Ultrafast Spectral Dynamics of CsPb(Br_xCl_{1-x})₃ Mixed-Halide Nanocrystals

Naiya Soetan,^a Alexander Puretzky,^b Kemar Reid,^c Abdelaziz Boulesbaa,^b Holly F. Zarick,^a Andrew Hunt,^a Olivia Rose,^a Sandra Rosenthal,^{c, d} David B. Geohegan,^b and Rizia Bardhan^{a*}

^aDepartment of Chemical and Biomolecular Engineering & ^cDepartment of Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN 37235, USA. ^bCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

E-mail: rizia.bardhan@vanderbilt.edu

Table S1: EDS data of mixed halide samples. The values given are atomic percent. Note that the Cl content refers to the percentage of the halide component that is Cl.

Cl content	% Cesium	% Bromine	% Chlorine	% Lead
16%	21.4	47.2	8.8	22.6
22%	19.9	46.3	13.0	20.8
45%	19.9	32.3	26.9	20.9

From EDS we calculated Cl content the following way: Cl content = %Chlorine/(%Chlorine + %Bromine)

Figure S1: TEM images of (a-b) CsPbBr₃, (c,d) CsPb($Br_{0.84}Cl_{0.16}$)₃, and (e,f) CsPb($Br_{0.55}Cl_{0.45}$)₃ perovskite NCs.

Figure S2: Edge-length-distributions of $CsPb(Br_{0.55}Cl_{0.45})_3$, and (d) $CsPbCl_3 NCs$.

Figure S3: (a-b) TEM images, (c) absorbance spectrum, and (d) XRD spectrum of $CsPbCl_3$ NCs.

Figure S4: STEM-EDS maps of CsPb(Br_{0.84}Cl_{0.16})₃ Nanocrystals.

Figure S5: STEM-EDS maps of CsPb(Br_{0.55}Cl_{0.45})₃ Nanocrystals.

	Time-resolved Photoluminescence Spectroscopy						
	A ₁	τ_1 (ns)	A ₂	τ_2 (ns)	A ₃	τ_3 (ns)	$ au_{avg}\left(ns ight)$
CsPbBr ₃	0.59 ± 0.00	0.92 ± 0.08	0.34 ± 0.01	$\begin{array}{c} 4.48 \pm \\ 0.11 \end{array}$	0.08 ± 0.00	21.08 ± 0.83	3.66 ± 0.07
CsPb(Br _{0.84} Cl _{0.16}) ₃	0.66 ± 0.04	1.04 ± 0.12	0.25 ± 0.04	6.86 ± 0.95	0.09 ± 0.01	19.15 ± 1.15	3.67 ± 0.07
CsPb(Br _{0.78} Cl _{0.22}) ₃	0.78 ± 0.01	0.48 ± 0.02	0.20 ± 0.01	$\begin{array}{c} 2.36 \pm \\ 0.04 \end{array}$	0.02 ± 0.00	15.36 ± 0.69	1.19 ± 0.04
CsPb(Br _{0.55} Cl _{0.45}) ₃	0.87 ± 0.02	0.40 ± 0.02	0.12 ± 0.02	2.38 ± 0.24	0.01 ± 0.00	400.30 ± 192.58	0.70 ± 0.05

Table S2: Amplitudes (A_i) and lifetimes $(\tau_i) \pm$ standard error (n = 4 samples per NC) and τ_{avg} , which is the amplitude-weighted lifetime of the different perovskite NC samples.

Table S3: Positions of the photobleach (PB), photoinduced absorption (PIA), and the bandgap renormalization energy (ΔE) at 6.5 μ W. We observed that ΔE decreases at longer TA decay time with the exception of CsPb(Br_{0.55}Cl_{0.45})₃, in which case part of the PIA band was cut off since our white light probe only extends from 450 – 900 nm.

	Time (ps)	PB (nm)	PIA (nm)	$\Delta E_{\rm rn} ({\rm eV})$
CsPbBr ₃	2	514	479	0.18
	20	514	488	0.13
	200	516	488	0.14
$CsPb(Br_{0.84}Cl_{0.16})_3$	2	495	469	0.14
	20	497	477	0.11
	200	497	477	0.11
$CsPb(Br_{0.78}Cl_{0.22})_3$	2	490	468	0.12
	20	490	469	0.11
	200	490	471	0.10
$CsPb(Br_{0.55}Cl_{0.45})_3$	2	460	-	-
	20	462		
	200	460		

Table S4: FWHM of the PB as a function of intensity per pulse and time. Note that for $CsPb(Br_{0.55}Cl_{0.45})_3$, the signal was too noisy at later times and weaker intensities to accurately determine the FWHM. Thus, the numbers provided for this sample are not a good reflection of the FWHM.

	Time	Photobleach FWHM (nm)			
	(ps)	2.5 μW	4.4 μW	6.5 μW	
CsPbBr ₃	10	12.03	13.25	14.19	
	40	12.02	12.51	12.73	
	100	11.88	12.01	12.19	
	200	11.28	11.28	11.76	

CsPb(Br _{0.84} Cl _{0.16}) ₃	10	12.81	13.56	14.15		
	40	11.79	12.43	12.08		
	100	11.10	11.36	11.12		
	200	10.69	10.67	10.53		
CsPb(Br _{0.78} Cl _{0.22}) ₃	10	12.94	14.19	13.32		
	40	11.89	12.94	12.22		
	100	11.58	11.20	10.47		
	200	10.56	11.69	9.73		
$CsPb(Br_{0.55}Cl_{0.45})_3$	10	6.85	7.40	9.69		
	40	5.77	5.52	7.12		
	100	8.37	8.28	4.98		
	200	3.68	6.36	5.55		

Figure S6: Evolutionary Spectra as a function of laser intensity at different delay times of (a-b) $CsPbBr_3$, (c-d) $CsPb(Br_{0.84}Cl_{0.16})_3$, (e-f) $CsPb(Br_{0.78}Cl_{0.22})_3$, and (g-h) $CsPb(Br_{0.55}Cl_{0.45})_3$.

Table S5: Parameters obtained from fits of the TA decays in Figure S7 \pm the standard error or with the goodness of fit parameter, χ^2 . The χ^2 values shown in the last column is obtained by fitting calculated values to experimentally obtained parameters by a nonlinear least-squares deconvolution method. Note that the formation of the PB in CsPb(Br_{0.55}Cl_{0.45})₃ was difficult to detect, leading to overestimated lifetimes at the lowest power.

	laser power (µW)	τ _r (ps)	A ₁	τ ₁ (ps)	A ₂	τ ₂ (ps)	χ^2
CsPbBr ₃	2.5	0.19	0.35	472.03	0.61	460.07	0.12
	4.4	0.39	0.39	6.16	0.65	450.55	0.05
	6.5	0.60 ± 0.02	0.42 ± 0.01	5.9 ± 0.3	0.58 ± 0.01	831 ± 14	-
CsPb(Br _{0.84} Cl _{0.16}) ₃	2.5	0.28	0.26	20.34	0.74	309.89	0.03
	4.4	0.48	0.41	7.47	0.59	230.26	0.02
	6.5	0.41 ± 0.01	0.44 ± 0.02	34 ± 2.7	0.56 ± 0.02	333 ± 11	-
CsPb(Br _{0.78} Cl _{0.22}) ₃	2.5	0.12	0.20	55.62	0.80	411.95	0.11
	4.4	0.26	0.39	53.66	0.51	408.76	0.08
	6.5	0.32 ± 0.02	0.50 ± 0.03	34 ± 3.0	$0.50 \\ \pm \\ 0.03$	397 ± 28	-
$CsPb(Br_{0.55}Cl_{0.45})_3$	2.5	0.33	0.66	15.07	0.34	261.81	0.20
	4.4	0.32	0.83	16.70	0.17	258.28	0.10
	6.5	0.33 ± 0.02	0.66 ± 0.08	14 ± 0.10	0.34 ± 0.08	150 ± 32	-

Figure S7: The formation and decay of the PB as a function of power for (a-b) CsPbBr₃, (c-d) CsPb(Br_{0.84}Cl_{0.16})₃ (e-f) CsPb(Br_{0.78}Cl_{0.22})₃, and (g-h) CsPb(Br_{0.55}Cl_{0.45})₃.

Figure S8: Plot showing how we estimated the carrier temperature by fitting the tail of the photoinduced absorption to a Boltzmann distribution. The plot shown is a fit of the high energy tail of the PB of $CsPbBr_3$ for one time point.

Figure S9: The photobleaching intensity as a function of pump fluence for the different NC samples show a linear slope indicative of Auger recombination. The parameters from the linear fits are provided in Table S5.

Table S6: Parameters of linear fit from Figure S10.

Sample	Slope	y-intercept	R^2
CsPbBr ₃	7.2698	-2.9050	0.9912
$CsPb(Br_{0.84}Cl_{0.16})_3$	2.9192	25.4941	0.8824
$CsPb(Br_{0.78}Cl_{0.22})_3$	1.3210	4.5663	0.9890
$CsPb(Br_{0.55}Cl_{0.45})_3$	1.4634	0.8739	0.9979