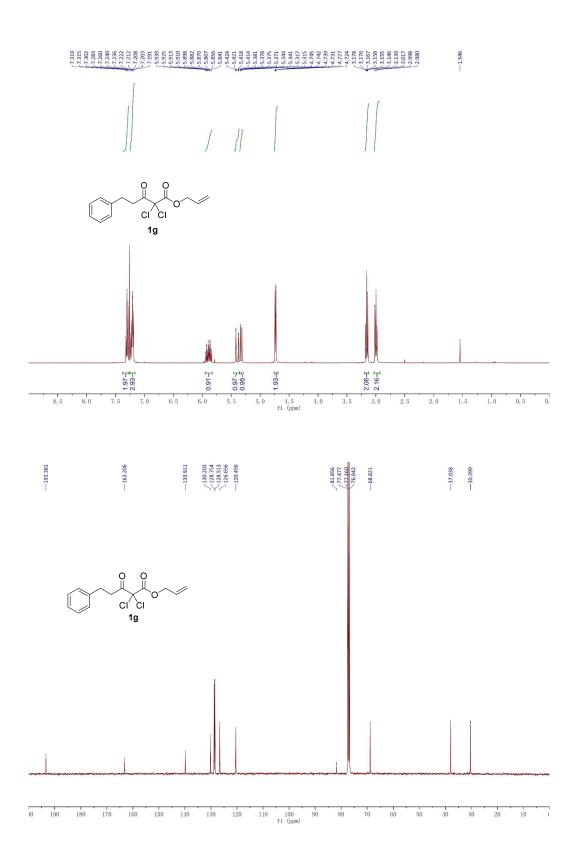

To a solution of 5 (49 mg, 0.2 mmol) in THF (1 mL) was added PhMgCl (2.0 M in THF, 0.5 mL, 1.0 mmol) at 0 °C. The reaction mixture was stirred at this temperature for 3 h, quenched with satd. NH_4Cl (10 mL) and extracted with ^{*i*}Pr₂O (3 x 20 mL). The combined extracts were washed with brine, dried (MgSO₄), filtered and

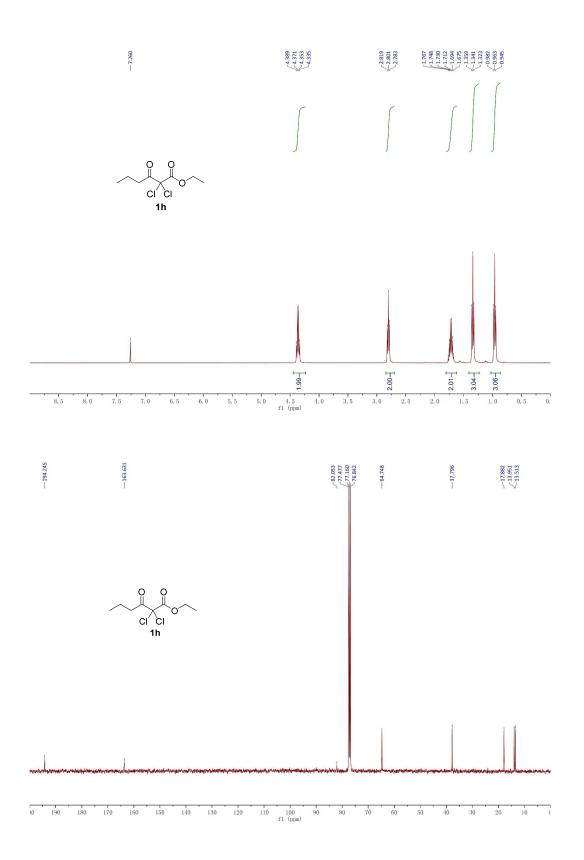

concentrated. Purification of the residue by flash column chromatography (petroleum ether/EtOAc 15:1) afforded **6** (28 mg, 54% yield) as a colorless oil, $[\alpha]_D^{25} = -13.7$ (*c* 0.8, CHCl₃).

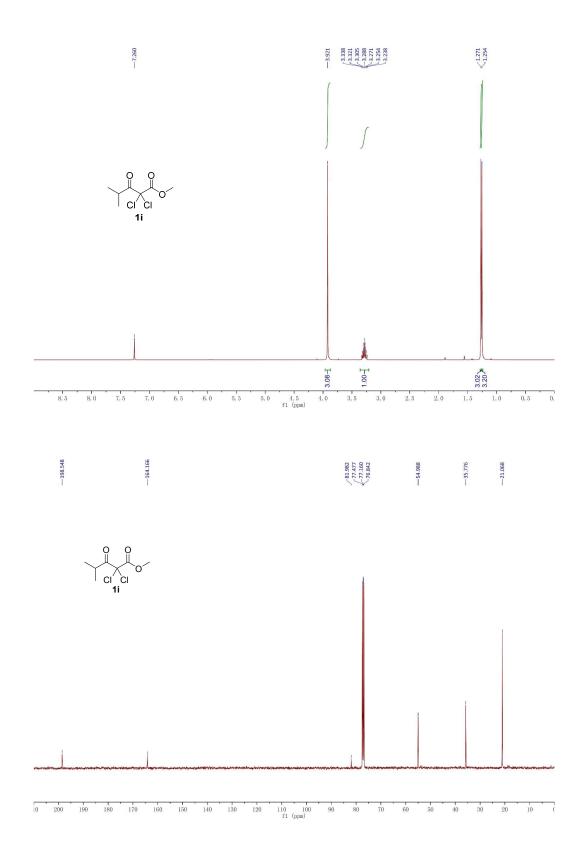

¹H NMR (400 MHz, CDCl₃) δ 8.29 (dt, J = 8.6, 1.6 Hz, 2H), 7.64 – 7.59 (m, 1H), 7.51 – 7.46 (m, 2H), 4.40 (ddd, J = 9.7, 5.0, 1.9 Hz, 1H), 3.13 (dd, J = 5.1, 1.8 Hz, 1H), 2.00 – 1.92 (m, 1H), 1.80 – 1.68 (m, 2H), 1.53 – 1.47 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.3, 134.1, 132.0, 131.2 (2C), 128.3 (2C), 88.2, 76.7, 32.7, 19.4, 14.1. HRMS (ESI/ion trap): m/z [M+Na]⁺ calcd for C₁₂H₁₄Cl₂O₂Na 283.0269, found 283.0264.

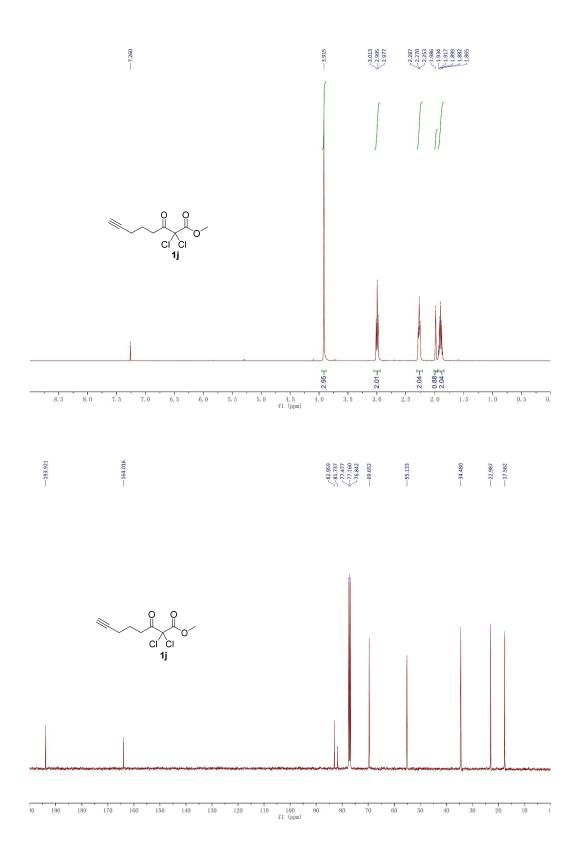

7. NMR spectra of compounds 1a-1r

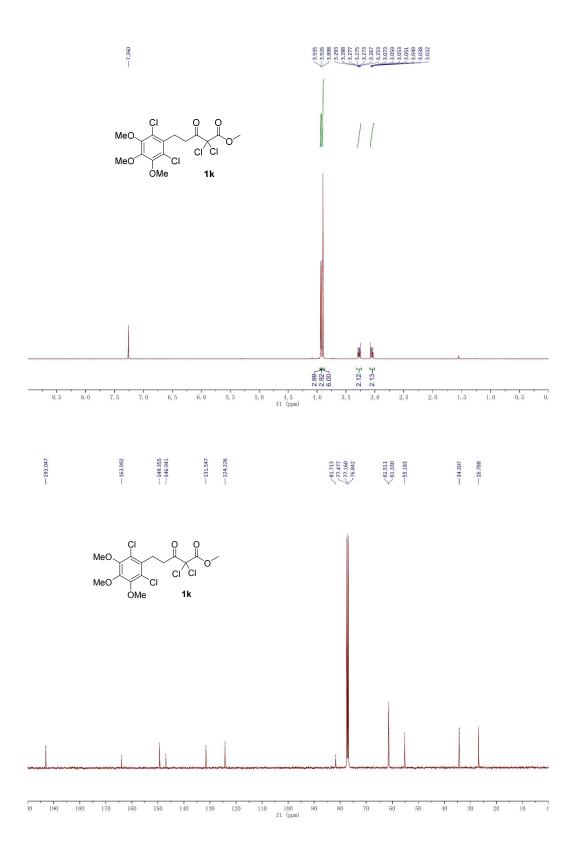


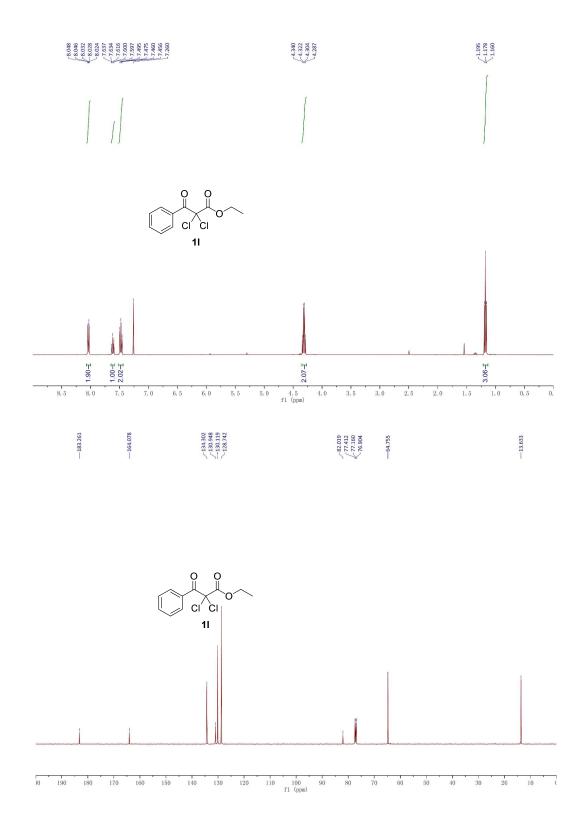


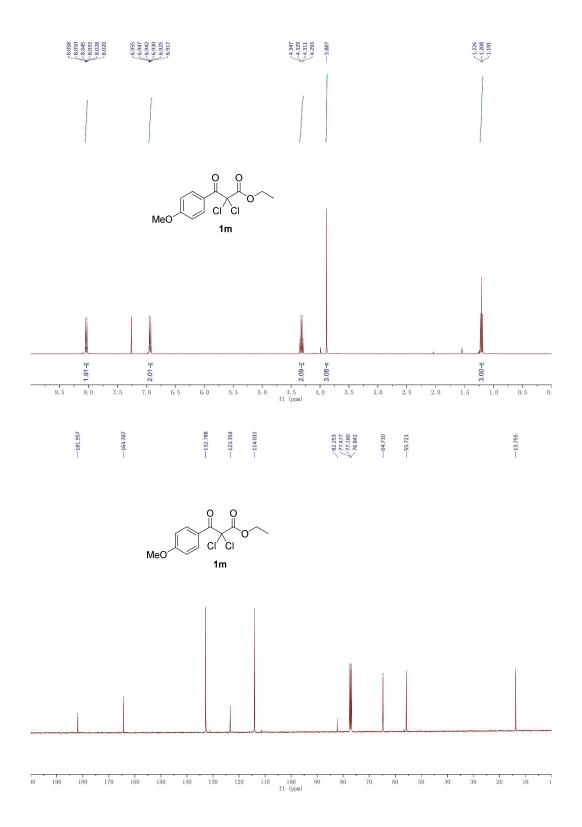


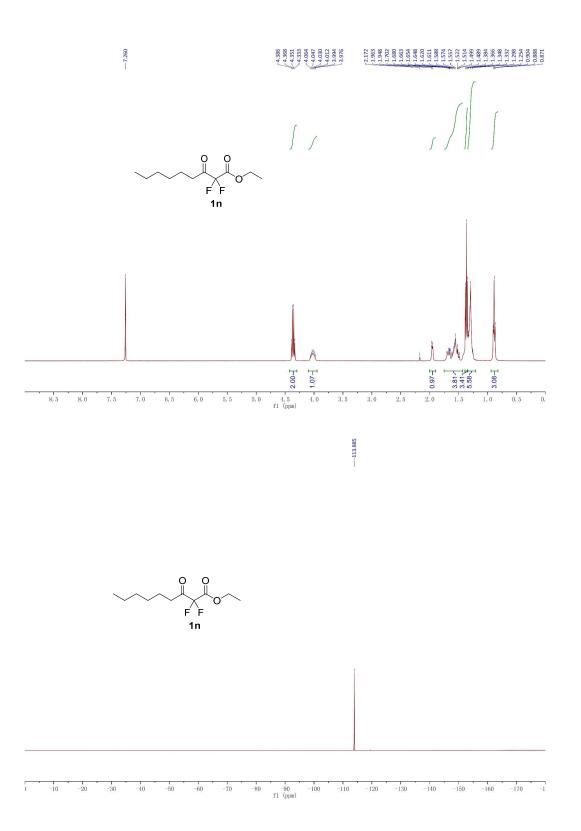


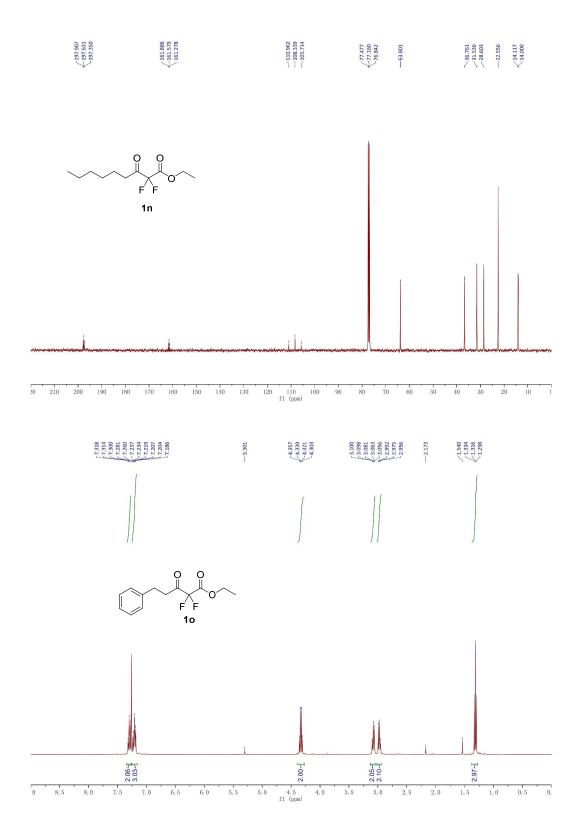


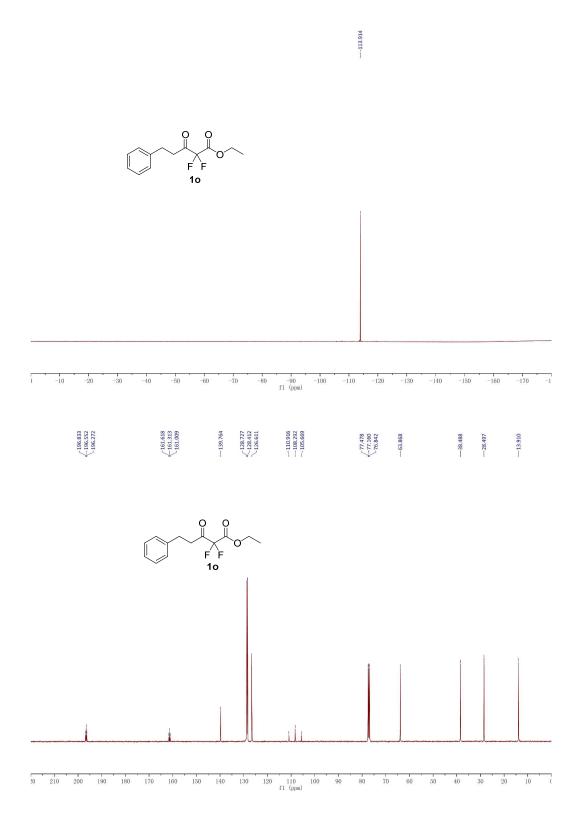




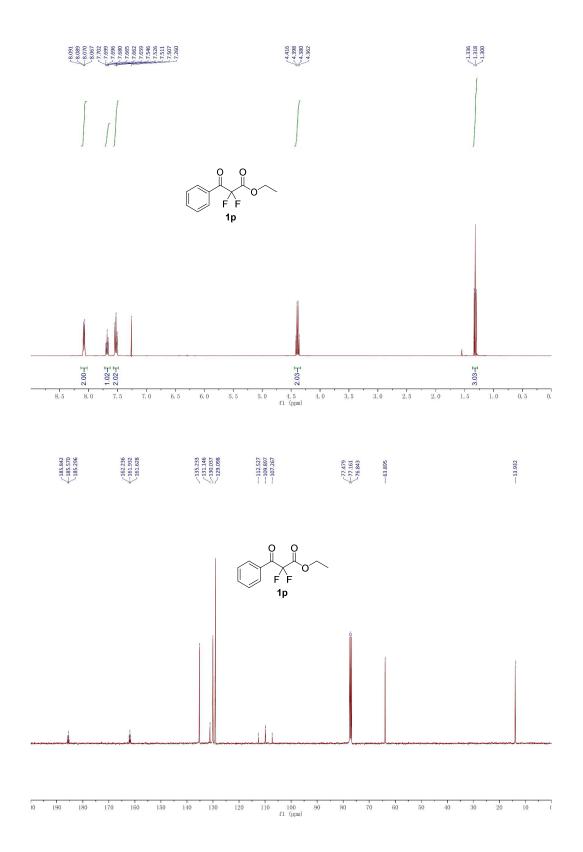


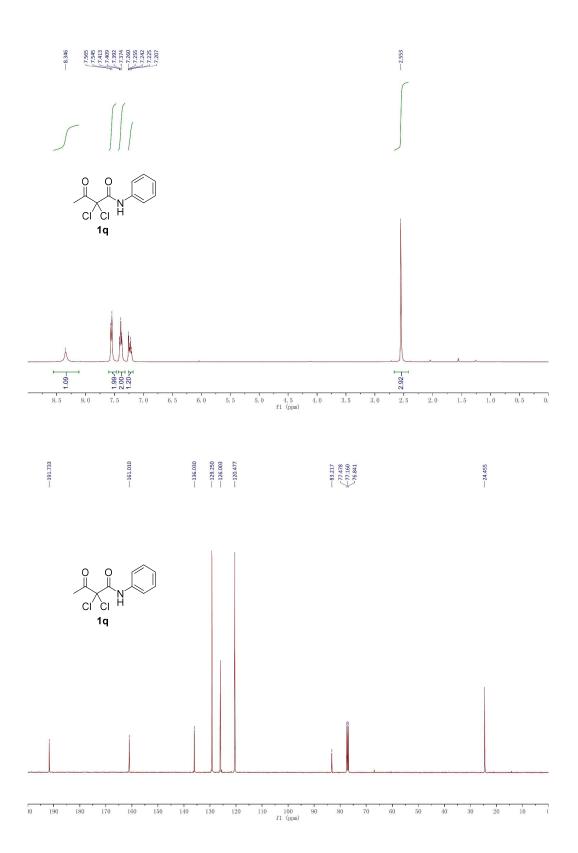


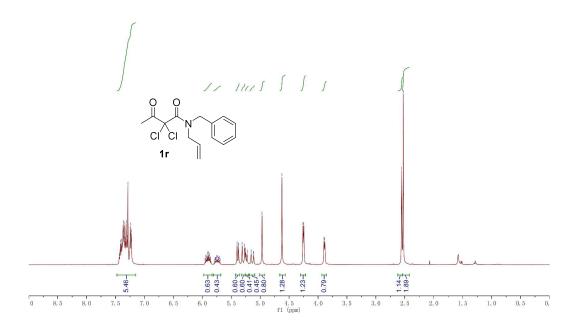




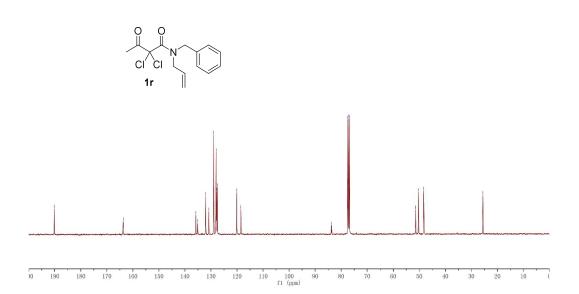
S26

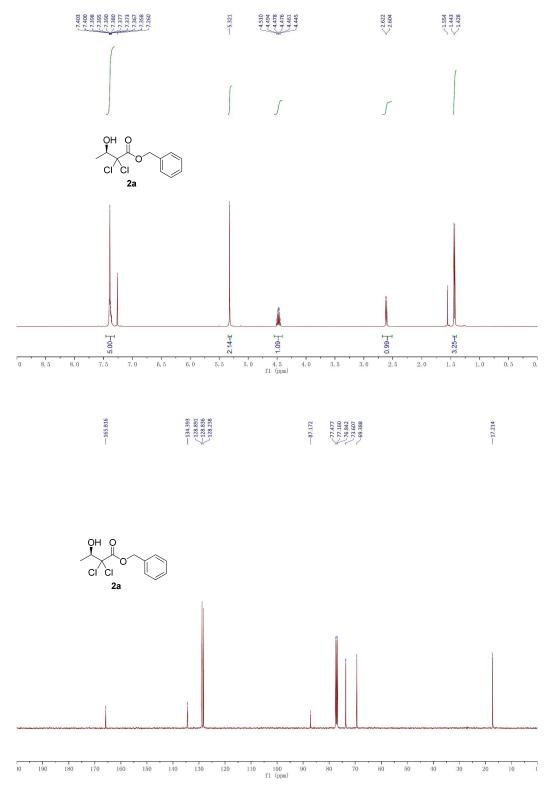




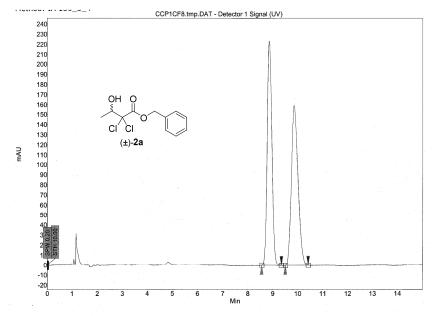


S30

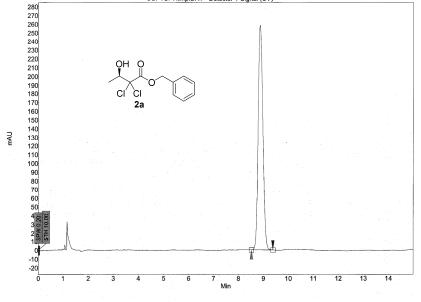




7,445 7,749 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,739 7,5397 7,5397 7,5397 7,5397 7,5397 7,5397 7,5397 7,5397 7,53

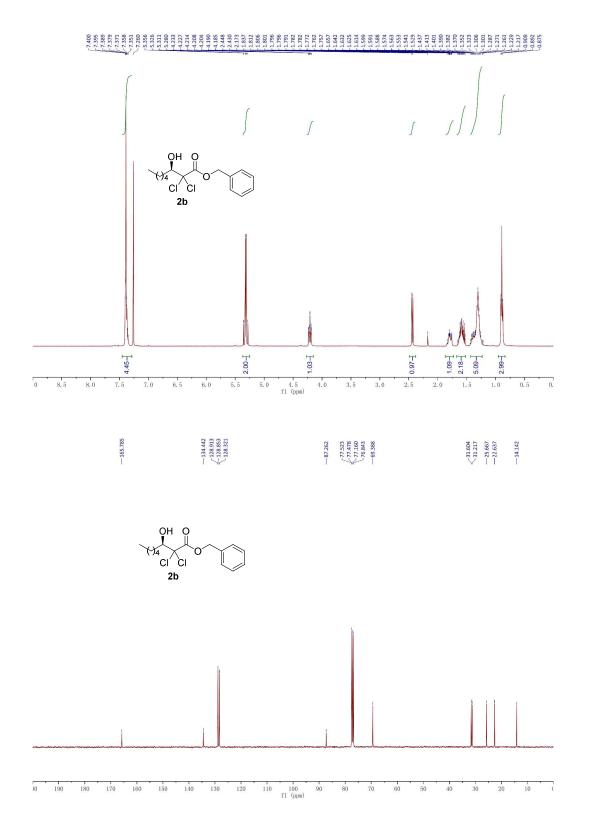


8. NMR spectra and HPLC or SFC chromatograms for 2a-2h and 2j-2r

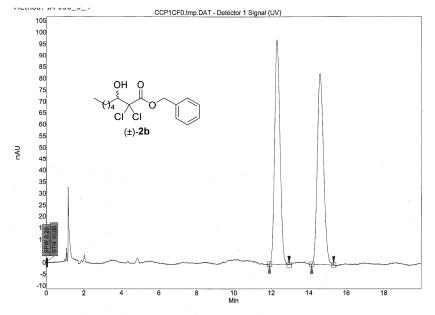


Results Table:

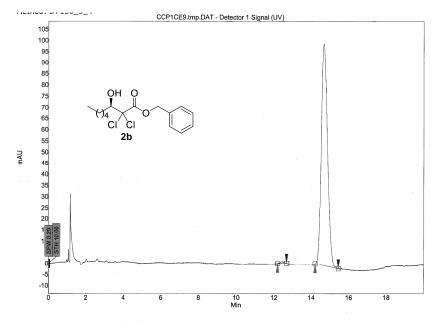
Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	8.56	8.86	9.35	0.00	49.79	223.4	48.5	49.790
2	UNKNOWN	9.51	9.86	10.42	0.00	50.21	159.3	48.9	50.210
		1.1		1.1	1. State 1.				
Total						100.00	382.7	97.4	100.000

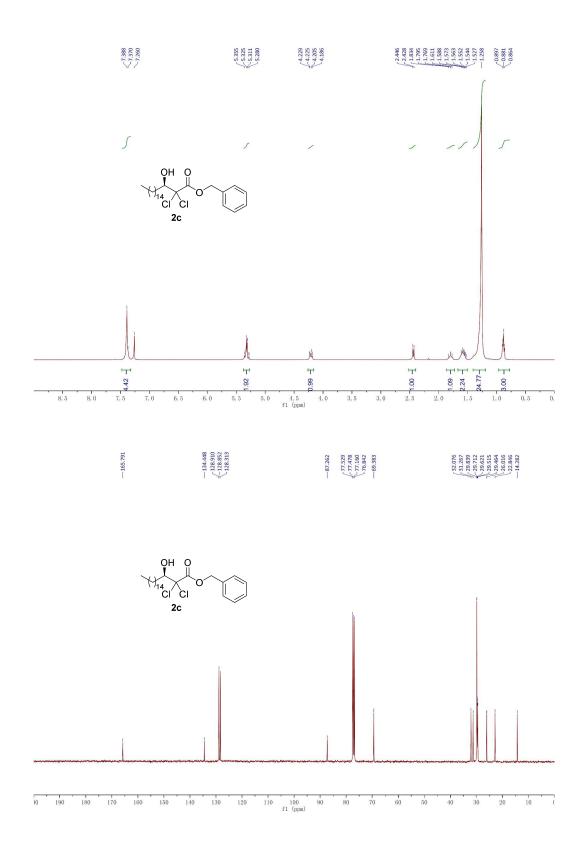

Method: TA 120_2_4

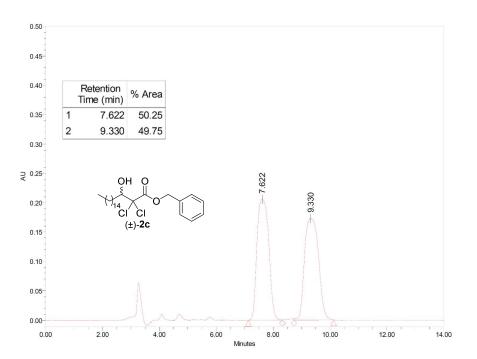
CCP1CF7.tmp.DAT - Detector 1 Signal (UV)

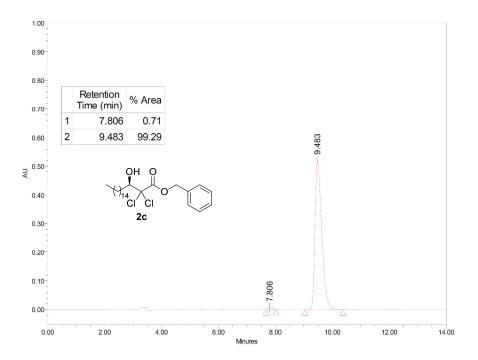


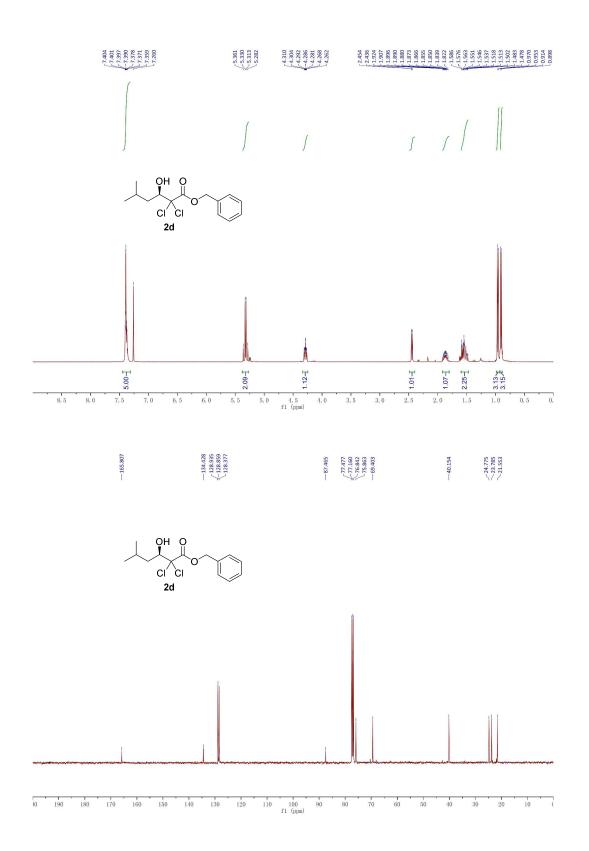
Results Table:

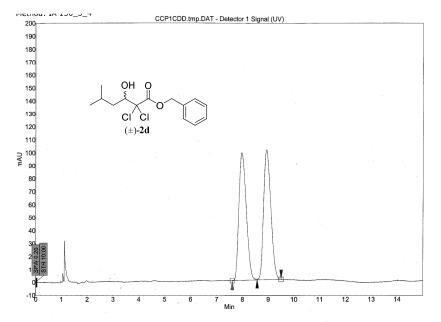

Index	Name	Start	Time	End	RT Offset	Ouantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	8.53	8.88	9.38	0.00	100.00	258.3	56.7	100.000
Total	-					100.00	258.3	56.7	100.000

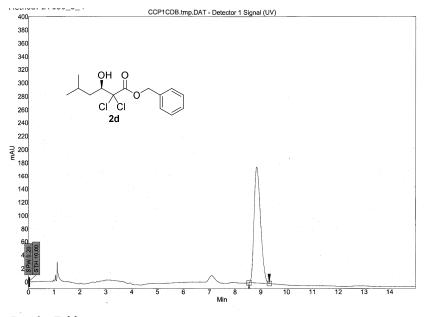

S36

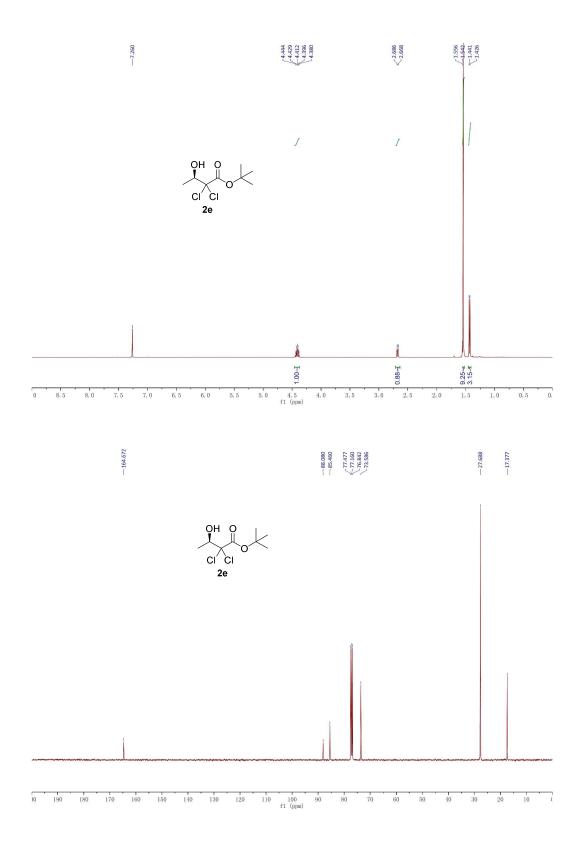


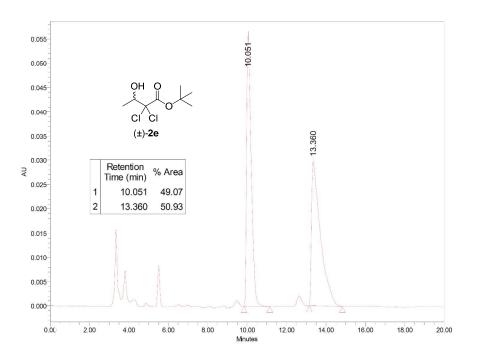

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.91	12.30	12.95	0.00	49.72	97.6	32.0	49.719
2	UNKNOWN	14.14	14.58	15.32	0.00	50.28	83.0	32.3	50.281
	1					-			
Total						100.00	180.5	64.3	100.000

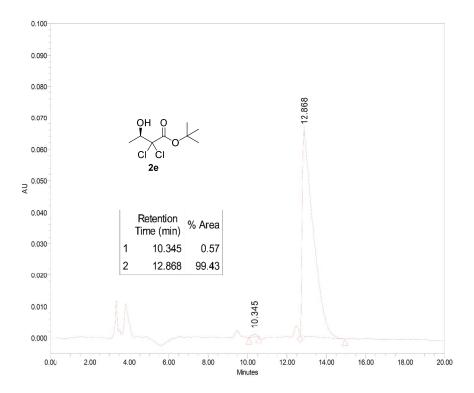


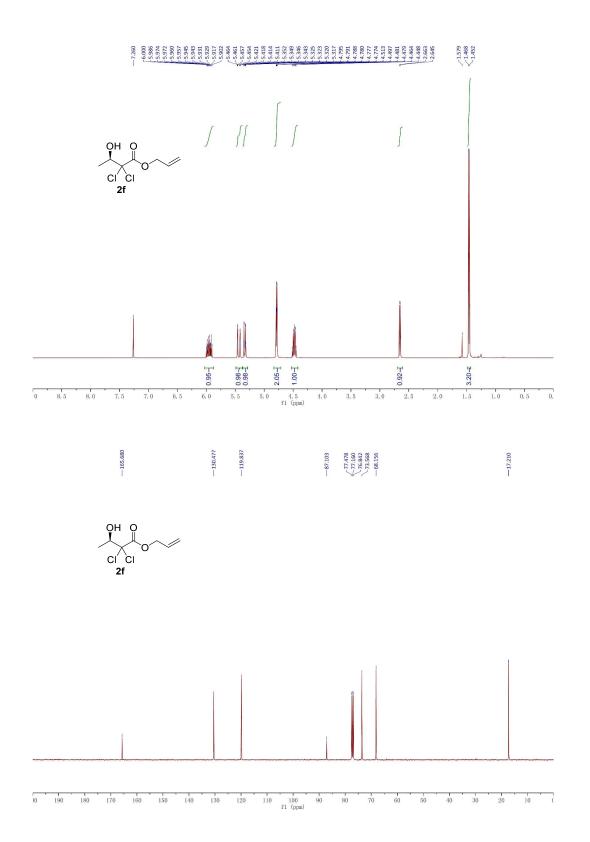

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
2	UNKNOWN	12.20	12.44	12.68	0.00	0.52	0.9	0.2	0.520
1	UNKNOWN	14.21	14.67	15.45	0.00	99.48	99.2	37.8	99.480
	· · · · ·								
Total					· .	100.00	100.1	38.0	100.000

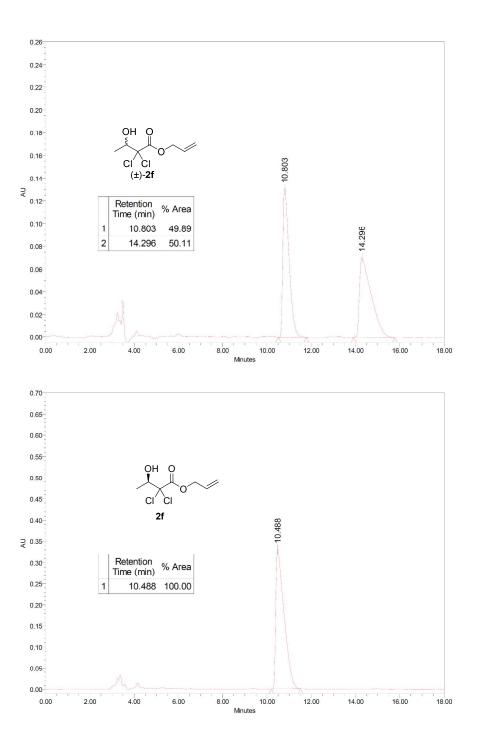


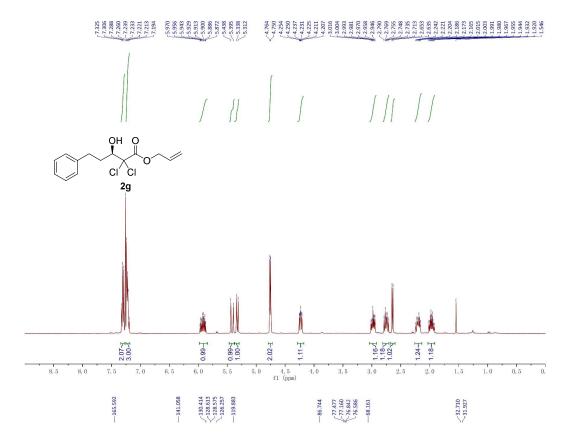


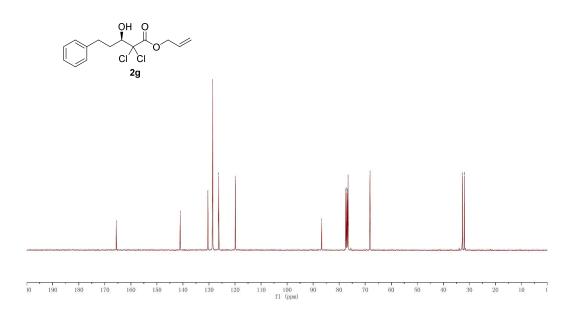

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	7.61	7.98	8.58	0.00	50.01	98.5	32.7	50.006
2	UNKNOWN	8.58	8.94	9.51	0.00	49.99	100.3	32.7	49.994
Total						100.00	198.8	65.4	100.000

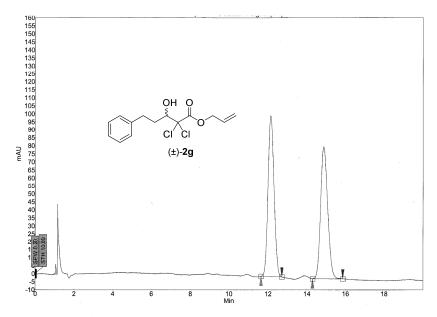


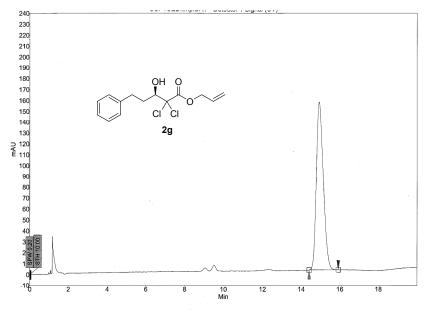

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	8.55	8.84	9.34	0.00	100.00	175.4	51.1	100.000
Total						100.00	175.4	51.1	100.000

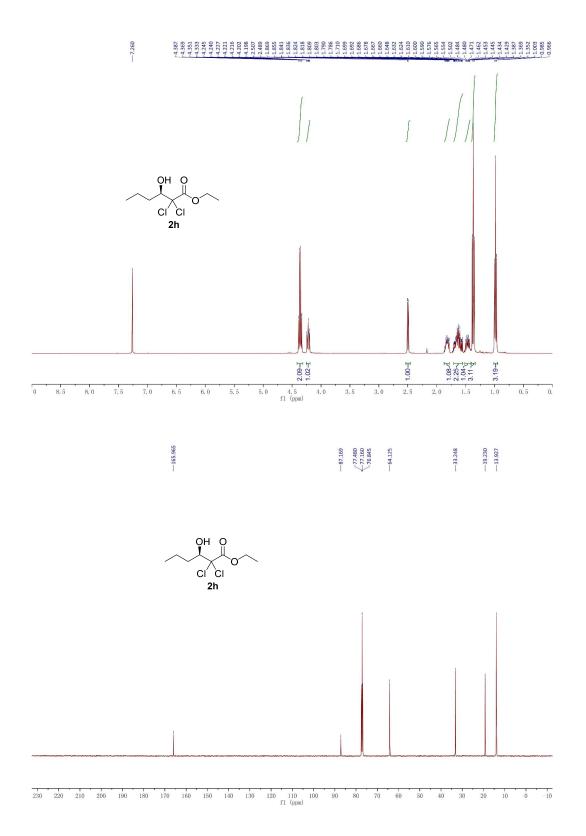


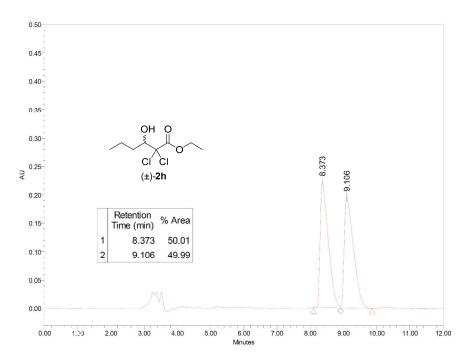

S42

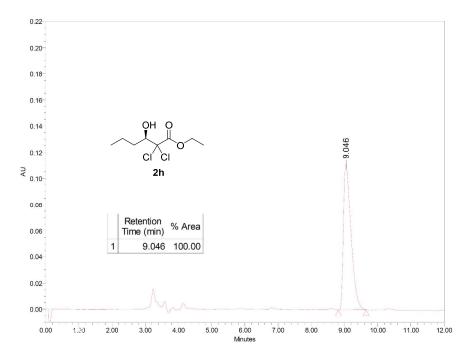


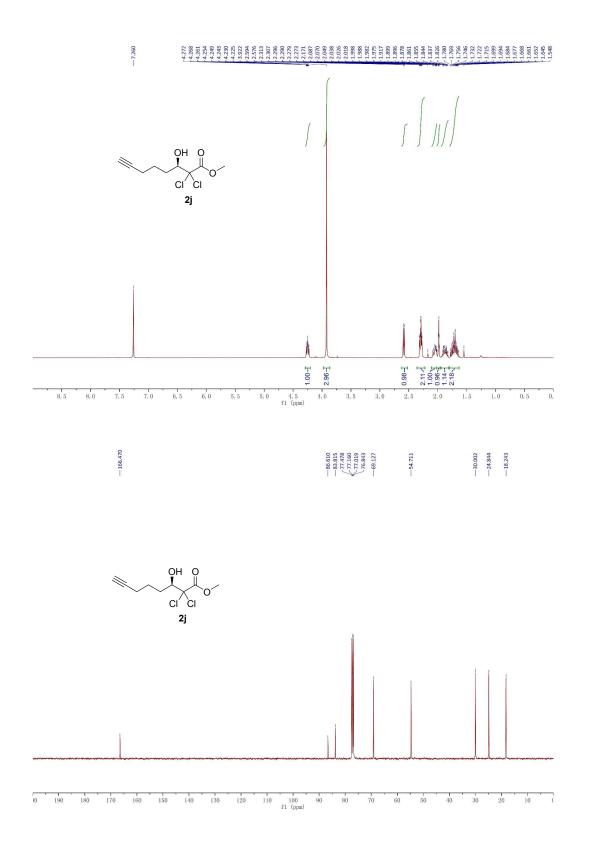


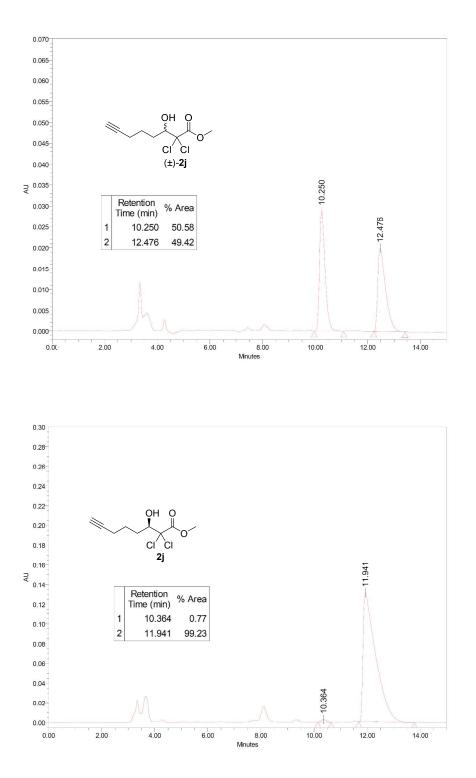


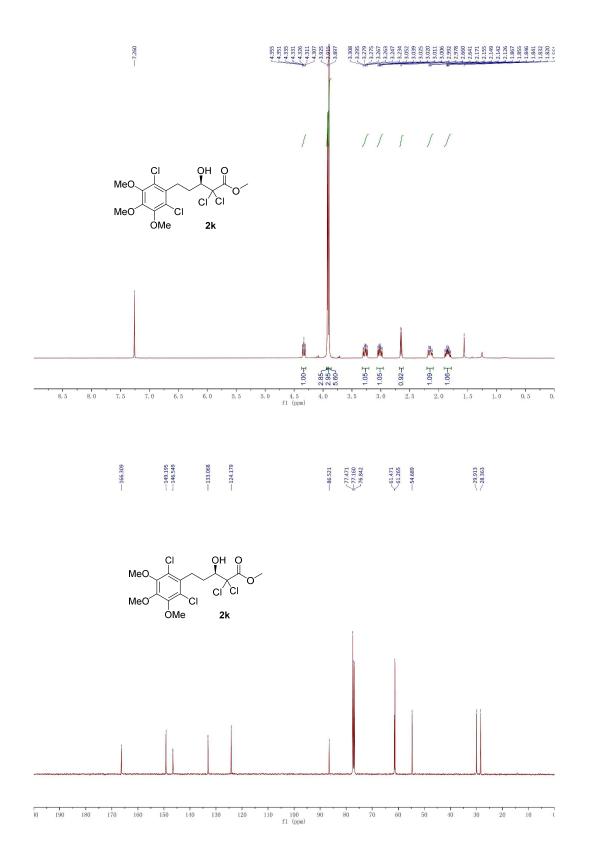


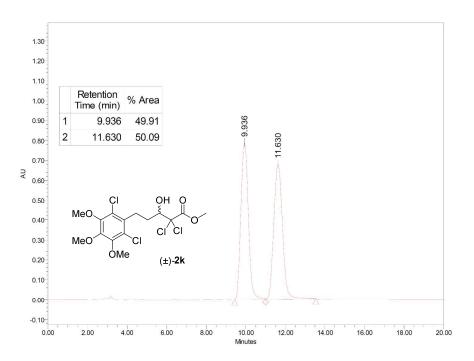


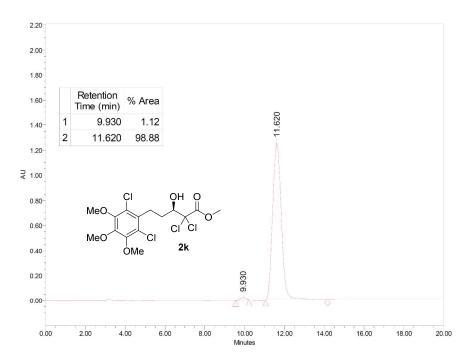

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.64	12.14	12.72	0.00	50.56	100.6	- 36.0	50.561
2	UNKNOWN	14.29	14.87	15.86	0.00	49.44	82.5	35.2	49.439
Total						100.00	183.2	71.2	100.000

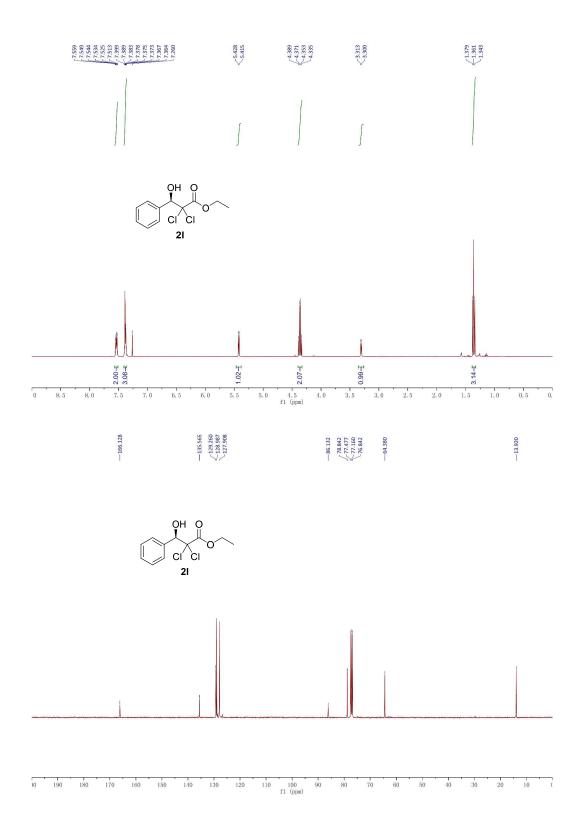


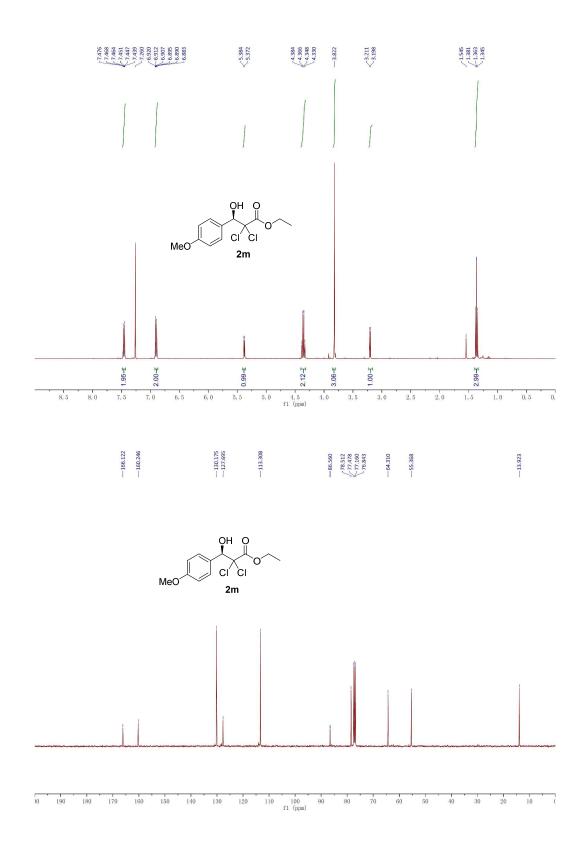

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	14.41	14.93	15.92	0.00	100.00	154.2	64.0	100.000
Total						100.00	154.2	64.0	100.000

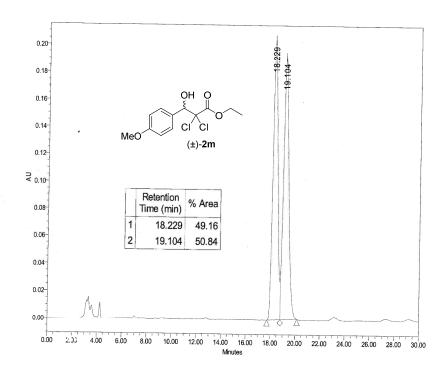




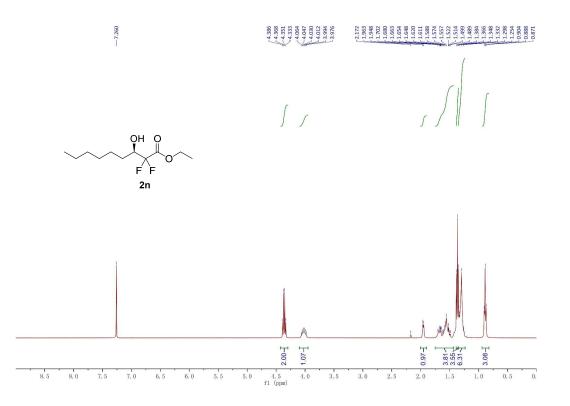




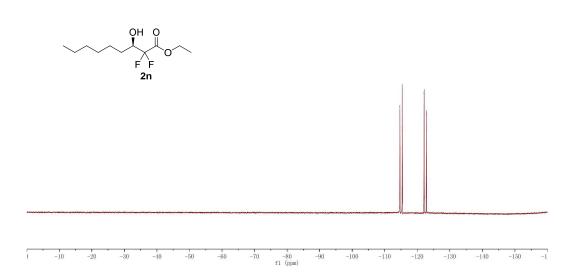


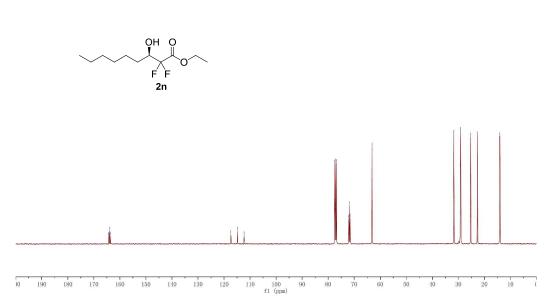


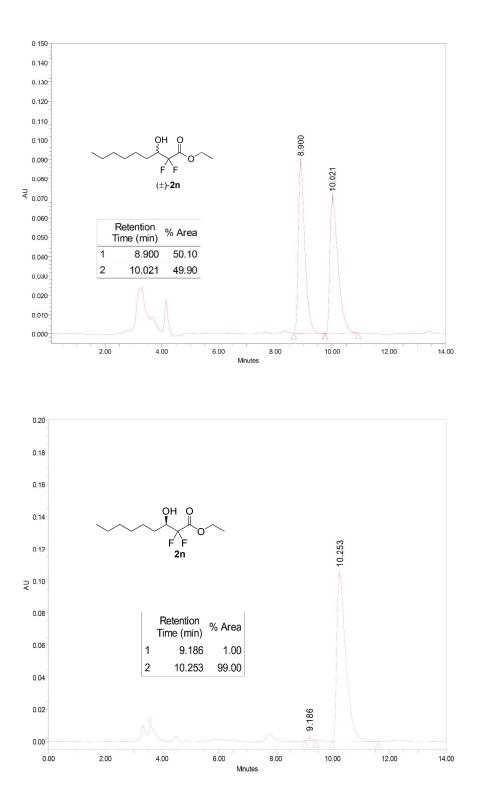
S54

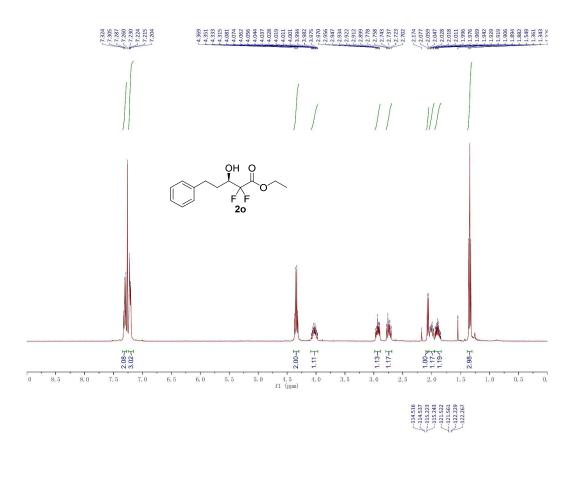


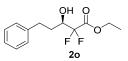
S55

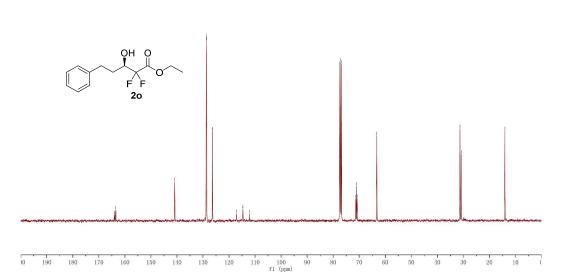


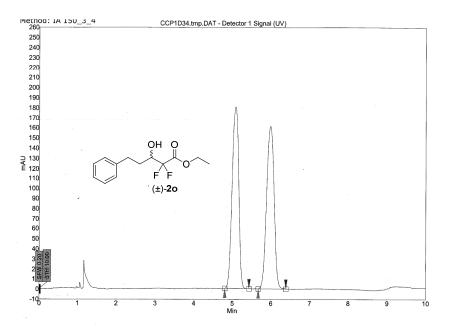


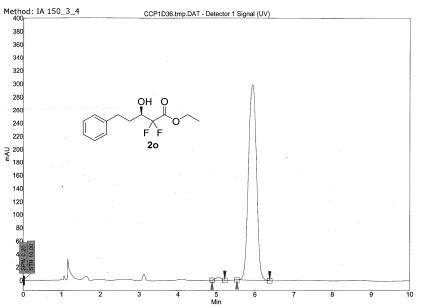



-114,664 -114,684 -115,366 -115,366 -115,386 -122,071 -122,071

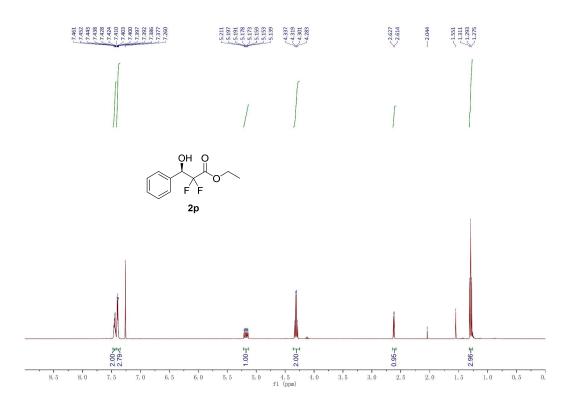




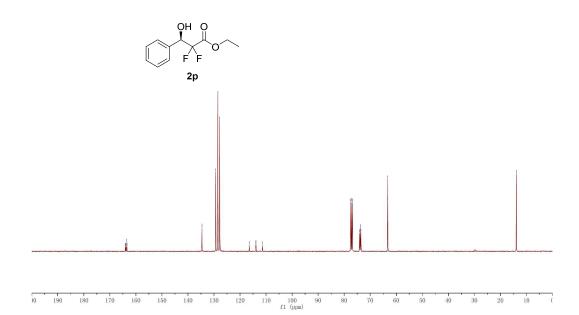


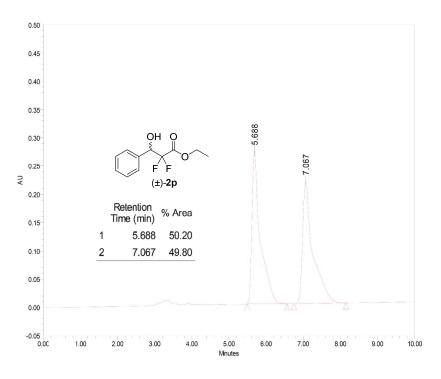

) -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 fl (ppm)

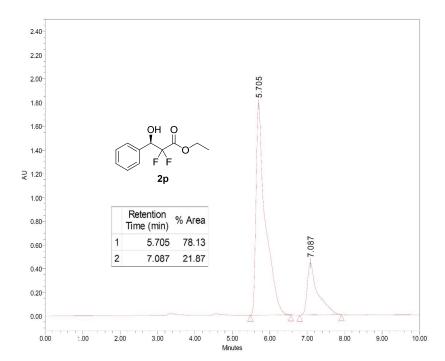
$\begin{array}{c} -\frac{164.039}{163.407} \\ -\frac{163.706}{163.706} \\ -\frac{103.869}{123.690} \\ -\frac{112.859}{123.691} \\ -\frac{112.839}{123.831} \\ -\frac{112.139}{123.232} \\ -\frac{112.139}{123$

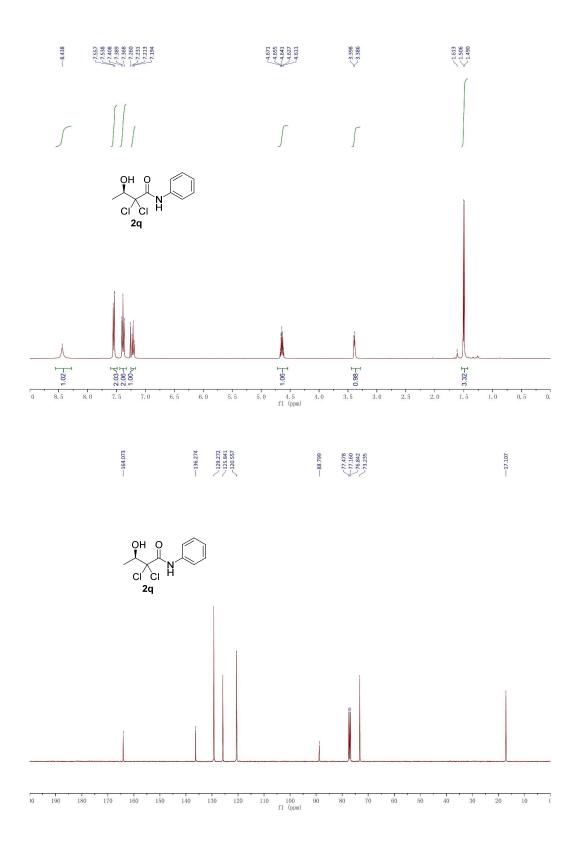


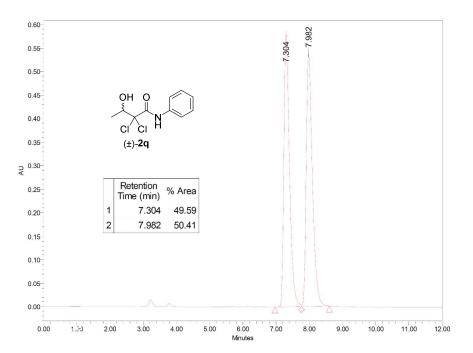
Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[Vu]	[µV.Min]	[%]
1	UNKNOWN	4.81	5.09	5.44	0.00	49.55	180.5	35.8	49.552
2	UNKNOWN	5.67	5.98	6.39	0.00	50.45	161.3	36.5	50.448
Total						100.00	341.8	72.3	100.000

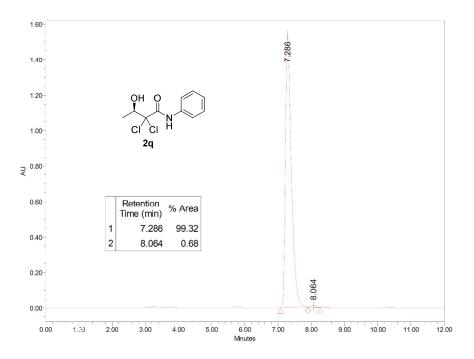


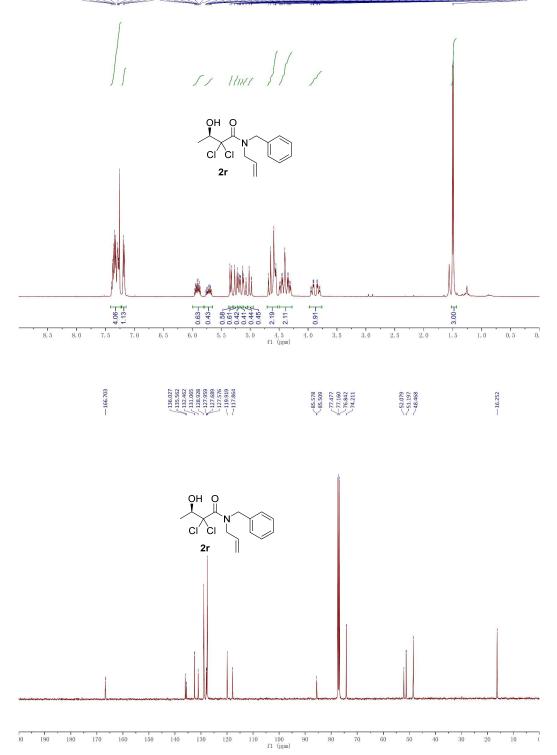

CCP1D36.tmp.DAT - Detector 1 Signal (UV)

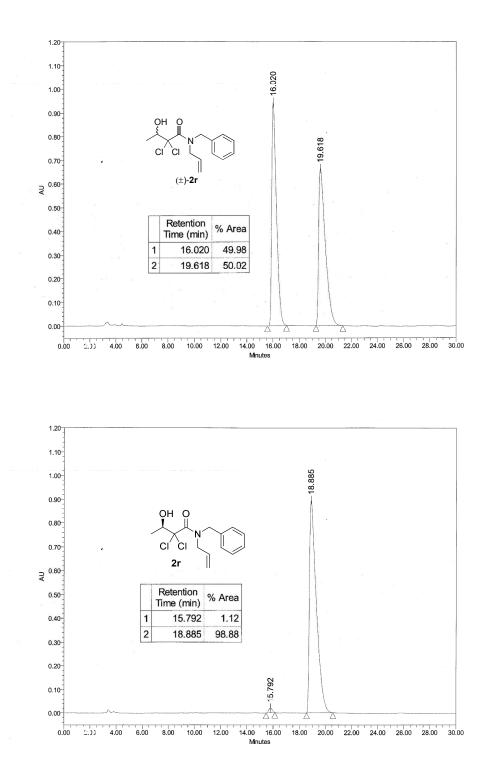

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
2	UNKNOWN	4.89	5.06	5.22	0.00	0.96	3.7	0.7	0.964
1	UNKNOWN	5.54	5.94	6.38	0.00	99.04	298.4	71.6	99.036
Total						100.00	302.1	72.3	100.000

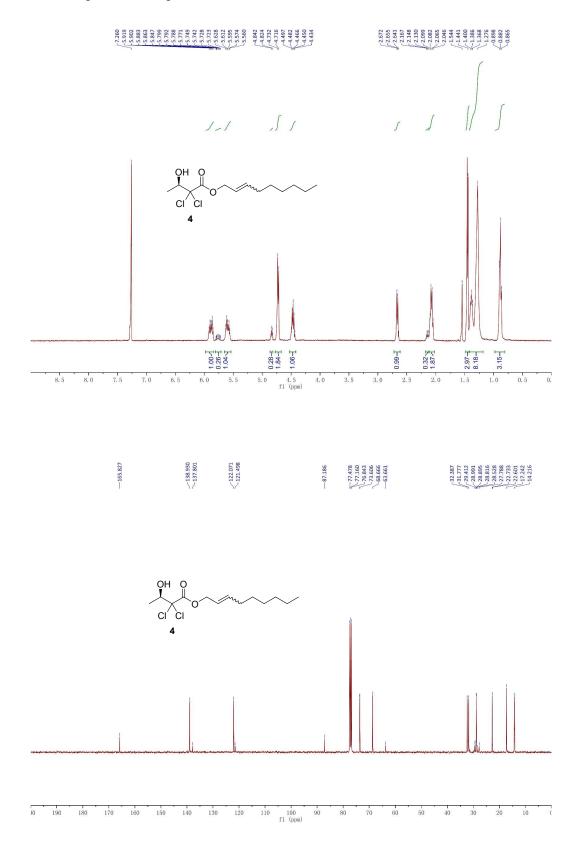


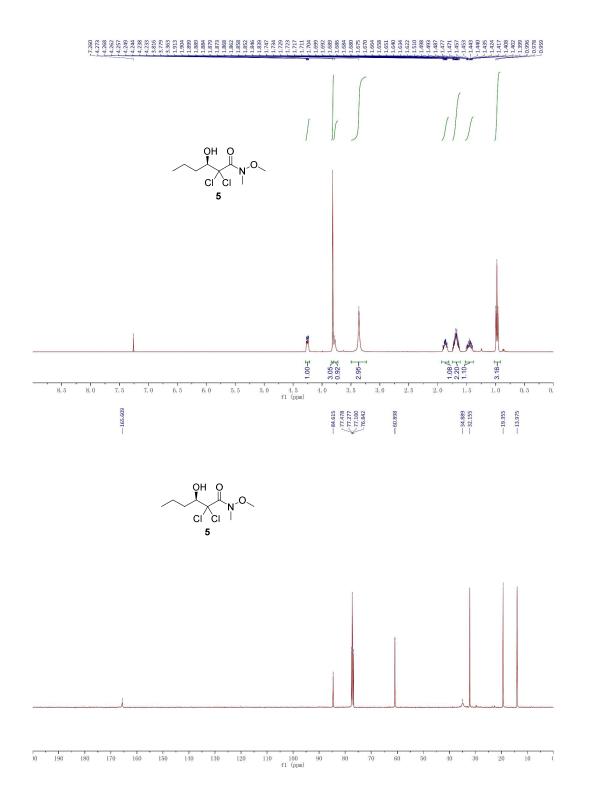


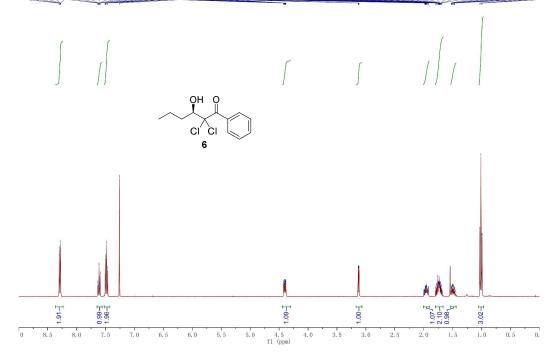


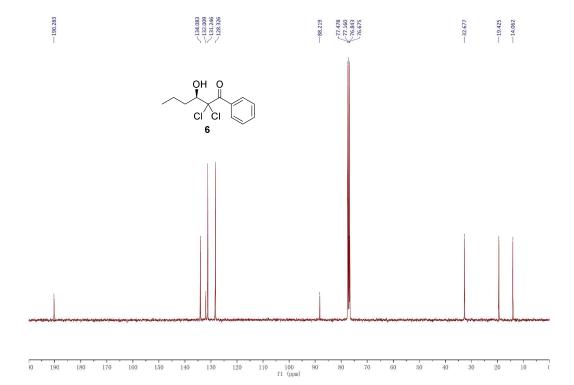


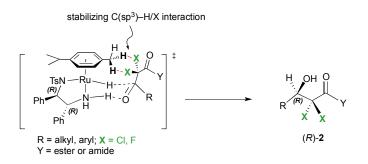


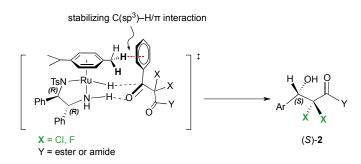



77 333 77 375 77




9. NMR spectra of compounds 4-6.





10. Proposed rationale for the stereochemical outcome of the ATH.

For alkyl substrates, a stabilizing $C(sp^3)$ -H/X interaction favors the transition state shown below, leading to very high enantioselectivities in favor of the (*R*)-alcohol.

For aryl substrates, a competitive $C(sp^3)$ -H/ π interaction (shown below), which would favor formation of the (*S*)-alcohol, would explain the lower enantioselectivity observed for the (*R*)-alcohol.

