Spray-Pyrolyzed ZnO as Electron Selective Contact for Long Term Stable Planar CH₃NH₃PbI₃ Perovskite Solar Cells. Thi Tuyen Ngo¹, Eva M. Barea¹, Ramon Tena-Zaera² and Iván Mora-Seró^{1,*} ^{*} Corresponding author: sero@uji.es **Figure S1**. Top view SEM from secondary electrons of ZnO spray-pyrolyzed from 0.1 M zinc acetate solution at 350°C (a) and 300°C (b) with oxygen flow. ¹ Institute of Advanced Materials (INAM), University Jaume I, Avenida de Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castellón (Spain) ²CIDETEC, Parque Tecnológico de San Sebastián, Paseo Miramón, 196, Donostia–San Sebastián 20014 (Spain) **Figure S2**. Atomic force microscopy (AFM) of ZnO layer deposited on FTO from 0.3M of zinc acetate solution at 450°C with nitrogen (a, named ZnO_N₂) and oxygen flow (b, named ZnO_O₂). **Figure S3**. Absorbance spectra of spray-pyrolyzed ZnO from (a) 5 ml of 0.3 M zinc acetate solution at 450°C with nitrogen and oxygen flow; (b) different volume and zinc acetate concentration solution at 450°C with oxygen flow, the amount of Zn²⁺ ions was maintained the same in the spray solutions and (c) different volume of 0.1M zinc acetate solution at 350°C with oxygen flow. **Figure S4.** (a) Absorbance and photoluminescence (PL) of fresh MAPbI₃ on ZnO layer spray-pyrolysized from 0.3 M zinc acetate solution at 450°C with nitrogen and oxygen flow. Cross section SEM images from secondary (b) and backscattered electrons (c) of fresh MAPbI₃ film deposited on ZnO prepared with N₂ flow. **Figure S5.** (a-b) XRD pattern of 1 day and 15 day-old MAPbI₃ deposited on FTO/ZnO_N₂ (a) and FTO/ZnO O₂ substrates (b). In which ZnO was spray-pyrolyzed from 0.3 M zinc acetate solution at 450°C with nitrogen and oxygen flow. The XRD pattern of substrate is belong to SnO₂ (reference pattern: 9163). There is no detection of ZnO peaks due to its extremely thin thickness. (c-e) Comparison of XRD intensity at 14.2° of those MAPbI₃ films which were stored under dark and at room temperature and at around 35% of humidity. **Figure S6.** Normalized XRD intensity at 14.2° of (a) 1 day-old MAPbI₃ deposited on FTO/ZnO_N₂ and FTO/ZnO_O₂ substrates. And normalized XRD intensity at 14.2° of fresh (1 day) and old (15 days) MAPbI₃ film deposited on (b) FTO/ZnO_O₂ and (c) FTO/ZnO_N₂ substrates. In which ZnO was spray-pyrolyzed from 0.3 M zinc acetate solution at 450°C with nitrogen and oxygen flow. Those MAPbI₃ films which were stored under dark and at room temperature and at around 35% of humidity. **Table S1.** Full width at half maximum (FWHM) and normalized XRD intensity of 1 day and 15 days-old MAPbI₃ film deposited on FTO/ZnO_N₂ and FTO/ZnO_O₂ compact layer. In which ZnO was spray-pyrolyzed from 0.3 M zinc acetate solution at 450°C with nitrogen and oxygen flow. MAPbI₃ films were stored under dark and around 35% of humidity. | 2 theta | FWHM | | | | | |---------|-------------------------------|------------------------------|-------------------------------|------------------------------|--| | (0) | Substrate: ZnO_N ₂ | | Substrate: ZnO_O ₂ | | | | | MAPbI ₃ : 1 day | MAPbI ₃ : 15 days | MAPbI ₃ : 1 day | MAPbI ₃ : 15 days | | | 14.2 | 0.117 | 0.101 | 0.104 | 0.111 | | | 2 theta | XRD intensity (%) | | | | | | (0) | Substrate: ZnO_N ₂ | | Substrate: ZnO_O ₂ | | | | | MAPbI ₃ : 1 day | MAPbI ₃ : 15 days | MAPbI ₃ : 1 day | MAPbI ₃ : 15 days | | | 14.2 | 100 | 100 | 100 | 100 | | | 28.6 | 47.2 | 31.2 | 30.4 | 43.3 | | | 32 | 33.7 | 24.2 | 24.9 | 31.7 | | **Figure S7.** Low magnification top view SEM of 15 days-old MAPbI₃ deposited on FTO/ZnO_N₂ (a) and FTO/ZnO_O₂ substrates (b). In which ZnO was spray-pyrolyzed from of 0.3 M zinc acetate solution at 450°C with nitrogen and oxygen flow. MAPbI₃ films were stored under dark and at room temperature and at around 35% of humidity. **Figure S8.** IPCE spectra and integrated short circuit current density (Jsc) of FTO/ZnO_N₂/MAPbI₃/Spiro OMeTAD/Au (a) and its J-V curve, reverse scan, measured at 1 sun illumination (b). In which ZnO was spray-pyrolyzed from 0.3 M zinc acetate solution at 450°C with nitrogen flow. **Figure S9.** Current density-voltage (J-V) characteristic of best device after 34 days prepared with a structure of FTO/ZnO_N₂/MAPbI₃/Spiro OMeTAD/Au at 1 sun illumination. In which ZnO was spray-pyrolyzed from 0.3 M zinc acetate solution at 450°C with nitrogen flow. Sample was stored under dark at room temperature and at around 35% of humidity. **Figure S10.** Performance at 1 sun illumination of planar based ZnO_O₂ devices with a structure of FTO/ZnO/MAPbI₃/Spiro OMeTAD/Au measured immediately (a) and 7 days after the preparation (b). In which ZnO was spray-pyrolyzed from 15 ml of 0.1 M zinc acetate solution at different substrate temperatures with oxygen flow. Full devices were stored under dark, at room temperature and at around 35% of humidity. The concentration of zinc acetate solution was reduced 1/3 times however the solution volume was increased 3 times to maintain the same amount of Zn²⁺, in comparison with the samples used in Table 1. The best efficiency for fresh devices was archived for ZnO prepared at 350°C and this value is similar to that obtained for ZnO spray-pyrolized at 450°C with higher concentration of zinc acetate solution (table 1 and table S2). The reason is at different solution concentrations and different substrate temperatures, ZnO was formed differently. **Table S2.** Statistic photovoltaic parameters at 1 sun of planar based ZnO thin film devices showed in the Figure S10. | Time
[days] | Subs_temp
[°C] | Jsc
[mA/cm²] | Voc
[mV] | FF
[%] | Eff
[%] | |----------------|-------------------|-----------------|------------------|----------------|---------------| | 0 | 300 | 15.5 ± 0.1 | 934.2 ± 16.7 | 46.4 ± 0.7 | 7.1 ± 0.1 | | 7 | | 16.1 ± 0.1 | 1006.2 ± 8.9 | 53.5 ± 1 | 8.5 ± 0.3 | | 0 | 350 | 15.9 ± 0.1 | 1010.4 ± 9.4 | 50.2 ± 1.6 | 9.1 ± 0.3 | | 7 | | 15.6 ± 0.2 | 1021.5 ± 6.9 | 57.8 ± 0.9 | 9 ± 0.2 | | 0 | 400 | 16.9 ± 0.2 | 831.6 ± 21.8 | 52 ± 0.4 | 7.8 ± 0.4 | | 7 | | 14.9 ± 0.1 | 981 ± 18.7 | 55.2 ± 0.5 | 8.3 ± 0.3 | | 0 | 450 | 16.1 ± 0.2 | 773.4 ± 16.1 | 49.1 ± 1.2 | 6.8 ± 0.1 | | 7 | | 13.8 ± 0.3 | 933.8 ± 17 | 57.9 ± 0.8 | 7.5 ± 0.4 | **Figure S11.** Performance at 1 sun illumination of planar based ZnO_O₂ devices with a structure of FTO/ZnO/MAPbI₃/Spiro OMeTAD/Au measured 14 days (a) and 30 days (b) after the preparation. In which ZnO was spray-pyrolyzed from different volume of 0.1 M zinc acetate solution at 350°C substrate temperatures with oxygen flow. Full devices were stored under dark and at room temperature and at around 35% of humidity. **Table S3.** Statistic photovoltaic parameters of planar based ZnO thin film devices showed in the Figure S11. | Time
[days] | Zinc acetate volume [ml] | Efficiency [%] | |----------------|--------------------------|----------------| | 14 | 10 | 8.9 ± 0.3 | | 30 | | 11.5 ± 0.3 | | 14 | 15 | 10.1 ± 0.3 | | 30 | | 11.3 ± 0.2 | | 14 | 20 | 8.7 ± 0.3 | | 30 | | 11.4 ± 0.4 | | 14 | 25 | 9.9 ± 0.3 | | 30 | | 10.9 ± 0.4 | **Table S4.** Photovoltaic parameters at 1 sun illumination of fresh (0 day-old) planar based ZnO devices with a structure of ZnO/MAPbI₃/Spiro OMeTAD/Au. In which ZnO was spray-pyrolyzed from of 0.1 M zinc acetate solution at 300°C substrate (FTO or ITO) temperatures with oxygen flow. | Subtrates | Jsc
mA/cm ² | Voc
mV | FF
% | Efficiency
% | |-----------|---------------------------|-----------|---------|-----------------| | FTO/ZnO | 15.78 | 1067.35 | 45.14 | 7.60 | | ITO/ZnO | 12.84 | 1012.12 | 59.70 | 7.76 | **Figure S12.** (a) EL spectra and eQE (b) of fresh (0 day-old) LED devices with a structure of ZnO/MAPbI₃/Spiro OMeTAD/Au at different applied bias. In which ZnO was spraypyrolyzed from 0.1M zinc acetate solution at 300°C substrate (FTO or ITO) temperatures with oxygen flow. **Figure S13.** Performance at 1 sun illumination of un-encapsulated planar based ZnO devices with a structure of FTO/ZnO/MAPbI₃/Spiro OMeTAD/Au before and after the EL measurement at 1.8 V applied bias. In which ZnO was spray-pyrolyzed from 0.3M zinc acetate solution at 450°C with oxygen flow. Full devices were stored under dark and at room temperature and at around 35% of humidity. It is well known that after the electroluminescence (EL) measurement un-encapsulated MAPbI₃ devices degraded. Our devices showed a significant drop after the characterization as LED. However the performance was recovered partially with time storing the device under dark at room temperature and with a humidity of around 35%. **Figure S14**. Fitted contact resistance, Rs, of impedance spectroscopy measurement of PSCs based on ZnO_N₂ or ZnO_O₂ substrates at 1 sun illumination Figure S15. R_{hf} related to charge transport and to the recombination obtaining in the Figure 6, plotted in (a) log and (b) linear scale.