Supporting Information

Synthesis and Catalytic Properties of Sulfur-Chelated Ruthenium Benzylidenes Bearing a Cyclic (Alkyl)(amino)carbene Ligand

Illya Rozenberg,[†] Or Eivgi,[†] Alex Frenklah,[†] Danielle Butilkov,[†] Sebastian Kozuch,[†] Israel Goldberg[‡] and N. Gabriel Lemcoff^{†§}*

^{*t*} Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel

[§] Ilse Katz Institute for Nanoscale Science and Technology, Beer-Sheva 8410501, Israel

^{*t*} School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel

* e-mail: lemcoff@bgu.ac.il

Table of Contents

1.	Gen	eneral				
2.	Synt	thesis	s of CAAC bearing complexes	7		
	2.1.	Gen	eral procedure for the synthesis of complexes containing DiPP-CAAC	7		
	2.1.	1.	Complex 10a (<i>trans</i>)	7		
	2.1.	2.	Complex 10b (<i>trans</i>)	7		
	2.2.	Proc	cedures for synthesis of complexes containing DEtP-CAAC	8		
	2.2.	1.	trans-13a and cis-13a	8		
	2.2.2.		trans-13b	9		
	2.2.	3.	<i>cis</i> -13b	9		
3.	. Spectroscopic data of reported complexes			. 11		
	3.1. NM		R spectra of 10a	. 11		
	3.2.	HRN	ЛS of 10a	. 16		
	3.3.	UV-	Vis of 10a in CH_2Cl_2	. 16		
	3.4.	NM	R spectra of 10b	. 17		
	3.5.	. HRMS of 10b		21		
	3.6.	. UV-Vis of 10b in CH_2CI_2		. 21		
	3.7.	NM	R spectra of <i>trans</i> -13a	. 22		
	3.8.	HRN	AS of trans-13a	. 27		
	3.9.	UV-	Vis spectrum of <i>trans</i> -13a	. 27		
	3.10.	Ν	MR spectra of <i>cis</i> -13a	. 28		
	3.11.	Н	RMS of <i>cis</i> -13a	. 34		
	3.12.	U	V-Vis of <i>cis</i> -13a	. 34		
	3.13.	Ν	MR spectra of trans-13b	. 35		
	3.14.	Н	RMS of <i>trans</i> -13b	. 40		
	3.15.	U	V-Vis of <i>trans</i> -13b	. 40		
	3.16.	Ν	MR spectra of <i>cis</i> -13b	. 41		
	3.17.	Н	RMS of <i>cis</i> -13b	. 45		
	3.18.	U	V-Vis of <i>cis</i> -13b	. 45		
4.	X-Ra	ay da	ta of complexes	. 46		
	4.1.	Crys	stallographic data and structure refinement	. 46		
	4.2.	Bon	d lengths and angles for 10a	. 47		

	4.3.	Bond lengths and angles for 10b	49
	4.4.	Bond lengths and angles for <i>cis</i> -13a	51
	4.5.	Bond lengths and angles for <i>cis</i> -13b	53
5	. Con	nputational data	55
	5.1.	Rotation of DiPP-CAAC around C _{CAAC} -Ru axis	55
	5.2.	Relative energies of <i>cis</i> -Cl ₂ isomers of the complexes 10 and 13	55
	5.3.	Computational details	56
	5.4.	XYZ parameters and SP energies	57
6	. Therm	ally and photoinduced isomerization of precatalysts	57
	6.1. Th	ermal isomerization of DiPP-CAAC bearing complexes	72
	6.1.	1. Thermal isomerization of 10a	73
	6.1.	2. Thermal isomerization 10b	76
	6.2. Pł	notoisomerization of DiPP-CAAC bearing complexes	78
	6.2.	1. Photoisomerization of 10a	78
	6.2.	2. Photoisomerization of 10b	80
	6.2.	3. Photoisomerization of 10b – assignment of configuration by ¹ H-NMR	81
	6.3. Th	ermal isomerization of DEtP-CAAC bearing complexes	85
	6.3.	1. Thermal isomerization of <i>trans</i> -13a	85
	6.3.	2. Thermal isomerization of <i>trans</i> -13b	86
	6.4. Pł	notoisomerization of DEtP-CAAC bearing complexes	87
	6.4.	1. Photoisomerization of <i>trans</i> -13a (" <i>trans</i> -to- <i>cis</i> ")	87
	6.4.	2. Photoisomerization of <i>cis</i> -13a (" <i>cis</i> -to- <i>trans</i> ")	88
	6.4.	3. Photoisomerization of <i>cis</i> -13b (" <i>cis</i> -to- <i>trans</i> ")	89
7	. Acti	vity testing of the precatalysts in olefin metathesis reactions	90
	7.1. Pc	olymerizations (ADMET and ROMP)	90
	7.1.	1. Results of reactivity testing	91
	7.1.	2. Screening wavelengths for effective photo-activation of <i>cis</i> -13a and <i>cis</i> -13b	93
	7.1.	3. Polymerization of M4 (<i>cis</i> -cyclooctene) by <i>cis</i> -13 initiators	94
	7.1.	4. Latency of cis-13 precatalysts in presence of M2 (COD)	97
	7.1.	5. Secondary metathesis reactions of pBD with <i>cis</i> -13a	101
	7.1.	6. Latency of cis-13a towards M6 (DCPD)	103
	7.2. M	ethyl oleate self-metathesis	106

-	7.2.1. Self-metathesis at 100°C	107
-	7.2.2. Self-metathesis at 120°C	118
-	7.2.3. Photo-activated self-metathesis of methyl oleate with <i>cis</i> -13a and <i>cis</i> -14a	130
7.3	3. RCM of N-allyl-N-(pent-4-en-1-yl)tosylsulfonamide (15)	135
8. I	References	137

1. General

All commercially available solvents and reagents were of reagent grade and used without further purification unless otherwise stated. When stated, solvents were dried by passage through an MBraun solvent purification system.

NMR spectra were recorded on Bruker DPX 400 or DPX 500 instruments; chemical shifts, given in ppm, are relative to the residual solvent peaks.¹ ¹⁹F-NMR analyses were done without prior calibration, and the reported spectra are used to show number of fluorine-containing species in the sample.

Gas chromatography data was obtained using an Agilent 6850 GC equipped with an Agilent 5973 MSD working under standard conditions and an Agilent HP5-MS column.

High resolution mass spectroscopy (HRMS) was performed using a Thermoscientific LTQU XL Orbitrap instrument equipped with APCI.

Purification by column chromatography was performed on Fluka silica gel (35-75 μ m). TLC analyses were performed using Merck pre-coated silica gel (0.2 mm) aluminium sheets.

UV-Vis spectra were recorded using Shimadzu UV-3600 UV-Vis-NIR spectrophotometer. Irradiation experiments were carried out using either a Rayonet RPR-200 instrument or an LZC-ORG (Luzchem) instrument. The experiments were carried out in normal glass vessels unless otherwise stated (for UV-C experiments quartz vessels were used).

Molecular weights and polydispersity indices (PDIs) of the polymers were determined by size exclusion chromatography (SEC) analyses in tetrahydrofuran (THF) at 35°C using an Agilent 1200 HPLC equipped with two Shodex GPC LF-804 columns and a Shodex KF-803 column. The flow rate was set to 1 mL·min⁻¹. Wyatt's miniDAWN TriStar laser light-scattering system, ViscoStarTM viscometer, and OptilabVR rEX refractometer were used as detectors set up in series in a triple detector format. Prior to measurements, polymer solutions were filtered through Millipore 0.20 μ m PTFE filters.

The X-ray measurements (ApexDuo, Bruker-AXS, MoKα radiation) were carried out at ca. 110(2) K on crystals coated with a thin layer of amorphous oil to minimize crystal deterioration, possible structural disorder and related thermal motion effects, and to optimize the precision of the structural results. The crystal structure was solved by direct methods and refined by full matrix least-squares (SHELXTL-2014 and SHELXL-2014).²⁻³

Cyclic (alkyl)(amino)carbene precursors **7a** and **7b** were synthesized as triflate salts according to method described in paper by Bertrand and coworkers.⁴ Compounds **6⁵**, **8⁶**, **10a⁷**, **10b⁸**, **12⁹**, **14a**,⁷ **14b⁸** and **15¹⁰** were synthesized according published procedures.

2. Synthesis of CAAC bearing complexes

2.1. General procedure for the synthesis of complexes containing DiPP-CAAC

Scheme S1. Synthesis of the complexes 10a and 10b

Complex **8** (1eq) was dissolved in benzene or CH_2Cl_2 inside 4 mL vial equipped with magnetic bar. Styrene (**9a** or **9b**) (1.5 eq.) was added as a solution in matching solvent. Total concentration of **8** in solvent was 0.05M. The vial was filled with argon before sealing and the solution was left for overnight stirring at RT. The reaction mixture was purified on silica packed and eluted with CH_2Cl_2 /hexane (1:1) as green bands. The complexes can be easily recrystallized by slow diffusion of hexane into concentrated solutions of **10a** or **10b** in CH_2Cl_2 .

2.1.1. Complex 10a (*trans*)

Dark green solid 10 mg (0.0154 mmol, 46%) from 21 mg (0.0335 mmol) of 8.

¹H NMR (400 MHz, CH₂Cl₂) δ **16.81** (d, 1H, J=0.8Hz), **7.75** (d, 1H, J=8Hz), **7.66** (two t, 2H, both J=7.6Hz), **7.47** (d, 2H, J=7.6Hz), **7.37** (dt, 1H, J=7.6; 1.2Hz), **6.81** (dd, 1H, J=7.6; 1.2Hz), **3.03** (m, 2H), **2.23** (s, 2H), **2.07** (s, 6H), **1.40** (s, 6H), **1.27** (d, 6H, J=6.8Hz), **0.60** (d, 6H, J=6.4Hz).

¹³C NMR (101 MHz, CH₂Cl₂) δ 296.41, 263.11, 195.26, 159.31, 148.48, 136.00, 134.86, 133.13, 130.71, 130.35, 126.47, 124.27, 80.37, 57.94, 54.00, 51.95, 30.00, 29.54, 29.05, 26.68, 24.63

¹⁹F NMR (376 MHz, CD₂Cl₂) δ -42.24.

HRMS: *m/z* calcd. for [C₂₈H₃₆Cl₂F₃NRuS + Na]: 670.08333, found: 670.08234

2.1.2. Complex 10b (*trans*)

Green solid 8.5 mg (0.013 mmol, 41%) from 20 mg (0.032 mmol) of 8.

¹H NMR (400 MHz, CD₂Cl₂) δ **16.86** (s,1H), **7.66** (t, 1H, J=7.6Hz), **7.52** (td, 1H, J=7.6; 1.2Hz), **7.48** (d, 2H, J=7.6Hz), **7.38** (d, 1H, J=7.6Hz), **7.30-7.20** (m, 4H), **7.12-7.10** (m, 2H), **6.77** (dd, 1H, J=7.6; 0.8Hz), **3.08** (septet, 2H, J=6.4Hz), **2.17** (s, 2H), **2.01** (s, 6H), **1.39** (s, 6H), **1.27** (d, 6H, J=6.4Hz), **0.65** (d, 6H, J=6.4Hz).

¹³C NMR (101 MHz, CD₂Cl₂) δ 295.80, 265.66, 158.37, 148.68, 136.40, 133.68, 132.53, 131.85, 130.88, 130.53, 130.39, 130.15, 128.91, 126.34, 123.68, 79.96, 58.06, 54.00, 52.05, 30.05, 29.53, 29.04, 26.78, 24.60

HRMS: *m/z* calcd. for [C₃₃H₄₁Cl₂NRuS]: 655.13748, found: 655.13733

2.2. Procedures for synthesis of complexes containing DEtP-CAAC

Scheme S2. Synthesis of the complexes 13a and 13b

2.2.1. *trans*-13a and *cis*-13a

The catalyst **12** (52.5 mg, 0.06 mmol, 1 eq.) was dissolved in 3 mL dry CH₂Cl₂ in pressure vessel equipped with magnetic stirring bar, followed by styrene **9a** (14.7 mg, 0.072 mmol, 1.2 eq.) in 1 mL and CuCl (11.8mg, 0.12mmol, 2eq). The air was replaced by argon before sealing the vessel. The reaction was stirred overnight at 40°C. The color changed from brown-red to green (indication for formation of *trans*-13a) after two hours and green-brown for the final solution. The crude solution was filtered of CuCl through 0.22µm PTFE filter and the solvent was evaporated. The residue was redissolved in toluene and was purified "as is" by column chromatography on silica, *trans*-13a elutes first as a dark green band with a gradient of cyclohexane \rightarrow 10% ethyl acetate in cyclohexane followed by *cis*-13a that elutes as a purple band with 80% ethyl acetate in cyclohexane. The solvent was evaporated and trituration with pentane afforded the complexes as solids (33% of *trans*-13a and 17% *cis*-13a). Isomerization to *cis*-13a can be avoided by stopping the reaction earlier (see above comment).

Purified **trans-13a** can also be fully converted to **cis-13a** by redissolving it in CH₂Cl₂ and heating in a pressure vessel to 50°C until starting material is not detected by TLC (up to 43% of **cis-13a** after column chromatography).

trans-13a

¹H NMR (400 MHz, CD₂Cl₂) δ **16.89** (d, 1H, J=0.8Hz), **7.75** (d, 1H, J=7.6Hz), **7.69** (dt, 1H, J=7.2; 1.2Hz), **7.62** (t, 1H, J=7.6Hz), **7.46** (d, 2H, J=7.6Hz), **7.39** (dt, 1H, J=7.6; 1.2Hz), **6.84** (dd, 1H, J=8.0; 1.6Hz), **2.56** (broad m, 4H), **2.21** (s,2H), **2.10** (s, 6H), **1.36** (s, 6H), **0.88** (broad m, 6H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 300.29, 261.89, 143.35, 140.32, 137.82, 134.95, 133.15, 130.86, 129.77, 127.56, 123.95, 120.31, 80.74, 57.67, 54.00, 52.41, 30.11, 28.83, 25.29, 14.73.

¹⁹F NMR (376 MHz, CD₂Cl₂) δ 20.02.

HRMS: *m/z* calcd. for [C₂₆H₃₂Cl₂F₃NRuS - Cl]: 584.09341, found: 584.09393

cis-13a

¹H NMR (400 MHz, CD₂Cl₂) δ **16.24** (d, 1H, J=1.2Hz), **7.71** (dd, 1H, J=7.6; 0.8Hz), **7.60** (td, 1H, J=7.2; 1.2Hz), **7.31** (overlapping dd, 1H, J=7.6; 0.8Hz), **7.28** (overlapping td, 1H, J=7.6; 0.8Hz), **7.04** (t, 1H, J=7.6Hz), **6.92** (dd, 1H, J=8.0; 1.2Hz), **6.32** (broad d, 1H, J=8Hz), **3.15** (broad m, 1H), **2.56** (broad m, 1H), **2.23** (s, 3H), **2.18** (s, 1H), **2.17** (s, 1H), **2.02** (overlapping m, 4H), **1.51** (broad m, 1H), **1.37** (t, 3H, J=7.6Hz), **1.31** (s, 3H), **1.20** (s, 3H), **0.93** (t, 3H, J=7.6Hz)

¹³C NMR (101 MHz, CD₂Cl₂) δ 277.76, 266.82, 154.94, 142.69, 140.24, 137.02, 135.09, 132.72, 132.02, 131.38, 130.51, 129.72, 128.88, 127.46, 126.84, 125.60, 123.92, 80.43, 55.40, 54.00, 52.65, 34.16, 31.35, 31.15, 28.33, 26.04, 24.09, 15.30, 14.02¹¹

¹⁹F NMR (376 MHz, CD₂Cl₂) δ 23.01

HRMS: *m*/z calcd. for [C₂₆H₃₂Cl₂F₃NRuS - Cl]: 584.09341, found: 584.09204

2.2.2. trans-13b

12 (0.034 mmol; 30 mg) was dissolved in 1 mL benzene inside a pressure vessel equipped with a stirring bar. Then, styrene **9b** (0.041 mmol; 9 mg; 1.2 eq.) dissolved in 0.5 mL of benzene and CuCl (0.068 mmol; 7 mg; 2 eq.) were added. The air inside the vessel was replaced by argon and then the vessel was sealed. The reaction was stirred at 30°C overnight. The solution was purified "as is" by column chromatography on silica, with gradient of hexane to 5% ethyl acetate in hexane. The solvent was evaporated to afford 10 mg (0.016 mmol, 47%) of **trans-13b** as a green solid.

¹H NMR (400 MHz, CD₂Cl₂) δ **16.95** (d, 1H, J=0.4Hz), **7.63** (t, 1H, J=8Hz), **7.56** (dt, 1H, J=7.6; 1.2Hz), **7.47** (d, 2H, J=7.6Hz), **7.40** (d, 1H, J=7.6Hz), **7.29-7.20** (m, 4H), **7.09** (m, 2H), **6.82** (dd, 1H, J=7.6; 0.8Hz), **2.66** (sextet, 2H, J=7.6Hz), **2.56** (sextet, 2H, J=7.6Hz), **2.17** (s, 2H), **2.03** (s, 6H), **1.35** (s, 6H), **0.91** (t, 6H, J=7.6Hz).

 13 C NMR (101 MHz, CD₂Cl₂) δ 299.31, 264.46, 159.65, 143.58, 138.23, 133.82, 133.48, 132.24, 130.98, 130.53, 129.57, 129.18, 128.90, 128.81, 127.44, 123.47, 80.37, 57.78, 52.42, 30.07, 28.83, 25.31, 14.85.

HRMS: *m*/*z* calcd. for [C₃₁H₃₇Cl₂NRuS - Cl]: 592.13733, found: 592.13910

2.2.3. cis-13b

12 (0.114 mmol; 100 mg) was dissolved in 4 mL CH_2Cl_2 inside a pressure vessel equipped with a stirring bar. Then, styrene **9b** (0.137 mmol; 29 mg; 1.2eq) dissolved in 1 mL of CH_2Cl_2 was added, followed by CuCl (0.228 mmol; 22.5 mg; 2 eq.). The air inside the vessel was replaced by argon and then the vessel was sealed. The reaction was stirred at 30°C overnight. The solution was

filtered through a 0.22μ m PTFE filter and the solvent was evaporated. The residue was redissolved in toluene and was purified "as is" by column chromatography on silica, by elution with a gradient of hexane \rightarrow 50% ethyl acetate in hexane \rightarrow 80% ethyl acetate in hexane. The solvent was evaporated and after several cycles of trituration with pentane, 25 mg (0.040 mmol, 35%) of *cis*-13b as a blue-grey solid was obtained.

¹H NMR (400 MHz, CD₂Cl₂) δ **16.40** (s, 1H), **7.45-7.29** (m, 5H), **7.21-7.08** (m, 5H), **6.89** (d, 1H, J=7.2Hz), **6.41** (d, 1H, J=7.6Hz), **3.25** (m, 1H), **2.59** (m, 1H), **2.18** (m, 6H), **2.09** (s, 3H), **1.64** (m, 1H), **1.40** (m, 3H), **1.29** (s, 1H), **1.24** (s, 1H), **0.90** (m, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 277.49, 269.60, 155.34, 143.05, 140.96, 138.29, 137.32, 133.49, 130.72, 130.46, 130.39, 130.26, 129.38, 129.18, 127.21, 126.78, 124.94, 79.56, 55.17, 54.00, 52.87, 34.28, 31.15, 31.08, 30.25, 28.62, 26.07, 24.13, 15.28, 13.89.

HRMS: *m*/z calcd. for [C₃₁H₃₇Cl₂NRuS + Na]: 650.09595, found: 650.09851

3. Spectroscopic data of reported complexes

3.1. NMR spectra of 10a

Figure S1. Full ¹H-NMR spectrum of 10a

Figure S2. Aromatic protons region of ¹H-NMR spectrum of **10a**

Figure S3. Full ¹³C-NMR spectrum of 10a

Figure S4. Expansion of aliphatic region in ¹³C-NMR spectrum of **10a**

Figure S5. Expansion of aromatic region in ¹³C-NMR spectrum of **10a**

Figure S6. ¹⁹F-NMR spectrum of **10a**

3.2. HRMS of 10a

Figure S7. Experimental (grey) and simulated (white) HRMS spectra of 10a.

3.3. UV-Vis of 10a in CH_2Cl_2

UV-Vis Absorption Spectrum 10a in CH₂Cl₂

Figure S8. UV-Vis spectrum of 10a. Concentration of 10a: 10⁻⁴M in CH₂Cl₂

Figure S9. Full ¹H-NMR spectrum of 10b

Figure S10. Aromatic protons region of ¹H-NMR spectrum of 10b

Figure S11. Full ¹³C-NMR spectrum of 10b

Figure S12. Expansion of aliphatic region in ¹³C-NMR spectrum of **10b**

Figure S13. Expansion of aromatic region in ¹³C-NMR spectrum of 10b

Figure S14. Experimental (grey) and simulated (white) HRMS spectra of 10b

3.6. UV-Vis of 10b in CH₂Cl₂

UV-Vis Absorption Spectrum 10b in CH₂Cl₂

Figure S15. UV-Vis spectrum of 10b. Concentration of 10b: 10⁻⁴M in CH₂Cl₂

Figure S16. Full ¹H-NMR spectrum of trans-13a

Figure S17. Aliphatic protons region of ¹H-NMR spectrum of trans-13a

Figure S18. Aromatic protons region of ¹H-NMR spectrum of *trans*-13a

Figure S19. Full ¹³C-NMR spectrum of trans-13a

Figure S20. Expansion of aromatic carbons region in ¹³C-NMR spectrum of *trans*-13a

Figure S21. Expansion of aliphatic carbons region in ¹³C-NMR spectrum of *trans*-13a

Figure S22. ¹⁹F-NMR spectrum of trans-13a

Figure S23. Experimental (grey) and simulated (white) HRMS spectra of trans-13a ([M -Cl]⁺)

3.9. UV-Vis spectrum of *trans*-13a

UV-Vis Absorption Spectrum of *trans*-13a in CH_2CI_2

Figure S24. UV-Vis spectrum of trans-13a. Concentration of trans-13a: 10⁻⁴M in CH₂Cl₂

Figure S25. Full ¹H-NMR spectrum of *cis*-13a

Figure S26. Carbene protons region of ¹H-NMR spectrum of *cis*-13a.

None of the downfield proton peaks belong to *trans*-13a, so most likely they belong to rotamers of *cis*-13a, as well as small peaks in other regions of the spectrum.

Figure S27. Aromatic protons region of ¹H-NMR spectrum of *cis*-13a

Figure S28. Aliphatic protons region of ¹H-NMR spectrum of *cis*-13a

Figure S29. Partial COSY spectrum of *cis*-13a with expansion of aliphatic protons region.

The marked correlations belong to diastereotopic methylene protons of two different ethyl groups on CAAC ligand.

Figure S30. Full ¹³C-NMR spectrum of *cis*-13a

Figure S31. Expansion of aromatic region in ¹³C-NMR spectrum of *cis*-13a

Figure S32. Expansion of aliphatic region in ¹³C-NMR spectrum of *cis*-13a

Figure S33. ¹⁹F-NMR spectrum of *cis*-13a

Figure S34. Experimental (grey) and simulated (white) HRMS spectra of cis-13a ([M -Cl]⁺)

3.12. UV-Vis of *cis*-13a

UV-Vis Absorption Spectrum of *cis*-13a in CH₂Cl₂

Figure S35. UV-Vis spectrum of *cis*-13a. Concentration of *cis*-13a: 1×10⁻⁴M CH₂Cl₂

Figure S36. Full ¹H-NMR spectrum of trans-13b

Figure S37. Aromatic protons region of ¹H-NMR spectrum of *trans*-13b

Figure S38. Aliphatic protons region of ¹H-NMR spectrum of *trans*-13b

Figure S39. Full ¹³C-NMR spectrum of *trans*-13b.¹²

Figure S40. Expansion of aliphatic region in ¹³C-NMR spectrum of *trans*-13b.¹²

Figure S41. Expansion of aromatic region in ¹³C-NMR spectrum of *trans*-13b.¹²

Figure S42. Expansion of aliphatic region in ¹³C-NMR spectrum of *trans*-13b (A.) with the spectrum of *cis*-13b (B.). The NMRs detail the spontaneous isomerization of *trans*-13b to *cis*-13b during data acquisition.

Figure S43. Experimental (grey) and simulated (white) HRMS spectra of *trans*-13b ([M –Cl]⁺)

3.15. UV-Vis of *trans*-13b

UV-Vis Absorption Spectrum *trans*-13b in CH₂Cl₂

Figure S44. UV-Vis spectrum of *trans*-13b. Concentration of *trans*-13b: 10⁻⁴M in CH₂Cl₂

Figure S45. Full ¹H-NMR spectrum of *cis*-13b

Figure S46. Aromatic protons region of ¹H-NMR spectrum of *cis*-13b

Figure S47. Aliphatic protons region of ¹H-NMR spectrum of *cis*-13b.

The signal at 2.15 ppm is an overlap of three different peaks: one of the methyl groups on the CAAC backbone, the methylene (CH₂) of the CAAC backbone and one of the diastereotopic protons belonging to one of the N-aryl ethyl groups.

Figure S48. Full ¹³C-NMR spectrum of *cis*-13b

Figure S49. Expansion of aliphatic region in ¹³C-NMR spectrum of *cis*-13b

Figure S50. Expansion of aromatic region in ¹³C-NMR spectrum of *cis*-13b

Figure S51. Experimental (grey) and simulated (white) HRMS spectra of *cis*-13b ([M +Na]⁺)

3.18. UV-Vis of *cis*-13b

UV-Vis Absorption Spectrum of *cis*-13b in CH₂Cl₂

Figure S52. UV-Vis spectrum of *cis*-13b. Concentration of *cis*-13b: 10⁻⁴M in CH₂Cl₂

4. X-Ray data of complexes

4.1. Crystallographic data and structure refinement

	10a	10b	cis-13a	cis-13b
Formula	C28H36Cl2F3NRuS	C33H41Cl2NRuS	C26H32Cl2F3NRuS	C31H37Cl2NRuS
Formula weight	647.61	655.70	619.55	712.57
Temperature /K	110	110	110	110
Wavelength / Å	0.71073	0.71073	0.71073	0.71073
Crystal system	orthorhombic	tetragonal	triclinic	orthorhombic
Space group	$Pna2_1$	P43	P-1	$Pca2_1$
a /Å	16.3382(7)	10.0186(3)	11.0669(3)	19.8680(7)
b/Å	16.5805(7)	10.0186(3)	14.1689(4)	9.2131(3)
c /Å	10.4655(5)	30.9734(11)	17.6536(5)	17.5258(7)
α /°	90	90	103.228(1)	90
β /°	90	90	94.276(1)	90
γ /°	90	90	100.447(1)	90
$V/Å^3$	2835.1(2)	3108.9(2)	2630.52(13)	3208.0(2)
Z	4	4	4	4
μ /mm ⁻¹	0.853	0.766	0.916	0.910
$Dc/g \cdot cm^{-3}$	1.517	1.401	1.564	1.475
Index ranges	$-20 \le h \le 21$,	$-12 \le h \le 11$,	$-14 \le h \le 14$,	$-26 \le h \le 26$,
	$-21 \le k \le 20,$	$-13 \le k \le 10$,	$-18 \le k \le 18,$	$-10 \le k \le 12,$
	$-13 \le l \le 10$	-37 ≤ <i>l</i> ≤ 41	$-23 \le l \le 20$	$-23 \le l \le 20$
F(000)	1328.0	1360.0	1264.0	1464.0
θ range /	2.30 - 27.693	2.03 - 28.517	1.99 - 28.443	2.05 - 28.287
Appearance	brown needle	brown needle	brown needle	green prism
Crystal size /mm ³	0.36 x 0.10 x 0.07	0.30 x 0.18 x 0.13	0.34 x 0.18 x 0.15	0.26 x 0.24 x 0.17
GOF on F ²	1.004	1.003	1.025	1.005
Reflections collected	5509 / 5184 [<i>R</i> (int) =	7096 / 6728 [<i>R</i> (int) =	13050 / 10699	7307 / 6938 [<i>R</i> (int) =
/ unique	0.0248]	0.0323]	[R(int) = 0.0292]	0.0326]
Data / restraints /	5509 / 1 / 333	7096 / 1 / 351	13050 / 0 / 625	7307 / 1 / 358
parameters				
R indices (all data)	$R_1 = 0.0235, wR_2 =$	$R_1 = 0.0314, wR_2 =$	$R_1 = 0.0502, wR_2 =$	$R_1 = 0.0296, wR_2 =$
	0.0438	0.0583	0.0955	0.0607
Final <i>R</i> indices $[I > $	$R_1 = 0.0201, wR_2 =$	$R_1 = 0.0283, wR_2 =$	$R_1 = 0.0377, wR_2 =$	$R_1 = 0.0273, wR_2 =$
$2\sigma(I)$]	0.0423	0.0571	0.0869	0.0596
Max. and min.	0.766, 0.403	0.907, 0.803	0.875, 0.746	0.861, 0.798
transmission				
Largest diff. peak	0.278, -0.339	0.275, -0.336	1.628, -1.384	0.722, -1.050
and hole $/e \cdot A^{-3}$				

Table S1. Crystal	data and structure	e refinement for	complexes 10a ,	10b, cis-13a and cis-13b

4.2. Bond lengths and angles for 10a

Figure S53. ORTEP representation (50% probability ellipsoids) of complex 10a

Table S2. Bond	lengths	[Å]	of 10a .
----------------	---------	-----	-----------------

Number	Atom1	Atom2	Length	Number	Atom1	Atom2	Length
1	Ru1	Cl1	2.3398(8)	21	C4	C21	1.525(4)
2	Ru1	C12	2.3251(7)	22	C5	C6	1.515(4)
3	Ru1	S1	2.4910(8)	23	C5	C13	1.527(4)
4	Ru1	C2	1.832(2)	24	C5	C16	1.543(4)
5	Ru1	C19	1.992(3)	25	C6	C10	1.412(4)
6	S1	C8	1.783(3)	26	C6	C26	1.402(4)
7	S1	C17	1.824(3)	27	C7	C25	1.387(4)
8	F1	C17	1.328(3)	28	C10	C22	1.410(4)
9	F2	C17	1.341(4)	29	C11	C15	1.377(4)
10	F3	C17	1.324(3)	30	C11	C26	1.381(4)
11	N1	C4	1.534(3)	31	C12	C22	1.519(4)
12	N1	C10	1.456(3)	32	C12	C23	1.533(5)
13	N1	C19	1.325(3)	33	C12	C27	1.526(4)
14	C1	C2	1.460(4)	34	C14	C25	1.389(4)
15	C1	C8	1.395(4)	35	C15	C22	1.396(4)
16	C1	C14	1.401(4)	36	C19	C20	1.540(4)
17	C3	C7	1.381(4)	37	C20	C21	1.541(4)
18	C3	C8	1.388(4)	38	C20	C24	1.543(4)
19	C4	С9	1.531(4)	39	C20	C28	1.529(4)
20	C4	C18	1.523(4)				

Number	Atom1	Atom2	Atom3	Angle	Number	Atom1	Atom2	Atom3	Angle
1	Cl1	Ru1	C12	152.57(3)	35	S1	C8	C1	115.4(2)
2	Cl1	Ru1	S1	79.04(2)	36	S1	C8	C3	122.1(2)
3	Cl1	Ru1	C2	102.36(8)	37	C1	C8	C3	122.4(3)
4	Cl1	Ru1	C19	87.60(8)	38	N1	C10	C6	121.4(2)
5	Cl2	Ru1	S1	93.69(3)	39	N1	C10	C22	117.4(2)
6	Cl2	Ru1	C2	103.05(8)	40	C6	C10	C22	121.2(3)
7	Cl2	Ru1	C19	97.88(8)	41	C15	C11	C26	119.8(3)
8	S 1	Ru1	C2	83.62(8)	42	C22	C12	C23	112.4(3)
9	S 1	Ru1	C19	166.62(8)	43	C22	C12	C27	111.4(2)
10	C2	Ru1	C19	100.2(1)	44	C23	C12	C27	110.3(3)
11	Ru1	S1	C8	95.69(9)	45	C1	C14	C25	120.1(3)
12	Ru1	S1	C17	115.7(1)	46	C11	C15	C22	121.3(3)
13	C8	S1	C17	97.8(1)	47	S1	C17	F1	113.9(2)
14	C4	N1	C10	119.7(2)	48	S 1	C17	F2	110.7(2)
15	C4	N1	C19	115.0(2)	49	S 1	C17	F3	108.2(2)
16	C10	N1	C19	125.1(2)	50	F1	C17	F2	106.7(2)
17	C2	C1	C8	120.6(2)	51	F1	C17	F3	109.0(2)
18	C2	C1	C14	121.6(2)	52	F2	C17	F3	108.1(2)
19	C8	C1	C14	117.7(3)	53	Ru1	C19	N1	134.1(2)
20	Ru1	C2	C1	123.6(2)	54	Ru1	C19	C20	116.7(2)
21	C7	C3	C8	118.8(3)	55	N1	C19	C20	108.0(2)
22	N1	C4	C9	110.0(2)	56	C19	C20	C21	102.6(2)
23	N1	C4	C18	112.8(2)	57	C19	C20	C24	108.0(2)
24	N1	C4	C21	100.8(2)	58	C19	C20	C28	114.3(2)
25	C9	C4	C18	107.6(2)	59	C21	C20	C24	111.5(2)
26	C9	C4	C21	111.7(2)	60	C21	C20	C28	112.0(2)
27	C18	C4	C21	113.8(2)	61	C24	C20	C28	108.4(2)
28	C6	C5	C13	111.8(2)	62	C4	C21	C20	106.8(2)
29	C6	C5	C16	111.9(2)	63	C10	C22	C12	124.0(3)
30	C13	C5	C16	108.3(2)	64	C10	C22	C15	118.4(3)
31	C5	C6	C10	125.7(3)	65	C12	C22	C15	117.6(3)
32	C5	C6	C26	116.8(3)	66	C7	C25	C14	120.7(3)
33	C10	C6	C26	117.5(3)	67	C6	C26	C11	121.9(3)
34	C3	C7	C25	120.2(3)					

 Table S3. Bond angles [°] of 10a.

4.3. Bond lengths and angles for 10b

Figure S54. ORTEP representation (50% probability ellipsoids) of complex 10b

Table S4. B	ond lengths	[Å] of 10b .
-------------	-------------	---------------------

Number	Atom1	Atom2	Length	Number	Atom1	Atom2	Length
1	Ru1	Cl1	2.3340(9)	22	C6	C10	1.407(5)
2	Ru1	Cl2	2.333(1)	23	C7	C21	1.386(6)
3	Ru1	S1	2.475(1)	24	C8	C14	1.396(5)
4	Ru1	C4	1.994(3)	25	C8	C28	1.523(4)
5	Ru1	C19	1.836(3)	26	C9	C18	1.534(6)
6	S1	C12	1.784(4)	27	C10	C19	1.456(4)
7	S1	C20	1.770(4)	28	C10	C20	1.394(5)
8	N1	C2	1.459(4)	29	C12	C25	1.382(6)
9	N1	C3	1.528(4)	30	C12	C32	1.379(6)
10	N1	C4	1.320(4)	31	C14	C22	1.385(5)
11	C1	C2	1.410(4)	32	C16	C28	1.537(5)
12	C1	C5	1.521(5)	33	C17	C22	1.380(6)
13	C1	C17	1.393(5)	34	C18	C27	1.551(5)
14	C2	C8	1.409(4)	35	C18	C30	1.513(6)
15	C3	C9	1.531(5)	36	C20	C26	1.397(5)
16	C3	C11	1.520(5)	37	C21	C26	1.381(5)
17	C3	C15	1.520(5)	38	C23	C24	1.382(7)
18	C4	C18	1.542(4)	39	C23	C31	1.375(7)
19	C5	C13	1.539(4)	40	C24	C25	1.383(6)
20	C5	C29	1.530(5)	41	C28	C33	1.533(6)
21	C6	C7	1.386(5)	42	C31	C32	1.383(6)

Number	Atom1	Atom2	Atom3	Angle	Number	Atom1	Atom2	Atom3	Angle
1	Cl1	Ru1	Cl2	152.04(4)	36	C6	C7	C21	120.0(3)
2	Cl1	Ru1	S 1	82.35(3)	37	C2	C8	C14	118.3(3)
3	Cl1	Ru1	C4	85.48(9)	38	C2	C8	C28	124.3(3)
4	Cl1	Ru1	C19	105.7(1)	39	C14	C8	C28	117.3(3)
5	Cl2	Ru1	S 1	92.13(3)	40	C3	C9	C18	107.0(3)
6	C12	Ru1	C4	98.26(9)	41	C6	C10	C19	121.5(3)
7	Cl2	Ru1	C19	100.8(1)	42	C6	C10	C20	118.3(3)
8	S 1	Ru1	C4	167.80(9)	43	C19	C10	C20	120.2(3)
9	S 1	Ru1	C19	82.9(1)	44	S 1	C12	C25	123.9(3)
10	C4	Ru1	C19	101.3(1)	45	S 1	C12	C32	115.5(3)
11	Ru1	S1	C12	115.9(1)	46	C25	C12	C32	120.5(4)
12	Ru1	S1	C20	97.0(1)	47	C8	C14	C22	121.2(3)
13	C12	S 1	C20	105.0(2)	48	C1	C17	C22	122.5(3)
14	C2	N1	C3	119.1(2)	49	C4	C18	C9	102.9(3)
15	C2	N1	C4	124.6(3)	50	C4	C18	C27	107.7(3)
16	C3	N1	C4	115.8(3)	51	C4	C18	C30	114.1(3)
17	C2	C1	C5	124.7(3)	52	C9	C18	C27	110.3(3)
18	C2	C1	C17	117.3(3)	53	C9	C18	C30	113.9(3)
19	C5	C1	C17	117.9(3)	54	C27	C18	C30	107.8(3)
20	N1	C2	C1	120.6(3)	55	Ru1	C19	C10	124.5(2)
21	N1	C2	C8	118.0(3)	56	S 1	C20	C10	114.9(3)
22	C1	C2	C8	121.4(3)	57	S 1	C20	C26	123.7(3)
23	N1	C3	C9	100.3(3)	58	C10	C20	C26	121.3(3)
24	N1	C3	C11	111.3(3)	59	C7	C21	C26	120.8(3)
25	N1	C3	C15	110.8(3)	60	C14	C22	C17	119.3(3)
26	C9	C3	C11	115.4(3)	61	C24	C23	C31	120.1(4)
27	C9	C3	C15	111.2(3)	62	C23	C24	C25	120.6(4)
28	C11	C3	C15	107.7(3)	63	C12	C25	C24	119.0(4)
29	Ru1	C4	N1	134.1(2)	64	C20	C26	C21	119.1(3)
30	Ru1	C4	C18	116.8(2)	65	C8	C28	C16	112.2(3)
31	N1	C4	C18	107.8(3)	66	C8	C28	C33	110.9(3)
32	C1	C5	C13	109.8(3)	67	C16	C28	C33	110.0(3)
33	C1	C5	C29	113.1(3)	68	C23	C31	C32	119.7(4)
34	C13	C5	C29	107.7(3)	69	C12	C32	C31	120.1(4)
35	C7	C6	C10	120.5(3)					

Table S5. Bond angles [°] of 10b.

4.4. Bond lengths and angles for *cis*-13a

Figure S55. ORTEP representation (50% probability ellipsoids) of complex cis-13a

Number	Atom1	Atom2	Length	Number	Atom1	Atom2	Length
1	Ru1	S1	2.3165(7)	20	C10	C24	1.394(5)
2	Ru1	Cl1	2.3689(7)	21	C12	C13	1.514(4)
3	Ru1	C13	2.3859(9)	22	C12	C44	1.530(4)
4	Ru1	C11	1.840(3)	23	C13	C34	1.391(5)
5	Ru1	C25	1.975(2)	24	C14	C28	1.387(4)
6	S1	C3	1.787(3)	25	C15	C25	1.542(4)
7	S1	C31	1.838(3)	26	C15	C35	1.528(3)
8	F1	C31	1.326(3)	27	C15	C40	1.554(5)
9	F3	C31	1.343(3)	28	C15	C41	1.528(5)
10	F5	C31	1.323(4)	29	C17	C18	1.509(4)
11	N1	C5	1.457(4)	30	C17	C38	1.526(4)
12	N1	C21	1.532(4)	31	C18	C27	1.397(5)
13	N1	C25	1.314(3)	32	C21	C41	1.539(5)
14	C2	C3	1.395(3)	33	C21	C45	1.510(4)
15	C2	C11	1.458(3)	34	C21	C47	1.520(4)
16	C2	C14	1.398(4)	35	C24	C28	1.383(4)
17	C3	C10	1.389(4)	36	C27	C36	1.379(4)
18	C5	C13	1.408(3)	37	C34	C36	1.372(4)
19	C5	C18	1.411(4)				

Table S6. Bond lengths [Å] of *cis*-13a.

Number	Atom1	Atom2	Atom3	Angle	Number	Atom1	Atom2	Atom3	Angle
1	S1	Ru1	Cl1	176.11(3)	33	C25	C15	C35	108.7(2)
2	S 1	Ru1	C13	94.69(3)	34	C25	C15	C40	113.2(2)
3	S1	Ru1	C11	84.17(8)	35	C25	C15	C41	102.4(2)
4	S1	Ru1	C25	93.72(7)	36	C35	C15	C40	107.5(3)
5	Cl1	Ru1	C13	85.63(3)	37	C35	C15	C41	114.2(3)
6	Cl1	Ru1	C11	92.28(8)	38	C40	C15	C41	110.9(3)
7	Cl1	Ru1	C25	88.32(7)	39	C18	C17	C38	115.8(3)
8	C13	Ru1	C11	119.30(8)	40	C5	C18	C17	124.2(2)
9	C13	Ru1	C25	142.92(8)	41	C5	C18	C27	117.6(3)
10	C11	Ru1	C25	97.5(1)	42	C17	C18	C27	118.0(3)
11	Ru1	S1	C3	100.27(9)	43	N1	C21	C41	100.5(2)
12	Ru1	S 1	C31	112.2(1)	44	N1	C21	C45	111.0(2)
13	C3	S1	C31	96.5(1)	45	N1	C21	C47	111.5(2)
14	C5	N1	C21	120.0(2)	46	C41	C21	C45	111.0(3)
15	C5	N1	C25	125.3(2)	47	C41	C21	C47	114.0(3)
16	C21	N1	C25	114.7(2)	48	C45	C21	C47	108.7(3)
17	C3	C2	C11	118.2(2)	49	C10	C24	C28	120.3(3)
18	C3	C2	C14	118.0(2)	50	Ru1	C25	N1	137.0(2)
19	C11	C2	C14	123.7(2)	51	Ru1	C25	C15	113.6(2)
20	S 1	C3	C2	113.0(2)	52	N1	C25	C15	109.1(2)
21	S1	C3	C10	124.2(2)	53	C18	C27	C36	121.2(3)
22	C2	C3	C10	122.7(2)	54	C14	C28	C24	121.1(3)
23	N1	C5	C13	118.6(2)	55	S 1	C31	F1	114.2(2)
24	N1	C5	C18	119.8(2)	56	S 1	C31	F3	109.6(2)
25	C13	C5	C18	121.6(2)	57	S 1	C31	F5	109.3(2)
26	C3	C10	C24	118.0(3)	58	F1	C31	F3	107.0(2)
27	Ru1	C11	C2	124.3(2)	59	F1	C31	F5	108.8(2)
28	C13	C12	C44	115.1(2)	60	F3	C31	F5	107.8(2)
29	C5	C13	C12	124.4(2)	61	C13	C34	C36	121.6(3)
30	C5	C13	C34	117.7(2)	62	C27	C36	C34	120.3(3)
31	C12	C13	C34	117.7(2)	63	C15	C41	C21	107.2(3)
32	C2	C14	C28	119.8(2)					

Table S7. Bond angles [°] of cis-13a

4.5. Bond lengths and angles for *cis*-13b

Figure S56. ORTEP representation (50% probability ellipsoids) of complex cis-13b

Table S8. Bond lengths [Å] of *cis*-13b.

Number	Atom1	Atom2	Length	Number	Atom1	Atom2	Length
1	Ru1	S1	2.3306(8)	21	C6	C11	1.518(4)
2	Ru1	Cl1	2.3779(9)	22	C6	C27	1.537(6)
3	Ru1	Cl2	2.3948(8)	23	C7	C19	1.393(5)
4	Ru1	C1	1.965(3)	24	C7	C22	1.387(5)
5	Ru1	C15	1.838(3)	25	C8	C10	1.387(5)
6	S1	C12	1.775(3)	26	C8	C12	1.390(5)
7	S1	C16	1.789(3)	27	C9	C13	1.390(5)
8	N1	C1	1.322(4)	28	C9	C25	1.379(5)
9	N1	C4	1.446(4)	29	C11	C23	1.387(5)
10	N1	C21	1.528(5)	30	C13	C28	1.512(5)
11	C1	C14	1.540(5)	31	C14	C17	1.549(4)
12	C2	C12	1.401(4)	32	C14	C24	1.522(5)
13	C2	C15	1.461(4)	33	C16	C19	1.388(5)
14	C2	C18	1.398(5)	34	C16	C29	1.388(5)
15	C3	C14	1.537(5)	35	C20	C22	1.385(5)
16	C3	C21	1.522(5)	36	C20	C29	1.387(5)
17	C4	C11	1.413(5)	37	C21	C26	1.530(5)
18	C4	C13	1.408(4)	38	C21	C30	1.530(5)
19	C5	C10	1.389(5)	39	C23	C25	1.386(5)
20	C5	C18	1.385(5)	40	C28	C32	1.528(5)

Number	Atom1	Atom2	Atom3	Angle	Number	Atom1	Atom2	Atom3	Angle
1	S 1	Ru1	Cl1	91.14(3)	34	C4	C11	C23	118.1(3)
2	S 1	Ru1	Cl2	175.66(3)	35	C6	C11	C23	117.5(3)
3	S1	Ru1	C1	90.08(8)	36	S1	C12	C2	113.7(2)
4	S1	Ru1	C15	83.8(1)	37	S1	C12	C8	124.8(2)
5	Cl1	Ru1	Cl2	88.63(3)	38	C2	C12	C8	121.4(3)
6	Cl1	Ru1	C1	145.67(8)	39	C4	C13	C9	117.7(3)
7	Cl1	Ru1	C15	114.3(1)	40	C4	C13	C28	123.1(3)
8	Cl2	Ru1	C1	92.55(8)	41	C9	C13	C28	119.1(3)
9	Cl2	Ru1	C15	92.3(1)	42	C1	C14	C3	101.7(3)
10	C1	Ru1	C15	99.9(1)	43	C1	C14	C17	108.2(3)
11	Ru1	S1	C12	99.6(1)	44	C1	C14	C24	114.2(3)
12	Ru1	S1	C16	115.7(1)	45	C3	C14	C17	112.8(3)
13	C12	S1	C16	104.2(1)	46	C3	C14	C24	111.6(3)
14	C1	N1	C4	124.6(3)	47	C17	C14	C24	108.2(3)
15	C1	N1	C21	114.4(3)	48	Ru1	C15	C2	124.5(2)
16	C4	N1	C21	120.9(3)	49	S1	C16	C19	123.7(2)
17	Ru1	C1	N1	136.4(2)	50	S1	C16	C29	115.4(2)
18	Ru1	C1	C14	114.7(2)	51	C19	C16	C29	120.9(3)
19	N1	C1	C14	108.9(2)	52	C2	C18	C5	120.6(3)
20	C12	C2	C15	117.3(3)	53	C7	C19	C16	118.8(3)
21	C12	C2	C18	118.5(3)	54	C22	C20	C29	120.0(3)
22	C15	C2	C18	124.2(3)	55	N1	C21	C3	100.6(3)
23	C14	C3	C21	107.0(3)	56	N1	C21	C26	111.8(3)
24	N1	C4	C11	120.1(3)	57	N1	C21	C30	111.2(3)
25	N1	C4	C13	118.8(3)	58	C3	C21	C26	112.8(3)
26	C11	C4	C13	121.2(3)	59	C3	C21	C30	112.2(3)
27	C10	C5	C18	119.8(3)	60	C26	C21	C30	108.2(3)
28	C11	C6	C27	114.0(3)	61	C7	C22	C20	120.0(3)
29	C19	C7	C22	120.6(3)	62	C11	C23	C25	121.7(3)
30	C10	C8	C12	118.7(3)	63	C9	C25	C23	119.1(3)
31	C13	C9	C25	122.2(3)	64	C13	C28	C32	114.0(3)
32	C5	C10	C8	121.1(3)	65	C16	C29	C20	119.7(3)
33	C4	C11	C6	124.2(3)					

Table S9. Bond angles [°] of cis-13b.

5. Computational data

5.1. Rotation of DiPP-CAAC around CCAAC-Ru axis

Figure S57. Full rotation diagram of DiPP-CAAC ligand around C_{CAAC}-Ru bond in complex *cis*-10a. Values in parentheses are relative Gibbs free energies of transition states and intermediates in kcal/mol and dihedral angles N-C_{CAAC}-Ru-C_{benzylidene} in °.

5.2. Relative energies of *cis*-Cl₂ isomers of the complexes 10 and 13

Figure S58. Structures of trans and cis isomers of S-chelated complexes bearing CAAC ligands.

Table S10. Computed relative energies of *trans*-Cl₂ isomers of of S-chelated complexes bearing CAAC ligands.

Complex	R ₁	R ₂	Relative energy of <i>trans</i> -Cl ₂ isomer (kcal/mol)
10a	<i>i</i> Pr	CF₃	-0.2
10b	<i>i</i> Pr	Ph	1.5
13a	Et	CF₃	3.5
13b	Et	Ph	5.6

5.3. Computational details

DFT optimizations and relaxed PES scan were performed using B97D3/Def2-SVP//MN15/Def2-TZVP under Gaussian 16.¹³ Intermediates and rate determining transition state were identified using frequency calculations. Solvent effects have been estimated in single point calculations based on PCM model for DCM.

5.4. XYZ parameters and SP energies

10a (*cis*-Cl₂)

E(RMN15) = -2855.02700977 A.U.

Ru	0.788134	-1.202656	-0.618376
Cl	-0.669574	-2.422783	-2.088265
С	0.533209	0.340665	-1.586690
С	1.154991	1.622022	-1.274765
С	2.003723	1.704494	-0.147284
С	0.938444	2.797306	-2.027698
С	2.585994	2.904299	0.263959
С	1.529091	4.005352	-1.638158
Н	0.292855	2.747852	-2.911006
С	2.344650	4.063211	-0.495145
Н	3.220879	2.940967	1.153751
Н	1.348894	4.913699	-2.224819
Н	2.798645	5.013125	-0.190210
S	2.159830	0.140278	0.739166
С	4.020506	-0.124746	0.521723
Н	-0.014201	0.275014	-2.539386
С	-0.715562	-1.175509	0.607665
Ν	-1.854750	-0.476584	0.686063
С	-0.740174	-2.332045	1.644519
С	-0.621233	-3.740407	1.022795
С	-2.097704	-2.101383	2.364016
С	0.428808	-2.139843	2.640739
С	-2.957245	-1.257851	1.408248
Н	-1.932714	-1.537790	3.299178
Н	-2.591105	-3.049693	2.629951
С	-3.700191	-2.161294	0.403469
С	-3.953314	-0.349837	2.123476
Н	-1.410782	-3.940329	0.285347
Н	-0.681490	-4.489861	1.832277
Н	0.344688	-3.867152	0.505846
Н	1.400328	-2.355129	2.165131
Н	0.298750	-2.839689	3.486156
Н	0.458403	-1.113028	3.043819
Н	-2.999469	-2.666651	-0.278554
Н	-4.417990	-1.590511	-0.200301

Н	-4.268878	-2.923802	0.963575
Н	-3.496185	0.190520	2.963669
Н	-4.773007	-0.969042	2.526438
Н	-4.394115	0.385758	1.429819
С	-2.448751	2.495905	-1.556408
С	-1.960151	3.525312	-0.750226
С	-1.529075	3.239538	0.546035
С	-1.552946	1.927638	1.050599
С	-1.985679	0.878477	0.188876
С	-2.471328	1.158540	-1.117607
С	-3.116171	0.110871	-2.015736
Н	-2.816939	2.728240	-2.561023
Н	-1.174133	4.052733	1.188065
С	-1.225070	1.728223	2.530830
Н	-2.825966	-0.878470	-1.636399
Н	-1.325304	0.655135	2.756087
Cl	2.535037	-2.684700	-1.201140
С	-2.663727	0.154225	-3.484198
Н	-3.180432	-0.641797	-4.048412
Н	-2.905257	1.115610	-3.973087
Н	-1.585430	-0.041269	-3.581795
С	-4.651338	0.269299	-1.944491
Н	-4.968869	1.210072	-2.430909
Н	-5.154052	-0.567014	-2.463279
Н	-5.019835	0.303058	-0.904726
С	-2.240253	2.499250	3.404789
Н	-2.136217	2.207174	4.465723
Н	-2.065663	3.588183	3.341225
Н	-3.281471	2.315322	3.093143
С	0.202818	2.141974	2.920221
Н	0.343560	2.036721	4.011344
Н	0.956192	1.515349	2.423556
Н	0.408111	3.193947	2.654562
F	4.418721	-0.071646	-0.743518
F	4.672848	0.844495	1.204478
F	4.334565	-1.299228	1.064724
Н	-1.925732	4.553758	-1.127927

TS1(10a)

E(RMN15) = -2854.98789415 A.U.

Ru	-0.376413	-1.741243	0.144456
Cl	0.386712	-3.612530	1.474686
С	-0.951645	-1.108661	1.797223
С	-1.657310	0.151786	1.958343
С	-2.037332	0.865292	0.794501
С	-1.995119	0.702381	3.216823
С	-2.713520	2.082951	0.859843
С	-2.672909	1.924122	3.294441
Н	-1.713420	0.158745	4.125987
С	-3.035464	2.610145	2.122534
Н	-2.987194	2.617990	-0.052358
Н	-2.926250	2.346664	4.273714
Н	-3.567993	3.565890	2.187897
S	-1.501003	0.080316	-0.738748
С	-3.227523	-0.337644	-1.414917
Н	-0.886374	-1.770876	2.674734
С	1.396283	-0.848780	-0.191995
Ν	1.734952	0.347410	-0.747798
С	2.484437	-1.888283	-0.633579
С	3.321030	-2.296651	0.604135
С	3.344901	-1.125351	-1.659072
С	1.951251	-3.160950	-1.339637
С	3.071238	0.372255	-1.498234
Н	3.052337	-1.433808	-2.676061
Н	4.418015	-1.353742	-1.548167
С	4.141217	1.110614	-0.683175
С	2.992267	1.001093	-2.893384
Н	3.919065	-1.455139	0.991823
Н	4.023463	-3.095342	0.305504
Н	2.671658	-2.689408	1.401519
Н	1.477283	-3.864352	-0.644020
Н	2.812133	-3.664631	-1.816902
Н	1.225052	-2.905613	-2.131154
Н	4.371184	0.600192	0.262019
Н	3.825084	2.143000	-0.458799
н	5.071338	1.159017	-1.274654
Н	2.165431	0.576128	-3.484533

Н	3.934381	0.756941	-3.415222
Н	2.907093	2.092782	-2.868750
С	0.768651	2.763530	1.970963
С	0.052150	3.738642	1.281511
С	-0.054969	3.645924	-0.105182
С	0.487929	2.568831	-0.829925
С	1.197136	1.557057	-0.110986
С	1.380692	1.687561	1.304428
С	2.326479	0.826734	2.145280
Н	0.882808	2.845165	3.056731
Н	-0.601870	4.421997	-0.649831
С	0.305455	2.627852	-2.346746
Н	2.769818	0.065984	1.492629
Н	0.642861	1.669430	-2.763542
Cl	-1.663265	-3.271456	-1.091775
С	1.659012	0.061792	3.297778
Н	2.432609	-0.418468	3.922822
Н	1.066716	0.729617	3.948041
Н	1.005670	-0.733191	2.914106
С	3.479716	1.697952	2.693718
Н	3.125724	2.361864	3.502563
Н	4.273345	1.055158	3.116289
Н	3.928698	2.335011	1.914193
С	1.158807	3.780977	-2.927590
Н	1.241868	3.695046	-4.026110
Н	0.687441	4.754606	-2.703091
Н	2.175063	3.815795	-2.500856
С	-1.150062	2.828395	-2.811821
Н	-1.187986	2.831491	-3.916005
Н	-1.811221	2.029623	-2.452691
Н	-1.561838	3.794956	-2.471211
F	-3.951749	-1.093071	-0.598349
F	-3.901836	0.824872	-1.605355
F	-3.085176	-0.922999	-2.600698
Η	-0.414982	4.570396	1.820315

10a'

E(RMN15) = -2854.99955554 A.U.

Ru	0.434700	-1.502880	-0.311820
Cl	0.464988	-3.585037	-1.497694
С	1.461855	-0.801401	-1.738956
С	2.463122	0.243531	-1.547103
С	2.525560	0.880100	-0.283686
С	3.312582	0.728772	-2.570087
С	3.347309	1.977330	-0.036997
С	4.156962	1.820415	-2.333828
Н	3.282267	0.248089	-3.555252
С	4.168244	2.451713	-1.077159
Н	3.349483	2.456406	0.947076
Н	4.804944	2.193520	-3.135456
Н	4.818009	3.317370	-0.903584
S	1.440704	0.163323	0.976838
С	2.810421	-0.852260	1.827839
Н	1.398680	-1.188212	-2.774122
С	-1.321526	-0.707767	-0.752477
Ν	-1.937575	0.329864	-0.167221
С	-2.309426	-1.379133	-1.744182
C	-1.678660	-1.436958	-3.151937
C	-3.511180	-0.397318	-1.734242
C	-2.756823	-2.799122	-1.328079
C	-3.456811	0.324188	-0.382234
H	-4.471830	-0.913328	-1.889807
Н	-3.397937	0.344330	-2.545240
C	-4.055362	1.729206	-0.420695
C	-4.140215	-0.491202	0.734965
Н	-1.271223	-0.455602	-3.452333
н	-2.461437	-1.721430	-3.878754
н	-0.873777	-2.186742	-3.184450
н	-1.901154	-3.487455	-1.311144
н	-3.493191	-3.157806	-2.069748
н	-3 226320	-2 815850	-0 335227
н	-3 687756	2 320355	-1 270524
н	-3 849160	2 284565	0 509040
н	-5 150280	1 635354	-0 524079
н	-3 570082	-1 395770	0 989943
н	-5 144743	-0 792698	0 391459
н	-4 266127	0 105383	1 648059
c	-0.001343	3 500739	0 141014
C	0.144051	3.627416	1.524996
c	-0 464586	2 698023	2 370312
c	-1 167177	1 588457	1 863490
C	-1.270882	1.455715	0.454517
c	-0 745997	2 449259	-0 422275
č	-1.049655	2.500676	-1.920606
н	0.447705	4.248917	-0.521074
н	-0.366439	2.810223	3.454855
C	-1.774018	0.601551	2.851491
	-		

Н	-1.783759	1.711865	-2.138841
Н	-2.107571	-0.277915	2.282588
Cl	-0.594525	-2.580969	1.615305
С	0.165910	2.226260	-2.816255
Н	-0.091691	2.403185	-3.876096
Н	1.021923	2.874382	-2.558443
Н	0.490922	1.183629	-2.716911
С	-1.695663	3.852070	-2.295840
Н	-0.955857	4.671868	-2.272039
Н	-2.104315	3.806470	-3.321559
Н	-2.513832	4.125002	-1.607537
С	-2.979272	1.244184	3.569495
Н	-3.510664	0.492927	4.181130
Н	-2.646326	2.053345	4.245074
Н	-3.701956	1.688766	2.863561
С	-0.762689	0.083497	3.888206
Н	-1.245165	-0.678082	4.525253
Н	0.092858	-0.402090	3.401456
Н	-0.394667	0.890896	4.547305
F	3.276143	-1.820456	1.025199
F	3.838673	-0.057075	2.169596
F	2.314100	-1.404314	2.933508
Н	0.718941	4.461676	1.944403

TS2(10a)

E(RMN15) = -2854.99936882 A.U.

Ru	0.434475	-1.499887	-0.294672
Cl	0.470565	-3.593872	-1.462537
С	1.479113	-0.825461	-1.722674
С	2.483715	0.217100	-1.536912
С	2.534604	0.875789	-0.284261
С	3.344605	0.682292	-2.559640
С	3.355899	1.975889	-0.049087
С	4.188341	1.776794	-2.334526
Н	3.323509	0.183853	-3.536177
С	4.188006	2.430411	-1.089307
Н	3.349325	2.472438	0.926282
Н	4.844973	2.134539	-3.136113
Н	4.837432	3.298061	-0.924656
S	1.435125	0.184987	0.978178
С	2.793183	-0.819539	1.859823
Н	1.427749	-1.231763	-2.750821
С	-1.313275	-0.707585	-0.768342
Ν	-1.939975	0.327352	-0.188097
С	-2.288171	-1.382939	-1.769083
С	-1.645862	-1.456235	-3.170078
С	-3.487462	-0.397852	-1.780636
С	-2.738713	-2.799314	-1.338808
С	-3.455100	0.325554	-0.429337
Н	-4.447176	-0.909857	-1.953473
Н	-3.356206	0.342438	-2.590178
С	-4.048983	1.732427	-0.480068
С	-4.163109	-0.485234	0.675294
Н	-1.252957	-0.473544	-3.485581
Н	-2.417620	-1.767772	-3.897670
Н	-0.828929	-2.193341	-3.182596
Н	-1.906632	-3.511090	-1.423969
Н	-3.561232	-3.118999	-2.003414
Н	-3.091736	-2.830180	-0.299140
Н	-3.663020	2.322654	-1.322292
Н	-3.860080	2.287349	0.453606

Н	-5.141821	1.641360	-0.605430
Н	-3.610495	-1.399557	0.932447
Н	-5.167218	-0.770858	0.317252
Н	-4.292102	0.108548	1.589646
С	-0.004028	3.495295	0.148346
С	0.118702	3.623511	1.534380
С	-0.505259	2.696101	2.370626
С	-1.200916	1.586877	1.853582
С	-1.282412	1.453067	0.443402
С	-0.741722	2.444740	-0.425935
С	-1.021102	2.495526	-1.929115
Н	0.457120	4.241851	-0.507223
Н	-0.424463	2.809338	3.456478
С	-1.822009	0.600432	2.832958
Н	-1.756895	1.711288	-2.157669
Н	-2.145477	-0.280428	2.259977
Cl	-0.583087	-2.572686	1.636520
С	0.206162	2.210399	-2.805179
Н	-0.032722	2.389792	-3.868979
Н	1.063988	2.850413	-2.533516
Н	0.519243	1.164653	-2.700776
С	-1.652305	3.850289	-2.317024
Н	-0.907736	4.665409	-2.283339
Н	-2.045079	3.805146	-3.348943
Н	-2.479450	4.129821	-1.642172
С	-3.038964	1.241677	3.532194
Н	-3.576744	0.490754	4.138650
Н	-2.717453	2.053610	4.209957
Н	-3.753058	1.682529	2.815252
С	-0.824399	0.087141	3.885416
Н	-1.308955	-0.685189	4.507703
Н	0.046671	-0.383514	3.411649
Н	-0.480001	0.894678	4.557042
F	3.260877	-1.805089	1.079878
F	3.822394	-0.021988	2.193500
F	2.286696	-1.347291	2.972575
Н	0.688100	4.457245	1.962231

10a"

E(RMN15) = -2855.02459080 A.U.

Ru	-0.409108	-0.511039	-1.014626
Cl	0.821421	-2.043722	-2.402984
С	-1.859694	-1.638161	-1.018441
С	-3.098957	-1.376529	-0.296226
С	-3.200378	-0.180790	0.455784
С	-4.197480	-2.266460	-0.279510
С	-4.330731	0.128854	1.214028
С	-5.341697	-1.963232	0.469132
Н	-4.137784	-3.194734	-0.860229
С	-5.411652	-0.771001	1.210994
Н	-4.377465	1.055460	1.793831
Н	-6.188127	-2.659720	0.476933
Н	-6.308907	-0.539582	1.796380
S	-1.690653	0.803851	0.416555
С	-2.421721	2.407880	-0.277821
Н	-1.840081	-2.511219	-1.695096
С	0.678020	-1.258887	0.454709
Ν	1.842245	-0.672330	0.760503
С	0.514937	-2.533126	1.295363
С	-0.709248	-2.331953	2.218835
С	1.826914	-2.558147	2.139437
С	0.317711	-3.817653	0.474084
С	2.825349	-1.634509	1.416110
Н	2.225596	-3.578192	2.256646
Н	1.629494	-2.161265	3.150514
С	3.807320	-0.932254	2.348747
С	3.596948	-2.409123	0.328723
Н	-0.659297	-1.368905	2.755750
Н	-0.735913	-3.143046	2.969031
Н	-1.648576	-2.359840	1.646716
Н	-0.584645	-3.743354	-0.151360
Н	0.195707	-4.671282	1.164983
Н	1.165381	-4.015288	-0.197112
Н	3.317116	-0.527924	3.245016

ы	1 227027	0 100 201	1 020400
Ц	4.527057	-0.109201	2 678744
ц	4.370332	-1.057050	-0.466806
н	1 093822	-2.703134	0.400800
ц	4.055022	-1 787/25	-0 12286/
C	1 447043	3 023275	1 084731
c	1 853168	3 165379	-0 178170
c	2 /13255	2 562789	-1 021120
c	2.413233	1 101760	-0 779757
c	2.020370	0 7//857	0.775757
c	1 530612	1 669044	1 ///10/
c	1 230342	1 282850	2 803763
н	1.250542	3 745567	1 809267
н	2 761022	2 018280	-2 055106
C	3 287564	0.2861/6	-2.033100
н	1 280/60	0.200140	2 96/1819
н	2 966042	-0 7/6792	-1 5/5865
CL	-0 602910	0.740752	-2 831284
C	-0 152754	1 708505	2.031204
н	-0 255812	1 423561	4 478370
н	-0 292164	2 802820	3 353303
н	-0.968212	1 238411	2 847413
c	2 323516	1 879212	3 810958
н	2.323310	2 976620	3 876961
н	2 238547	1 471111	4 834983
н	3 338890	1 672662	3 436084
C	4 798764	0 415178	-1 446999
н	5.374029	-0.309509	-2.051803
н	5.156024	1.430034	-1.701629
н	5.037077	0.244267	-0.382548
С	3.012740	0.558002	-3.226808
Н	3.485057	-0.233782	-3.834185
н	1.933568	0.553708	-3.439397
н	3.440718	1.523454	-3.555057
F	-3.220435	2.221726	-1.322561
F	-3.150504	2.992449	0.704560
F	-1.423310	3.227425	-0.595604
н	1.747071	4.521711	-0.450832

TS3

E(RMN15) = -2854.98402040 A.U.

Ru	-0.670576	0.524551	-0.533122
Cl	0.950745	0.654633	-2.238170
С	-1.297270	-1.036105	-1.325592
С	-2.531908	-1.714244	-0.963940
С	-3.368859	-1.122360	0.013749
С	-2.925337	-2.958072	-1.510789
С	-4.534120	-1.743982	0.467896
С	-4.094950	-3.587717	-1.068445
н	-2.293948	-3.424103	-2.276791
С	-4.897913	-2.985149	-0.083615
Н	-5.151026	-1.272408	1.238131
н	-4.386153	-4.556688	-1.490393
н	-5.811155	-3.483374	0.261527
S	-2.716860	0.417662	0.688030
C	-4.072916	1.562487	0.009240
H	-0.765443	-1.425202	-2.213278
C	0.517909	-0.511279	0.814569
N	1.850564	-0.647594	0.738036
C	0.047713	-1.196055	2.136698
c	-0.735276	-0.240390	3.067056
c	1 375963	-1 510714	2 866959
c	-0 795900	-2 460936	1 878170
c	2 446389	-1 613173	1 790177
н	1 310011	-2 421841	3 482989
н	1 625047	-0 674767	3 541822
c	3 823471	-1 167155	2 283527
c	2 523579	-3 055941	1 249984
н	-0 273368	0 760000	3 103551
н	-0 709999	-0 663634	4 087864
н	-1 789728	-0 123200	2 789947
н	-1 784155	-2 208666	1 473348
н	-0.952037	-2.200000	2 830831
н	-0 317311	-3 151989	1 167545
н	3 808371	-0 136176	2 666451
н	1 58/389	-1 221220	1 /10/12
н	4.129033	-1 839684	3 104557
н	1 622584	-3 331422	0 682495
н	2 608209	-3 742653	2 109813
н	2.000205	-3 219023	0.613726
r C	3 0/0336	2 21 21 22	-0.081670
c c	1 886633	1 780044	-0.081070
c c	4.000000	0.462006	-0.304042
c c	2 606870	-0.357010	-0.036326
c c	2.090079	0.100150	0.930320
c	2.795451	1 552604	0.012044
c	2.073332 1 853703	1.JJ2034	1 200050
с ц	1.0JZ/9Z	2.240203	1.300030
	4.U3/1U8	0.050200	0.222433
	J.43000/	0.059/90	-2.142023
C	2.202202	-1./40211	-1.331204

н	0.915444	1.657013	1.269975
н	2.681868	-2.227969	-1.100069
Cl	-1.244616	2.717988	-1.200786
С	1.484599	3.647444	0.792194
н	0.595347	4.021110	1.329102
Н	2.303248	4.370549	0.959338
Н	1.238956	3.619764	-0.280574
С	2.294614	2.309772	2.781561
Н	3.251941	2.854586	2.875785
Н	1.540265	2.839749	3.391084
н	2.436399	1.307732	3.217879
С	4.813327	-2.614145	-1.285648
Н	4.634261	-3.661902	-1.588906
Н	5.673800	-2.246101	-1.872423
Н	5.122857	-2.609566	-0.226425
С	3.299040	-1.694586	-3.070704
Н	3.196479	-2.722326	-3.466686
н	2.378478	-1.132752	-3.286940
Н	4.136717	-1.213556	-3.606948
F	-4.177141	1.539012	-1.314787
F	-5.255847	1.150040	0.522085
F	-3.847661	2.797525	0.444767
Н	5.712331	2.397523	-1.337076

10a‴

E(RMN15) = -2854.99323673 A.U.

Ru	0.645519	-0.825180	-0.530098
Cl	-0.844557	-1.168082	-2.316132
С	1.075169	0.877747	-1.213712
С	2.053544	1.756630	-0.593577
С	2.963300	1.182492	0.332186
С	2.166958	3.145993	-0.847682
С	3.934483	1.934823	0.995312
С	3.117458	3.915132	-0.166225
Н	1.488304	3.611026	-1.571846
С	4.003855	3.316154	0.749056
Н	4.627848	1.450548	1.691140
Н	3.180250	4.993322	-0.355139
Н	4.756090	3.923961	1.264500
S	2.729842	-0.582207	0.618566
С	4.007846	-1.220909	-0.637001
Н	0.741271	1.165549	-2.224581
С	-0.390013	-0.091802	0.977473
Ν	-1.587516	0.506004	0.858359
С	-0.046883	-0.195551	2.501946
С	0.255310	-1.657219	2.893779
С	-1.369611	0.274578	3.164931
С	1.136917	0.692407	2.961975
С	-2.038199	1.198936	2.144083
Н	-1.206313	0.769043	4.136055
Н	-2.024735	-0.595622	3.336513
С	-3.557290	1.268682	2.292725
С	-1.462569	2.628530	2.180162
Н	-0.582271	-2.326008	2.639187
Н	0.420113	-1.706371	3.985870
Н	1.147151	-2.045143	2.379612
Н	2.102128	0.184672	2.822613
н	1.039567	0.888183	4.043667
н	1.188155	1.660213	2.444007
н	-4.027058	0.277213	2.243739

Н	-4.012343	1.896678	1.510555
Н	-3.788435	1.716510	3.275342
Н	-0.403883	2.656201	1.885781
Н	-1.550207	3.032470	3.203857
Н	-2.016763	3.296008	1.506581
С	-4.401811	-1.033802	-1.021039
С	-4.791824	0.013780	-1.859849
С	-4.028645	1.182143	-1.905849
С	-2.901228	1.348093	-1.081425
С	-2.569560	0.307191	-0.186225
С	-3.281987	-0.926254	-0.179861
С	-2.866748	-2.150583	0.633929
Н	-4.968546	-1.971031	-1.029209
Н	-4.300122	1.977885	-2.608159
С	-2.031717	2.584065	-1.269455
Н	-1.879267	-1.942305	1.071403
Н	-1.168350	2.485369	-0.588533
Cl	1.019987	-3.189681	-0.359232
С	-2.680525	-3.391746	-0.260660
Н	-2.220978	-4.206045	0.326509
Н	-3.649340	-3.758517	-0.646601
Н	-2.019528	-3.166089	-1.110366
С	-3.839973	-2.472034	1.783741
Н	-4.854916	-2.677110	1.396953
Н	-3.501286	-3.372129	2.328209
Н	-3.923604	-1.651348	2.515967
С	-2.776797	3.893009	-0.947563
Н	-2.087882	4.756661	-0.989459
Н	-3.583799	4.076091	-1.679591
Н	-3.245169	3.875031	0.051446
С	-1.486738	2.625822	-2.713349
Н	-0.693719	3.390055	-2.811356
Н	-1.086304	1.642556	-3.008323
Н	-2.286280	2.888626	-3.429143
F	3.618990	-1.029339	-1.901824
F	5.165715	-0.563235	-0.449451
F	4.210414	-2.515794	-0.423174
Н	-5.672184	-0.095539	-2.504153

E(RMN15) = -2854.99044971 A.U.

Ru	0.706255	-0.893358	-0.585215
Cl	-0.768334	-1.184173	-2.390208
С	0.954758	0.870371	-1.146886
С	1.947445	1.774633	-0.576332
С	2.771358	1.304962	0.478842
С	2.150977	3.112903	-0.994698
С	3.660493	2.127665	1.172636
С	3.041128	3.950747	-0.311938
Н	1.603169	3.487423	-1.862252
С	3.778160	3.473619	0.786162
Н	4.273999	1.717788	1.981671
Н	3.168597	4.988249	-0.642932
Н	4.467753	4.136982	1.320359
S	2.663492	-0.461620	0.769392
С	4.193246	-0.941898	-0.251913
Н	0.451186	1.200401	-2.072392
С	-0.557512	-0.558717	0.885774
Ν	-1.653434	0.227516	0.932889
С	-0.471402	-1.370415	2.227032
С	-0.533234	-2.883126	1.910254
С	-1.744598	-0.902864	2.985610
С	0.781909	-1.128917	3.097744
С	-2.137878	0.442821	2.362029
Н	-1.573606	-0.814034	4.069919
Н	-2.563599	-1.627054	2.842283
С	-3.634841	0.724805	2.456437
С	-1.334910	1.600595	2.988302
Н	-1.422213	-3.143107	1.317262
Н	-0.571564	-3.445785	2.861135
Н	0.354155	-3.207105	1.342138
Н	1.647390	-1.694906	2.729088
Н	0.573398	-1.485885	4.121288
Н	1.067767	-0.066596	3.164503
Н	-4.234436	-0.120182	2.093906
Н	-3.922979	1.618650	1.882110
Н	-3.893189	0.898035	3.515580
Н	-0.255152	1.480900	2.810303
Н	-1.508026	1.623295	4.078418
Н	-1.637889	2.572835	2.577861
С	-4.151140	-0.163000	-1.821337
С	-4.112135	1.084066	-2.442517
С	-3.293805	2.085643	-1.918676
С	-2.472452	1.857313	-0.798672
С	-2.486486	0.568127	-0.209299
С	-3.363399	-0.447743	-0.693438
С	-3.574102	-1.803016	-0.018421
Н	-4.804931	-0.945267	-2.220857
Н	-3.289005	3.071765	-2.392673

С	-1.661195	3.028581	-0.256887
Н	-2.995929	-1.801478	0.914119
н	-0.845684	2.614195	0.362140
Cl	1.643472	-3.019799	-1.114687
С	-3.090737	-3.008858	-0.844935
н	-3.332247	-3.945774	-0.309366
Н	-3.593423	-3.043113	-1.827774
н	-2.009308	-2.967493	-1.035321
С	-5.057486	-2.003141	0.365803
н	-5.679247	-2.195296	-0.526488
Н	-5.163026	-2.877793	1.033345
н	-5.484806	-1.123434	0.877723
С	-2.543470	3.950792	0.613173
н	-1.938704	4.755325	1.070776
Н	-3.324477	4.424156	-0.008934
н	-3.059341	3.408744	1.420479
С	-1.033125	3.881953	-1.373017
н	-0.300833	4.588359	-0.946557
Н	-0.529373	3.258097	-2.127153
Н	-1.796723	4.484447	-1.895625
F	4.042156	-0.705993	-1.554515
F	5.240616	-0.213440	0.183194
F	4.461883	-2.225610	-0.042305
н	-4.727373	1.281236	-3.328252

10a (trans-Cl₂)

E(RMN15) = -2855.02779846 A.U

Ru	-0.596610	-0.925105	-0.477075
Cl	-0.784304	-1.980304	1.625700
С	-0.736963	0.880233	-0.186000
С	-1.950650	1.659414	-0.391319
С	-3.193509	1.040252	-0.681156
С	-1.908451	3.074941	-0.356865
С	-4.342845	1.789315	-0.950312
С	-3.057929	3.830602	-0.611339
Н	-0.953088	3.564981	-0.133078
С	-4.274290	3.192041	-0.908325
Н	-5.284474	1.282336	-1.183032
Н	-3.008269	4.925436	-0.584295
Н	-5.172725	3.785118	-1.114175
S	-3.207807	-0.753318	-0.706805
С	-4.110279	-1.019532	0.903567
Н	0.141238	1.483039	0.078669
Cl	-0.825400	-0.939032	-2.821827
С	1.316884	-1.159558	-0.368488
Ν	2.302620	-0.460876	0.218573
С	1.912501	-2.499110	-0.868873
С	0.951777	-3.695063	-0.750542
С	3.151898	-2.661191	0.035808
С	2.308975	-2.346207	-2.358873
С	3.599755	-1.238438	0.429603
Н	3.962121	-3.225017	-0.456183
н	2.860097	-3.211932	0.946289
С	4.037357	-1.183777	1.895880
С	4.741022	-0.681310	-0.434012
н	0.611795	-3.842293	0.285273
н	1.462745	-4.610772	-1.098788
н	0.062175	-3.554555	-1.391853
н	1.425344	-2.119849	-2.974870
Н	2.758295	-3.293851	-2.706539
н	3.045934	-1.545393	-2.519652
н	3.253715	-1.568495	2.564951
Н	4.299179	-0.157579	2.200462
н	4.935170	-1.814284	2.019637
Н	4.532284	-0.745276	-1.510342
Н	5.658771	-1.259604	-0.232013
Н	4.941974	0.371951	-0.178188
С	2.048322	2.783041	2.104393
С	2.388109	3.698182	1.105651
С	2.612626	3.244163	-0.196851
С	2.551875	1.875550	-0.515684
С	2.271006	0.950599	0.531233
С	1.960119	1.401639	1.844263
С	1.399788	0.506413	2.945442
Н	1.818653	3.147260	3.111412

Н	2.827852	3.966503	-0.991578
С	2.677137	1.474764	-1.982613
н	1.386271	-0.528931	2.572069
н	2.686251	0.378339	-2.034378
С	1.442622	1.942116	-2.780398
н	1.524898	1.614847	-3.832027
н	0.515373	1.508526	-2.377517
н	1.355304	3.044065	-2.769800
С	3.969995	1.994626	-2.637926
н	4.073741	1.576213	-3.655324
Н	3.958893	3.095037	-2.738064
н	4.868832	1.720669	-2.060673
С	-0.066886	0.886146	3.243656
н	-0.487994	0.196546	3.995083
н	-0.140455	1.915493	3.639911
н	-0.694953	0.808888	2.343677
С	2.220736	0.566087	4.247930
н	3.290935	0.359635	4.085415
Н	2.142714	1.559569	4.726079
н	1.834975	-0.175063	4.970723
Н	2.451751	4.768443	1.336138
F	-5.403425	-0.645815	0.778440
F	-4.077113	-2.324411	1.184121
F	-3.591368	-0.323452	1.917863

10b (trans-Cl₂)

E(RMN15) = -2788.23669904 A.U.

Ru	-0.636623	-0.199966	-0.021426
Cl	-1.334595	-0.373280	2.235556
С	0.172054	1.444035	0.089107
С	-0.545818	2.708087	0.157711
С	-1.953221	2.753725	-0.038615
С	0.133465	3.915590	0.454912
С	-2.656911	3.958454	0.079661
С	-0.571850	5.115154	0.590919
Н	1.221010	3.884578	0.594854
С	-1.966746	5.135997	0.410502
н	-3.738141	3.985848	-0.096181
н	-0.038116	6.040458	0.837095
Н	-2.519601	6.077388	0.511508
S	-2.709150	1.218770	-0.551485
С	-4.065419	0.980042	0.702889
Н	1.262942	1.534367	0.181591
Cl	-0.749027	-0.710124	-2.334289
С	0.905800	-1.370638	0.097844
Ν	2.215518	-1.214681	-0.159555
С	0.645375	-2.879309	0.336883
С	0.678726	-3.163722	1.859383
С	1.835948	-3.537275	-0.391463
С	-0.707190	-3.371226	-0.207972
С	2.990111	-2.514480	-0.360805
н	1.551856	-3.728747	-1.440322
Н	2.128824	-4.499680	0.060944
С	4.000524	-2.750619	0.771302
С	3.751555	-2.501968	-1.689068
Н	1.633750	-2.875704	2.323702
Н	0.536416	-4.247325	2.022889
н	-0.123538	-2.612633	2.373124
Н	-1.549027	-2.869558	0.303491
Н	-0.809326	-4.454681	-0.015417
Н	-0.803802	-3.184786	-1.287788
Н	3.522789	-2.835716	1.756556
Н	4.738140	-1.932257	0.809170
Н	4.546459	-3.689662	0.576783
Н	3.075132	-2.331677	-2.539528
Н	4.237207	-3.483903	-1.827109
Н	4.538857	-1.730879	-1.695100
С	4.154087	1.691951	1.182985
С	4.518205	2.359437	0.010631
С	4.042220	1.898373	-1.218565
С	3.233147	0.749643	-1.315775
С	2.941404	0.035751	-0.120189
С	3.357489	0.533017	1.149063
С	2.893350	-0.054066	2.478784
Н	4.482083	2.083747	2.151884

н	4.281430	2.455623	-2.130622
С	2.610645	0.433797	-2.672279
Н	2.332810	-0.973718	2.265177
Н	2.008162	-0.481482	-2.568871
С	1.635360	1.559111	-3.079262
Н	1.136247	1.299765	-4.028548
Н	0.848928	1.699128	-2.322471
Н	2.167286	2.518200	-3.218228
С	3.655283	0.230777	-3.786453
н	3.155966	-0.099007	-4.715223
Н	4.184705	1.173126	-4.017732
Н	4.416731	-0.520952	-3.522910
С	1.912873	0.907528	3.180992
Н	1.533545	0.449504	4.111480
Н	2.409841	1.859223	3.444587
Н	1.040597	1.127283	2.547750
С	4.059874	-0.407546	3.420054
Н	4.808783	-1.053856	2.933288
Н	4.581396	0.500031	3.774381
Н	3.679490	-0.934598	4.313744
Н	5.149612	3.254864	0.057839
Н	-4.704559	1.876729	0.664519
Н	-3.574162	0.891533	1.684184
С	-4.818241	-0.263740	0.314168
С	-5.893266	-0.195441	-0.593952
С	-4.411716	-1.523300	0.798517
С	-6.558886	-1.359593	-1.000465
Н	-6.205199	0.779944	-0.988322
С	-5.076584	-2.687705	0.389552
Н	-3.566288	-1.575089	1.492972
С	-6.150483	-2.610041	-0.510218
н	-7.396229	-1.291841	-1.705289
н	-4.751112	-3.661638	0.774669
н	-6.668103	-3.521935	-0.831364

10b (*cis*-Cl₂)

E(RMN15) = -2788.23903903 A.U.

Ru	-0.366719	-1.458197	0.059701
Cl	0.477259	-2.367757	2.111267
С	-0.847189	0.105135	0.921410
С	-1.503326	1.237253	0.274871
С	-1.803003	1.136191	-1.101639
С	-1.854954	2.429945	0.943211
С	-2.362786	2.191185	-1.820574
С	-2.426271	3.494771	0.235539
Н	-1.663762	2.510856	2.018321
С	-2.662952	3.387354	-1.144995
Н	-2.581023	2.079091	-2.888634
Н	-2.685691	4.420928	0.761620
Н	-3.103033	4.227445	-1.694964
S	-1.530824	-0.502391	-1.790317
С	-3.338965	-1.121998	-1.680801
Н	-0.780954	0.153456	2.019859
С	1.432658	-1.034902	-0.438004
Ν	2.313005	-0.078835	-0.098169
С	2.160791	-2.133931	-1.275042
С	2.187996	-3.533755	-0.622954
С	3.586614	-1.533265	-1.418365
С	1.482250	-2.251423	-2.659635
С	3.759209	-0.546217	-0.253945
Н	3.666560	-0.985476	-2.374107
Н	4.364154	-2.313682	-1.416119
С	4.214817	-1.274081	1.028032
С	4.724326	0.597014	-0.560790
Н	2.639402	-3.520735	0.378442
Н	2.777185	-4.206967	-1.271501
Н	1.172424	-3.946408	-0.522802
Н	0.496043	-2.735939	-2.572757
Н	2.116974	-2.869676	-3.320682
Н	1.347872	-1.263705	-3.132999
Н	3.433497	-1.947300	1.410744
Н	4.475506	-0.562904	1.823096
Н	5.118026	-1.867247	0.802070
Н	4.540200	1.049809	-1.544505
н	5.753974	0.199948	-0.559529
Н	4.665420	1.387913	0.205596

C 1.011570 3.840407 0.8844 C 1.209952 3.463173 -0.4450 C 1.692492 2.185263 -0.7738 C 1.928708 1.260029 0.2827 C 1.766427 1.638299 1.6426 C 2.169782 0.747407 2.8113 H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.513912 0.903585 -2.2722 C -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 0.528178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.921903 0.525787 4.1137 H 3.921903 0.525787 4.1137 H 3.460814 2.604891 -3.7410 H 3.460814 2.604891 -3.7410
C 1.209952 3.463173 -0.4450 C 1.692492 2.185263 -0.7738 C 1.928708 1.260029 0.2827 C 1.766427 1.638299 1.6426 C 2.169782 0.747407 2.8113 H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.513912 0.903585 -2.2723 C 1.490993 -3.565873 -0.394 C 1.490993 -3.565873 -0.394 C 1.490993 -3.565873 -0.394 C 1.40866 0.672146 3.9512 H 0.524781 1.662469 4.3936 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.921903 0.525787 4.1137 H 3.921903 0.525787 4.1137
C 1.692492 2.185263 -0.7738 C 1.928708 1.260029 0.2827 C 1.766427 1.638299 1.6426 C 2.169782 0.747407 2.8113 H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4289 H 2.513912 0.903585 -2.2727 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9077
C 1.928708 1.260029 0.2827 C 1.766427 1.638299 1.6426 C 2.169782 0.747407 2.8113 H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4289 H 2.513912 0.903585 -2.2727 C -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 0.524585 1.241906 3.3733 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.921903 0.525787 4.1133 H 3.921903 0.525787 4.1133 H 3.460814 2.604891 -3.7410 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.460814 2.604891 -3.7410
C 1.766427 1.638299 1.6426 C 2.169782 0.747407 2.8113 H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4283 H 2.513912 0.903585 -2.2727 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 0.534953 0.027696 4.7565 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6166 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9077
C 2.169782 0.747407 2.8113 H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4289 H 2.513912 0.903585 -2.2722 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6166 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.291903 0.525787 4.1137 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9075 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9075
H 1.181108 3.254545 2.9530 H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4283 H 2.513912 0.903585 -2.2723 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7569 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9077 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2165 <tr< td=""></tr<>
H 0.994345 4.177308 -1.2469 C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4289 H 2.513912 0.903585 -2.2727 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7569 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.99370 2.218194 3.8778 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9077 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163
C 2.039706 1.895150 -2.2347 H 2.278924 -0.277390 2.4283 H 2.513912 0.903585 -2.2727 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7563 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6166 C 3.521555 1.241906 3.3733 H 3.99370 2.218194 3.8778 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5813 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717
H 2.278924 -0.277390 2.4283 H 2.513912 0.903585 -2.2723 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7565 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6166 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1133 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1713 H 1.158077 1.697015 -4.2163 <tr< td=""></tr<>
H 2.513912 0.903585 -2.272 CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7565 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6166 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8776 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9075 H 3.906665 3.063549 -2.0682 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2165 H 0.158407 1.001629 -2.9177 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
CI -1.490993 -3.565873 -0.394 C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7563 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.99370 2.218194 3.8776 H 3.921903 0.525787 4.1137 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
C 1.140866 0.672146 3.9512 H 1.534953 0.027696 4.7569 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1133 H 4.277669 1.380189 2.5815 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
H 1.534953 0.027696 4.7569 H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1133 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
H 0.928178 1.662469 4.3936 H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1133 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1713 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
H 0.198025 0.215341 3.6160 C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9077 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9177 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
C 3.521555 1.241906 3.3733 H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9077 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9177 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1209
H 3.399370 2.218194 3.8778 H 3.921903 0.525787 4.1137 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1209
H 3.921903 0.525787 4.113 H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
H 4.277669 1.380189 2.5819 C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
C 3.060425 2.926786 -2.7624 H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.907 H 3.906665 3.063549 -2.068 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.216 H 0.158407 1.001629 -2.9177 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
H 3.460814 2.604891 -3.7410 H 2.589202 3.915367 -2.9073 H 3.906665 3.063549 -2.0683 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1209
H 2.589202 3.915367 -2.907 H 3.906665 3.063549 -2.068 C 0.824732 1.837819 -3.171 H 1.158077 1.697015 -4.216 H 0.158407 1.001629 -2.917 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1209
H 3.906665 3.063549 -2.068 C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.216 H 0.158407 1.001629 -2.9177 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1209
C 0.824732 1.837819 -3.1717 H 1.158077 1.697015 -4.216 H 0.158407 1.001629 -2.9177 H 0.231799 2.767849 -3.124 H 0.629125 4.840175 1.1209
H 1.158077 1.697015 -4.2163 H 0.158407 1.001629 -2.9173 H 0.231799 2.767849 -3.1244 H 0.629125 4.840175 1.1205
H 0.158407 1.001629 -2.917 H 0.231799 2.767849 -3.124 H 0.629125 4.840175 1.1209
H 0.231799 2.767849 -3.124 H 0.629125 4.840175 1.1209
H 0.629125 4.840175 1.1209
H -3.800016 -0.765042 -2.615
H -3.201965 -2.214769 -1.699
C -4.049331 -0.623194 -0.462
C -4.829604 0.548994 -0.5300
C -3.878370 -1.250732 0.7898
C -5.397992 1.102387 0.6233
H -4.978924 1.040516 -1.498
C -4.448353 -0.697842 1.9442
C -4.448353 -0.697842 1.944 H -3.286552 -2.168932 0.852
C -4.448353 -0.697842 1.944 H -3.286552 -2.168932 0.852 C -5.198806 0.485499 1.8680
C -4.448353 -0.697842 1.9443 H -3.286552 -2.168932 0.852 C -5.198806 0.485499 1.8680 H -5.991408 2.021525 0.5513
C -4.448353 -0.697842 1.9443 H -3.286552 -2.168932 0.852 C -5.198806 0.485499 1.8680 H -5.991408 2.021525 0.5513 H -4.297881 -1.195357 2.909

13a (trans-Cl₂)

E(RMN15) = -2776.47821128 A.U.

Ru	-0.408597	-0.914187	-0.263370
Cl	-0.844370	-2.284758	1.583317
С	-0.628518	0.782659	0.398758
С	-1.809976	1.606259	0.177501
С	-2.972882	1.081226	-0.442375
С	-1.801745	2.982724	0.512521
С	-4.074676	1.887903	-0.741481
С	-2.905011	3.793361	0.225651
Н	-0.904036	3.401691	0.982630
С	-4.040519	3.250619	-0.400505
Н	-4.954140	1.454797	-1.228234
Н	-2.881070	4.858413	0.484414
Н	-4.901733	3.888622	-0.629788
S	-2.944339	-0.667835	-0.837950
С	-4.090643	-1.254002	0.512472
Н	0.158938	1.273891	0.985147
Cl	-0.347916	-0.499934	-2.601512
С	1.521045	-1.070136	-0.236452
Ν	2.509145	-0.164219	-0.172900
С	2.158942	-2.446424	-0.547588
С	2.357330	-3.228852	0.774259
С	3.513633	-2.046527	-1.176429
С	1.314303	-3.312361	-1.498446
С	3.884958	-0.668269	-0.589769
Н	3.387829	-1.949933	-2.268460
Н	4.299921	-2.797542	-0.992201
С	4.842788	-0.734023	0.612174
С	4.509876	0.242643	-1.654607
Н	2.980456	-2.682476	1.498136
Н	2.861000	-4.186039	0.548215
Н	1.388724	-3.434319	1.253927

Н	0.344578	-3.575009	-1.036579
Н	1.845326	-4.259208	-1.704262
Н	1.114891	-2.795995	-2.449834
Н	4.499576	-1.428187	1.391199
Н	4.968279	0.263673	1.065510
Н	5.832817	-1.076163	0.265185
Н	3.879018	0.306755	-2.552829
Н	5.485123	-0.181928	-1.950522
Н	4.686024	1.260083	-1.267197
С	2.425592	2.642859	2.286247
С	2.301952	3.751101	1.442621
С	2.163578	3.560102	0.064439
С	2.185335	2.272671	-0.505925
С	2.383863	1.167270	0.361331
С	2.454397	1.333898	1.770109
С	2.462076	0.174793	2.748879
Н	2.493226	2.786151	3.371177
Н	2.026188	4.427191	-0.591096
С	1.924159	2.124332	-1.992331
Н	2.561195	-0.775912	2.211852
Н	1.846375	1.058739	-2.249382
С	0.639419	2.819572	-2.466521
Н	0.500952	2.655939	-3.549078
Н	-0.238842	2.395853	-1.955434
Н	0.656679	3.909460	-2.287499
С	1.193267	0.105318	3.615814
Н	1.272728	-0.724162	4.340550
Н	1.031285	1.038976	4.183322
Н	0.304550	-0.090224	2.994518
Н	2.295155	4.764541	1.861562
F	-5.357535	-0.861682	0.250343
F	-4.059125	-2.589499	0.524340
F	-3.768387	-0.782294	1.718463
Н	3.353017	0.266137	3.400113
Н	2.788698	2.534008	-2.550357

13a (*cis*-Cl₂)

E(RMN15) = -2776.48377206 A.U.

Ru	0.570932	-1.190313	-0.662717
CL	-0.870252	-2.227167	-2.271265
C	0.367923	0.427650	-1.521461
c	1.011459	1.667503	-1.100752
c	1.851882	1.645022	0.037034
C	0.810516	2.906141	-1.748951
С	2.445104	2.799109	0.550645
С	1.407223	4.070912	-1.251215
н	0.167145	2.941510	-2.634576
С	2.218749	4.022471	-0.105487
н	3.078366	2.750872	1.441212
н	1.234090	5.028737	-1.755398
н	2.679531	4.937912	0.283028
S	2.000134	0.013508	0.797488
С	3.843024	-0.274584	0.469572
н	-0.167074	0.444494	-2.485694
С	-0.939085	-1.145438	0.542764
Ν	-1.982556	-0.325237	0.687592
С	-1.104989	-2.371312	1.479074
С	-1.270624	-3.705645	0.718510
С	-2.370649	-1.986822	2.296522
С	0.126378	-2.491364	2.406742
С	-3.141036	-0.952012	1.458102
Н	-2.066042	-1.522254	3.250810
Н	-2.990294	-2.866043	2.535304
С	-4.113055	-1.623070	0.468776
С	-3.909233	0.068891	2.299263
Н	-2.105189	-3.681049	0.003947
Н	-1.448774	-4.510218	1.454363
Н	-0.361098	-3.947753	0.145746
Н	1.022437	-2.793899	1.838633

Н	-0.072121	-3.263089	3.172403
Н	0.342482	-1.540482	2.923229
Н	-3.577891	-2.222165	-0.282649
Н	-4.721561	-0.873393	-0.058764
Н	-4.800125	-2.281830	1.027835
Н	-3.279537	0.546186	3.065732
Н	-4.734490	-0.450456	2.816448
Н	-4.347465	0.858633	1.666538
С	-2.678979	2.803133	-1.268417
С	-2.143383	3.758220	-0.402960
С	-1.511012	3.359110	0.780430
С	-1.432310	2.002765	1.130008
С	-2.019227	1.048938	0.253231
С	-2.624165	1.426275	-0.968525
С	-3.172999	0.408524	-1.947444
Н	-3.143660	3.125109	-2.205735
Н	-1.061548	4.115009	1.429507
С	-0.706429	1.551480	2.383434
Н	-2.693934	-0.563878	-1.756706
Н	0.083980	0.842277	2.082444
Cl	2.215116	-2.825935	-1.146671
С	-2.979421	0.753329	-3.428684
Н	-3.265037	-0.111257	-4.051770
Н	-3.588062	1.616480	-3.753102
Н	-1.921918	0.980630	-3.650510
С	-0.085742	2.646194	3.248330
Н	0.435013	2.196677	4.111768
Н	0.654285	3.238780	2.683379
Н	-0.848700	3.341747	3.642208
F	4.159933	-0.202267	-0.818176
F	4.549879	0.672313	1.126828
F	4.173320	-1.462382	0.968511
Н	-2.195926	4.822568	-0.660855
Н	-4.255456	0.274391	-1.755293
Н	-1.387078	0.941339	3.002326

13b (trans-Cl₂)

E(RMN15) = -2709.68781425 A.U.

Ru	0.135138	-1.019873	-0.251885
Cl	-0.320444	-2.271616	1.693770
С	-0.216243	0.700353	0.279859
С	-1.438597	1.422893	-0.044427
С	-2.529808	0.759802	-0.663524
С	-1.540213	2.817855	0.181266
С	-3.669091	1.461125	-1.070959
С	-2.684286	3.519743	-0.214769
Н	-0.695521	3.337796	0.649334
С	-3.745786	2.845862	-0.842874
Н	-4.496383	0.928047	-1.549412
Н	-2.748711	4.600637	-0.042148
Н	-4.640497	3.396705	-1.155290
S	-2.380890	-1.010815	-0.873981
С	-3.378868	-1.584404	0.604497
Н	0.516770	1.282599	0.854407
Cl	0.312157	-0.772527	-2.603524
С	2.074159	-1.059081	-0.111804
Ν	3.007726	-0.094263	-0.065836
С	2.808991	-2.411422	-0.285060
С	2.975319	-3.081130	1.101538
С	4.172703	-1.978781	-0.870626
С	2.070921	-3.394966	-1.209397
С	4.430437	-0.540679	-0.373833
н	4.104581	-1.971875	-1.972027
Н	4.989084	-2.664315	-0.587543
С	5.324627	-0.459173	0.875476
С	5.058369	0.326490	-1.473032
Н	3.532077	-2.449818	1.810415
Н	3.536267	-4.025124	0.976881
н	1.993769	-3.299859	1.548150
Н	1.093765	-3.682699	-0.779104
н	2.666393	-4.319828	-1.315935
н	1.894435	-2.961679	-2.205703
Н	4.979676	-1.113868	1.687355
Н	5.367960	0.574917	1.257007
Н	6.350142	-0.764679	0.605658
Н	4.471672	0.287758	-2.402162
н	6.070226	-0.058642	-1.689713
Н	5.156202	1.378118	-1.155321
С	2.635786	2.872211	2.170120
С	2.497323	3.908211	1.241307
С	2.443623	3.610833	-0.123799
С	2.566393	2.289268	-0.594766
С	2.778785	1.261876	0.360615
С	2.763936	1.533803	1.754666
С	2.782925	0.450142	2.816280
Н	2.637236	3.096451	3.243465

Н	2.293650	4.418963	-0.848301
С	2.391189	2.019848	-2.076611
Н	2.959063	-0.529359	2.356276
Н	2.386097	0.935742	-2.256975
С	1.095086	2.601993	-2.660073
Н	1.018707	2.349822	-3.731746
Н	0.216926	2.167886	-2.157433
Н	1.044696	3.701520	-2.565513
С	1.476883	0.372158	3.625070
Н	1.560121	-0.401097	4.409283
Н	1.240317	1.332376	4.117272
Н	0.632227	0.088611	2.976702
Н	2.412374	4.946966	1.582621
Н	3.633188	0.637479	3.500640
Н	3.258981	2.439596	-2.622208
Н	-3.348876	-2.682044	0.503325
Н	-2.805579	-1.308967	1.502007
С	-4.771379	-1.034230	0.594652
С	-5.751166	-1.550725	-0.277715
С	-5.101670	0.064945	1.410484
С	-7.030202	-0.982850	-0.330319
Н	-5.497533	-2.395997	-0.929269
С	-6.382734	0.633254	1.362047
Н	-4.338897	0.483974	2.077195
С	-7.349534	0.112937	0.489669
Н	-7.782930	-1.395150	-1.013013
Н	-6.623068	1.490033	2.002747
Н	-8.350927	0.557769	0.447602

13b (*cis*-Cl₂)

E(RMN15) = -2709.69675624 A.U.

Ru	0.298265	-0.597840	-1.220380
Cl	-1.008913	-2.185810	-2.467964
С	-0.914045	0.734172	-1.570170
С	-0.744448	2.126714	-1.172583
С	0.422190	2.482353	-0.453125
С	-1.684548	3.139479	-1.466762
С	0.651993	3.793279	-0.027315
С	-1.460844	4.456139	-1.047815
Н	-2.591528	2.874377	-2.020777
С	-0.295586	4.785740	-0.333335
Н	1.553268	4.044132	0.544041
Н	-2.197541	5.234735	-1.277263
Н	-0.124193	5.818131	-0.006852
S	1.481197	1.094322	-0.034322
С	3.134041	1.570087	-0.782379
Н	-1.759286	0.503301	-2.239985
С	-0.453558	-1.370559	0.387066
Ν	-1.600655	-1.177105	1.048172
С	0.328212	-2.537676	1.042026
С	0.499575	-3.753393	0.105463
С	-0.539697	-2.858267	2.291549
С	1.732433	-2.050146	1.467859
С	-1.949868	-2.315556	1.998797
Н	-0.127510	-2.331571	3.170024
Н	-0.552949	-3.935775	2.522329
С	-2.820845	-3.353756	1.264846
С	-2.692841	-1.834853	3.246511
Н	-0.460612	-4.132813	-0.271445
Н	1.016077	-4.558863	0.658006
Н	1.105487	-3.489602	-0.776819
Н	2.370698	-1.841456	0.593046
Н	2.226031	-2.836707	2.067137
Н	1.681870	-1.131919	2.076859
Н	-2.418735	-3.589210	0.268313
Н	-3.851792	-2.989491	1.141538
Н	-2.860355	-4.281079	1.862622

н	-2.093364	-1.138551	3.852680
Н	-2.932133	-2.709725	3.875547
Н	-3.640602	-1.338166	2.979230
С	-4.292708	1.263209	0.096184
С	-3.944932	2.344719	0.907039
С	-2.808348	2.275708	1.721025
С	-2.019022	1.116006	1.757584
С	-2.409696	0.012534	0.948730
С	-3.532128	0.075771	0.088837
С	-3.905185	-1.064621	-0.836257
Н	-5.167131	1.339138	-0.557785
Н	-2.526430	3.143772	2.322700
С	-0.759257	1.048373	2.600550
Н	-3.009712	-1.676285	-1.025573
Н	0.066880	0.711169	1.953292
Cl	2.034026	-0.816308	-2.849357
С	-4.492966	-0.650142	-2.189818
Н	-4.583693	-1.535753	-2.841649
Н	-5.495284	-0.193190	-2.102980
Н	-3.834499	0.069162	-2.707892
С	-0.334927	2.337002	3.302593
Н	0.621797	2.179962	3.831020
Н	-0.187879	3.158906	2.580699
Н	-1.078121	2.669032	4.049994
Н	-4.549169	3.259528	0.890134
Н	-4.634975	-1.718828	-0.320483
Н	-0.863560	0.244346	3.351194
Н	3.204937	2.662806	-0.663195
Н	3.084235	1.286074	-1.844837
С	4.204197	0.838150	-0.023541
С	4.663570	-0.418195	-0.466483
С	4.708571	1.364586	1.183186
С	5.616434	-1.125808	0.280870
Н	4.250648	-0.836460	-1.391303
С	5.660400	0.657217	1.928533
Н	4.345661	2.336963	1.540850
С	6.115967	-0.592986	1.478771
Н	5.967513	-2.101843	-0.075017
Н	6.048445	1.080704	2.862792
Н	6.859565	-1.149077	2.062305

6. Thermally and photoinduced isomerization of precatalysts

6.1. Thermal isomerization of DiPP-CAAC bearing complexes

Scheme S3. Thermal isomerization of complexes 10

All the NMR spectra were calibrated on residual solvent peaks of dichloromethane- d_2 (5.32 ppm) and 1,1,2,2-tetrachloroethane- d_2 (6.00 ppm). Thermal isomerization and decomposition of the complexes was followed by changes in NMR signals of benzylidene protons of **10a** (at 16.81 ppm) and **10b** (at 16.86 ppm) and appearance of the new peaks.

The NMR samples of complexes $\mathbf{10}$ in CD_2Cl_2 were heated to $35^{\circ}C$ in oil-bath under argon atmosphere.

For solvent replacement CD_2Cl_2 was evaporated directly from test-tube by blowing argon on it, and the residue was redissolved in $C_2D_2Cl_4$. The NMR samples of complexes in $C_2D_2Cl_4$ were heated to 75°C and 100°C in oil-bath under argon atmosphere.
6.1.1. Thermal isomerization of 10a

Figure S59. ¹H-NMR spectra of **10a** in CD_2Cl_2 at following condition: **a.** @ RT; **b.** 1h @ 35°C; **c.** 15h 20m @ 35°C (overnight).

Figure S60. ¹H-NMR spectra of **10a** in $C_2D_2Cl_4$ after solvent exchange at following conditions: **a**. @ RT; **b**. 1.5h @ 35°C; **c**. 1h @ 75°C; **d**. 2h @ 75°C; **e**. 4h @ 75°C; **f**. 6h @ 75°C; **g**. 71 @ 75°C (weekend); **h**. 1h @ 100°C.

Figure S61. ¹⁹F-NMR spectra of **10a**: **a.** @ RT in CD_2Cl_2 ; **b.** @ RT in $C_2D_2Cl_4$ (after 15h20m at 35°C in CD_2Cl_2); **c.** 2h @ 75°C (after 1.5h at 35°C in $C_2D_2Cl_4$); **d.** 4h @ 75°C; **e.** 6h @ 75°C; **f.** 71h @ 75°C (weekend); **g.** 1h @ 100°C.

(*) - 10a-trans; (#) - minor isomer of 10a; (@) and (&) - fluorine-containing decomposition products of 10a

6.1.2. Thermal isomerization 10b

Figure S62. ¹H-NMR spectra of **10b** in CD_2Cl_2 : **a.** @ RT; **b.** 1h @ 35°C; **c.** 15h 20m @ 35°C (overnight).

Figure S63. ¹H-NMR of **10b** in C₂D₂Cl₄ after solvent exchange: **a.** @ RT; **b.** 1.5h @ 35°C; **c.** 1h @ 75°C; **d.** 2h @ 75°C; **e.** 4h @ 75°C; **f.** 6h @ 75°C; **g.** 71h @ 75°C (weekend); **h.** 1h @ 100°C.

6.2. Photoisomerization of DiPP-CAAC bearing complexes

Scheme S4. Photo-induced isomerization of complexes 10 under 350nm irradiation.

The NMR experiments were carried in Pyrex 5 mm NMR test-tubes under an argon atmosphere in a Rayonet RPR-200 equipped with 16 lamps (350 nm). Cooling of samples in the reactor was effected by blowing compressed air through the apparatus. Photoisomerization and decomposition of the complexes was followed by changes in NMR signals of benzylidene protons of **10a** at 16.81 ppm and **10b** at 16.86 ppm and appearance of the new peaks. All the NMR spectra were calibrated on residual solvent peaks of dichloromethane- d_2 (5.32 ppm).

For NOESY NMR experiment of **10b**, the CD₂Cl₂ solution of the complex was bubbled with argon.

6.2.1. Photoisomerization of 10a

Figure S64. ¹H-NMR of spectra **10a** in CD₂Cl₂: **a.** before irradiation; **b.** 1h @ 350nm; **c.** 2h @ 350nm; **d.** 4h @ 350nm; **e.** 20h @ 350nm; **f.** 25.5h @ 350nm; **g.** 14h @ RT.

Figure S65. ¹⁹F-NMR spectra of **10a** in CD₂Cl₂: **a.** before irradiation; **b.** 1h @ 350nm; **c.** 2h @ 350nm; **d.** 4h @ 350nm; **e.** 20h @ 350nm; **f.** 25.5h @ 350nm; **g.** 14h @ RT.

(*) - 10a-trans; (#) - minor isomer of 10a; (@) and (&) - fluorine-containing decomposition products of 10a

6.2.2. Photoisomerization of 10b

Figure S66. ¹H-NMR spectra of 10b in CD₂Cl₂: a. before irradiation; b. 1h @ 350nm; c. 2h @ 350nm; d. 4h @ 350nm; e. 20h @ 350nm; f. 25.5h @ 350nm; g. 14h @ RT.

Figure S67. Summary of behavior of 10b in CD₂Cl₂ under irradiation at 350nm. The percentage of compounds was calculated from the integration of the relevant peaks in the ¹H-NMR spectra above.

6.2.3. Photoisomerization of 10b – assignment of configuration by ¹H-NMR

Figure S68. ¹H-NMR of spectra of **10b** in CD_2Cl_2 at following conditions: **a.** before irradiation; **e.** after 20h (in total) @ 350nm. The marked signals belong to following protons:

Scheme S5. Followed protons for the configuration assignment by ¹H-NMR of photoisomerization product of *trans*-10b

Figure S69. Expansion of the aromatic region in ¹H-NMR of spectra for clear assignment of relative configuration in mixture of complexes **10b** after irradiation at 350nm in CD₂Cl₂: **A.** *trans*-**10b** before irradiation ("a." from previous figure); **B.** mixture of *trans*-**10b** and *cis*-**10b** after 20h (in total) @ 350nm ("e." from previous figure); **C.** pure *trans*-**13b**; **D.** pure *cis*-**13b**.

Figure S70. Following photoisomerization of **10b** at 350nm light in CD_2Cl_2 . **Top:** before irradiation; **Bottom:** after 24h of irradiation (**trans-10b/cis-10b** = 2.46).

A correlation of the benzylidene proton of *cis*-**10b** is observed only to one out of four methyl groups of the two isopropyl groups after irradiation as expected for the *cis* isomer.

Figure S71. Expanded NOESY NMR spectra for following photoisomerization of **10b** at 350nm light in CH₂Cl₂. *Top:* before irradiation; *Bottom:* after 24h of irradiation (*trans*-10b/*cis*-10b= 2.46).

6.3. Thermal isomerization of DEtP-CAAC bearing complexes

Thermal isomerization of the complexes was followed the same way as described above.

Scheme S6. Thermal isomerization of complexes 13.

6.3.1. Thermal isomerization of trans-13a

Peak at 16.88 ppm is assigned to *trans*-13a and a growing peak at 16.24 ppm is assigned to *cis*-13a.

Figure S72. Thermal isomerization of *trans*-13a at 40°C in CD₂Cl₂: *a. trans*-13a only (0% *cis*); *b.* 1h (3% *cis*); *c*. 17.5h (34% *cis*); *d*. 23.5h (49% *cis*); *e*. 40.5h (64% *cis*); *f*. 47h (69% *cis*); *g*. 53h (76% *cis*); *h*. 71h (86% *cis*)

6.3.2. Thermal isomerization of *trans*-13b

Peak at 16.95 ppm is assigned to *trans*-13b and a growing peak at 16.41 ppm is assigned to *cis*-13b.

Figure S73. Thermal isomerization of *trans*-13b at RT in CD₂Cl₂: *a. trans*-13b only (0% *cis*); *b.* 3h 50min (14% *cis*); *c.* 20h 50min (17% *cis*); *d.* 23h 20min (24% *cis*); *e.* 27h (34% *cis*); *f.* 45h (59% *cis*); *g.* 94h (89% *cis*)

6.4. Photoisomerization of DEtP-CAAC bearing complexes

Photo-induced isomerization of the complexes was followed the same way as described above. Complexes **trans-13a**, **cis-13a** and **cis-13b** were irradiated in a Rayonet photoreactor at 350nm. The time in captions denotes the total irradiation time.

6.4.1. Photoisomerization of trans-13a ("trans-to-cis")

Peak at 16.88 ppm is assigned to *trans*-13a and a growing peak at 16.24 ppm is assigned to *cis*-13a.

Scheme S7. Photo-induced isomerization of *trans*-13a under 350nm irradiation.

Figure S74. Photoisomerization of *trans*-13a at 350nm in CD₂Cl₂: *a. starting mixture* (*cis/trans* = 0.14); *b.* 1h @ 350nm (*cis/trans* = 0.60); *c*. 2h @ 350nm (*cis/trans* = 0.54); *d.* 3h @ 350nm (*cis/trans* = 0.70); *e.* 5h @ 350nm (full decomposition)

6.4.2. Photoisomerization of cis-13a ("cis-to-trans")

Peak at 16.88 ppm is assigned to *trans*-13a and a growing peak at 16.24 ppm is assigned to *cis*-13a.

Scheme S8. Photo-induced isomerization of *cis*-13a under 350nm irradiation.

Figure S75. Photoisomerization of *cis*-13a at 350nm in CD_2Cl_2 : *a. cis*-13a only (*cis/trans* = 100% *cis*); *b.* 1h @ 350nm (*cis/trans* = 1.59); *c.* 2h @ 350nm (*cis/trans* = 0.95); *d.* 3h @ 350nm (*cis/trans* = 0.73); *e.* 5h @ 350nm (*cis/trans* = 0.67); *f.* 7h @ 350nm (*cis/trans* = 0.75); *g.* overnight at RT in darkness (*cis/trans* = 0.84).

6.4.3. Photoisomerization of cis-13b ("cis-to-trans")

Peak at 16.94 ppm belongs to *trans*-13b and a growing peak at 16.40 ppm belongs to *cis*-13b.

Scheme S9. Photo-induced isomerization of *cis*-13b under 350nm irradiation.

Figure S76. Photoisomerization of *cis*-13b at 350nm in CD₂Cl₂: *a. cis*-13b only; *b.* 1h @ 350nm (*cis/trans* = 10.53); *c.* 2h @ 350nm (*cis/trans* = 6.94); *d.* 3h @ 350nm (*cis/trans* = 5.08); *e.* 5h @ 350nm (*cis/trans* = 4.27); *f.* 7h @ 350nm (*cis/trans* = 4.08); *g.* 10.5h @ 350nm (*cis/trans* = 4.15).

7. Activity testing of the precatalysts in olefin metathesis reactions

7.1. Polymerizations (ADMET and ROMP)

Thermal activation of precatalysts **10** and *cis*-**13** in polymerization reactions was followed by ¹H-NMR spectroscopy in $C_2D_2Cl_4$ (calibrated as residual solvent peak at 6.00ppm). Mesitylene (0.2 equivalents, 20%mol) was added to stock solutions of monomers (0.5M) and a singlet at 6.83ppm (aromatic protons of mesitylene) was used as internal standard for following of reaction progress comparing to the signals in **Table S10**. Samples were measured at t₀ (no catalyst added), after 1h, 3h and 24h of heating (unless otherwise specified). Catalyst was dissolved as stock solution in $C_2D_2Cl_4$ and was added as 20µL containing 0.1 mol% of precatalyst (in total reaction mixture). The polymerization reactions were carried at 35°C and 75°C.

In case of photoactivation at 350nm, argon gas was blown into the test-tube prior to irradiation.

The size of the **pM4** was determined by a GPC system equipped with a triple detector (light-scattering detector, viscometer and refractometer). The polymers were dissolved in THF (2 mg/mL) and filtered through 0.22 μ m filter.

Entry	Monomer	Signal monitored
M1		multiplet at 5.86ppm
M2		broad multiplet at 5.62ppm
М3		multiplet at 5.66ppm
M4	multiplet at 6.23ppm	
M5	A	multiplet at 6.02ppm

Table S11.	Monomers and	monitored	signals in ¹ H-NMR
	interio ana		

7.1.1. Results of reactivity testing

Table S12. Monomer conversions of thermal and photoactivated polymerization reactions with various catalysts

Notes: *a*. [Cat]/[M_x]/[mesitylene]=1/1000/200, [M_x]=0.5M in C₂D₂Cl₄;

b. Conversion was determined by integration of ¹H-NMR signals.

c. After 4 hours of heating.

d. In parentheses: conversion after heating to 100°C of the same sample for 1h.

			trans-10	a ^a	1	trans-10b	a		cis-13a ^a			cis-13b ^a	
Activation method	Monomer	1h ^b	3h⁵	24h ⁶	1h ^b	3h ^b	24h ^b	1h ^b	3h⁵	24h ^b	1h ^b	3h ^b	24h ^ø
	M1	0	0	5	0	0	0	0	0	0	0	0	0
	M2	0	0	0	0	0	0	0	0	2	0	0	0
35°C	M3	0	0	17	0	0	0	0	0	10	0	0	0
	M4	0	0	0	0	0	0	0	0	0	0	0	0
	M5	64	83	100	24	52	83	17	40	99	10	19	78
	M1	20	48 ^c	54	0	4 ^c	22	7	22	39	9	16	35
	M2	0	0	0	0	0	0	19	37	60	4	4	10
75°C	M3	48	60	77	0	8	22	91	97	100	18	26	34
	M4	0	0	32	0	0	0	5	9	27	0	0	4
	M5	100	100	100	100	100	100	99	100	100	96	100	100
	M1	0	0	0 (50) ^d	0	0	0	15	30	33	0	0	9
	M2	0	0	0	0	0	0	28	34	34	0	0	0
350nm	M3	0	0	0 (50) ^d	0	0	0	83	94	97	0	3	10
	M4	0	0	0	0	0	0	0	0	0	0	0	0
	M5	63	93	98 (100) ^d	11	55	71	100	100	100	100	100	100
	M1							5	14	24			
419nm	M2							36	90	100			
	M3							90	100	100			
	M4							0	0	5			
	M5							100	100	100			

7.1.2. Screening wavelengths for effective photo-activation of *cis*-13a and *cis*-13b

Scheme S10. Screening of wavelengths for effective photo-activation of *cis*-**13** pre-catalysts by ROMP of **M2.**

Table S13.Conversions of M2 with cis-13a and cis-13b under irradiation with variouswavelengths .

complex	time (h)	conversion (%)						
		dark control	254nm	350nm	419nm			
	0	0	0	0	0			
<i>cis</i> -13a	1	0	25	28	54			
	3	5	36	34	90			
	0		0	0	0			
<i>cis</i> -13b	1		0	0	0			
	3		12	0	0			

7.1.3. Polymerization of M3 (cis-cyclooctene) by cis-13 initiators

Scheme S11. Polymerization of M3 with cis-13.

Table S14. Da	ta regarding pM	3 obtained by	cis-13 initiators
---------------	------------------------	---------------	-------------------

Entry	Catalyst	Activation	Conversion (%) ^a	Z/E ratio ^a	Mw (kDa)⁵	Mn (kDa)⁵	PDI ^b
1	<i>cic</i> 120	75°C	98	1/1.9	29	16	1.8
2	<i>cis</i> -13a	350nm	100	1/2.1	102	68	1.5
3	aia 12h	75°C	45	1/0.8	150	120	1.2
4	<i>cis</i> -130	350nm	16	1/1.0			

a) Determined by integration of ¹H-NMR spectrum of the same polymer that was analysed by SEC.

b) Determined by GPC equipped with triple detector

Figure S77. ¹H-NMR spectra of **pM3** polymerized by *cis*-13 (in TCE- d_2). The numbers match the entries numbering in the table above.

Figure S78. GPC chromatograms (refractive index detector) of polymers pM3 obtained by cis-13.

Figure S79. Change in Z/E ratio over time in ROMP of **M3** by *cis*-13a at 75°C. a. before addition of catalyst; b. after 1h; c. after 3h; d. after 24h

Figure S80. Change in Z/E ratio over time in ROMP of **M3** by *cis*-13a at 350nm. a. before addition of catalyst; b. after 1h; c. after 3h; d. after 24h

Figure S81. Change in Z/E ratio over time in ROMP of **M3** by *cis*-13b at 75°C. a. before addition of catalyst; b. after 1h; c. after 3h; d. after 24h

7.1.4. Latency of cis-13 precatalysts in presence of M2 (COD)

Figure S82. ¹H-NMR spectra of **M2** in presence of *cis*-**13a** after **a**. 0h (0% conversion), **b**. 3 days (19% conversion), and **c**. 10 days (29% conversion).

Figure S83. Carbenes region in ¹H-NMR spectra of **M2** in presence of *cis*-**13a** after **a**. 0h, **b**. 3 days, and **c**. 10 days.

7.1.4.2. cis-13b

Figure S84. ¹H-NMR spectra of **M2** in presence of *cis***-13b** after **a.** 0h (0% conversion), **b.** 3 days (0% conversion), and **c.** 10 days (4% conversion).

Figure S85. Carbenes region in ¹H-NMR spectra of **M2** in presence of *cis*-**13b** after **a**. 0h, **b**. 3 days, and **c**. 10 days.

7.1.5. Secondary metathesis reactions of pM2 (pBD) with cis-13a

98%-cis pBD (**pM2**)

Scheme S13. Secondary metathesis reactions of pBD in presence of *cis*-13a

Procedure: 25 mg pBD (**pM2**) (98% *cis*, $M_w = 2.459 \times 10^5 Da$, $M_w/M_n=2.29$) dissolved in 900 µL of C₂D₂Cl₄. The catalyst *cis*-13a (0.1mol%) was added in 100 µL of C₂D₂Cl₄. The reaction mixture was left for heating at 80°C for the specified periods of time and the reaction progress was monitored by ¹H-NMR.

Figure S86. Following the progress of secondary metathesis reactions of pBD in the presence of *cis*-13a in C₂D₂Cl₄: a. before addition of the catalyst, b. after 2.5h at 80°C and c. after 24h at 80°C (E/Z = 1/0.96).

GPC chromatogram of tested commercial pBD

Figure S87. GPC chromatogram of commercial pBD (**pM2**) (Sigma-Aldrich, 98% *cis*, Mw = 246kDa, PDI=2.26).

7.1.6. Latency of cis-13a towards M6 (DCPD)

Scheme S14. Polymerization of M6 (DCPD) with cis-13a pre-catalyst.

The procedure is same as for the reactions in the section 7.1.1. In control experiment the NMR test tube was covered with aluminium foil and kept at 35°C for 0.5 hours.

Figure S88. Polymerization of **M6** by *cis*-13a in TCE-d₂ at 80°C: a. before reaction; b. after 0.5h (100% conversion).

7.1.6.2. Polymerization at 419nm

Figure S89. Polymerization of M6 by *cis*-13a in TCE- d_2 at 419nm: a. before reaction; b. after 0.5h (100% conversion).

Figure S90. Dark control polymerization of **M6** by *cis*-13a in TCE-d₂ at 35°C: a. before reaction; b. after 0.5h (7% conversion).

7.2. Methyl oleate self-metathesis

Scheme S15. Self-metathesis of methyl oleate

Procedure: methyl oleate (**MO**) (210 μ L, 0.62 mmol) was introduced into a pear-shaped flask equipped with a small magnet and a condenser. The air in the flask was replaced by N₂. The catalyst (0.001eq, 0.62 μ mol) was added as CH₂Cl₂ solution. Then, the reaction was heated to 100°C or 120°C for 1h. After cooling of the reaction mixture to room temperature, 50 μ L of crude mixture were mixed with 25 μ L of mesitylene, and the sample, diluted in CH₂Cl₂, was injected to the GC-MS.

All the peaks in GC chromatogram were identified according to their mass. "X+n" and "X-n" (n is an integer) are homologues of X that differ by $(-CH_2-)_n$ units. The analysis of %isomerization was carried out by following the previously published method.¹⁴

 CH_2Cl_2 was evaporated from the vessel by high vacuum followed by refilling the vessel with N_2 before beginning of the heating at 120°C.

 $\% isomerization(C18) = \frac{...+\%(C18-1)+\%(C18+1)+...}{...+\%(C18-1)+\%(C18)+\%(C18+1)+...} \times 100\%$

 $\% isomerization(MO) = \frac{...+\%(MO-1)+\%(MO+1)+...}{...+\%(MO-1)+\%(MO)+\%(MO+1)+...} \times 100\%$

 $\% isomerization(DE) = \frac{...+\%(DE-1)+\%(DE+1)+...}{...+\%(DE-1)+\%(DE)+\%(DE+1)+...} \times 100\%$

average %isomerization = $\frac{\% isomerization(C18) + \% isomerization(M0) + \% isomerization(DE)}{3}$

7.2.1. Self-metathesis at 100°C

Scheme S16. Self-metathesis of methyl oleate at 100°C

Figure S91. Self-metathesis of MO by trans-10a at 100°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.521	Mesitylene	35789347	479537358	63.16%	25.15%
2	7.326	C18-1 (C17)	995880	13272747	1.75%	0.70%
3	7.704	C18	14917031	226326550	29.81%	11.87%
4	8.056	C18+1 (C19)	1213156	16869726	2.22%	0.89%
5	8.490	MO-1	2475473	35009882	4.61%	1.84%
6	8.821	MO	36172286	759194007	100.00%	39.81%
7	9.121	MO+1	2617870	43126632	5.68%	2.26%
8	9.501	DE-1	649962	12899481	1.70%	0.68%
9	9.815	DE	17934847	305595922	40.25%	16.02%
10	10.139	DE+1	641411	15241699	2.01%	0.80%

Table S15. GC-MS chromatogram analysis of self-metathesis of MO with trans-10a at 100°C.

%*isomerization*(*C*18) = $\frac{0.70+0.89}{0.70+11.87+0.89} \times 100\% = 11.81\%$

%*isomerization*(*M0*) = $\frac{1.84+2.26}{1.84+39.81+2.26} \times 100\% = 9.34\%$

 $\% isomerization(DE) = \frac{0.68 + 0.80}{0.68 + 16.02 + 0.80} \times 100\% = 8.46\%$

average %*isomerization* = $\frac{11.81\%+9.34\%+8.46\%}{3}$ = 9.87%

Figure S92. Self-metathesis of MO by trans-10b at 100°C.

Table S16. GC-MS chromator	gram analysis of self-metathesi	s of MO with <i>trans</i> -10b at 100°C.
	J · · · J · · · · · · · · · · · · · · · · · · ·	

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.501	Mesitylene	31894136	415996830	54.71%	35.07%
2	7.694	C18	485649	6859240	0.90%	0.58%
3	8.809	MO	239916773	760352579	100.00%	64.09%
4	9.798	DE	201175	3122187	0.41%	0.26%

Also after 24h under the reactions conditions (100°C, *trans*-10b), self-metathesis of **MO** was not observed in this case.

7.2.1.3. trans-13a Abundance

Figure S93. Self-metathesis of MO by trans-13a at 100°C.

Table S17. GC-MS ch	nromatogram anal	ysis of self-metathesis o	of MO with trans-13a	at 100°C.
---------------------	------------------	---------------------------	----------------------	-----------

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.502	Mesitylene	1344918	15479303	100.00%	52.659%
2	7.703	C18	331911	3916095	25.30%	13.322%
3	8.815	MO	584951	8244292	53.26%	28.046%
4	9.810	DE	91122	1755614	11.34%	5.972%

Figure S94. Self-metathesis of MO by trans-13b at 100°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.496	Mesitylene	2241382	23887508	100.00%	44.172%
2	7.702	C18	744317	7973415	33.38%	14.744%
3	8.814	MO	1299934	18352463	76.83%	33.937%
4	9.811	DE	196966	3865406	16.18%	7.148%

7.2.1.5. *cis***-13a** Abundance

Figure S95. Self-metathesis of MO by cis-13a at 100°C.

Table S19. GC-MS chromatogram analysis of self-metathesis of MO with cis-13a at 100°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.515	Mesitylene	4441566	48158711	100.00%	42.691%
2	7.703	C18	1441518	16630076	34.53%	14.742%
3	8.817	MO	3097774	39181864	81.36%	34.734%
4	9.815	DE	434264	8836030	18.35%	7.833%

7.2.1.6. *cis***-13b** Abundance

Figure S96. Self-metathesis of MO by *cis*-13b at 100°C.

Table S20. GC-MS chromatogram analysis of self-metathesis of MO with *cis*-13b at 100°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.495	Mesitylene	7391645	80835632	89.59%	34.812%
2	7.700	C18	3158122	35822544	39.70%	15.427%
3	8.810	MO	7357932	90225111	100.00%	38.856%
4	9.807	DE	1210556	25321770	28.07%	10.905%

7.2.1.7. *cis***-14a** Abundance

Figure S97. Self-metathesis of MO by cis-14a at 100°C.

Table S21. GC-MS chromatogram analysis of self-metathesis of MO with cis-14a at 1	L00°C.
---	--------

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.501	Mesitylene	1154120	14147825	100.00%	46.836%
2	7.703	C18	351883	4109537	29.05%	13.604%
3	8.816	MO	758784	9885642	69.87%	32.726%
4	9.813	DE	110224	2064187	14.59%	6.833%

7.2.1.8. cis-14b Abundance

Figure S98. Self-metathesis of MO by cis-14b at 100°C.

Table S22. GC-MS chromatogram analysis of self-metathesis of MO with cis-14b at 100°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.498	Mesitylene	482004	5547382	47.38%	23.274%
2	7.702	C18	348585	4034902	34.46%	16.928%
3	8.815	MO	854918	11708389	100.00%	49.121%
4	9.812	DE	144207	2544921	21.74%	10.677%

7.2.1.9. Hoveyda-Grubbs 2nd generation (HG2) catalyst

Figure S99. Self-metathesis of MO by HG2 at 100°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.513	Mesitylene	1486844	20014844	100.00%	30.323%
2	6.963	C18-2 (C16)	58554	788724	3.94%	1.195%
3	7.358	C18-1 (C17)	195696	2457683	12.28%	3.723%
4	7.731	C18	365635	4651221	23.24%	7.047%
5	7.830	MO-3	35654	391237	1.95%	0.593%
6	8.079	C18+1 (C19)	284810	3278241	16.38%	4.967%
7	8.186	MO-2	142000	2455760	12.27%	3.721%
8	8.425	C18+2 (C20)	105578	1394365	6.97%	2.113%
9	8.522	MO-1	403183	6281187	31.38%	9.516%
10	8.845	MO	702833	10079482	50.36%	15.271%
11	9.156	MO+1	362850	5812906	29.04%	8.807%
12	9.454	M0+2	123836	2351252	11.75%	3.562%
13	9.541	DE-1	78897	1895227	9.47%	2.871%
14	9.756	MO+3	17640	190209	0.95%	0.288%
15	9.854	DE	88334	2578318	12.88%	3.906%
16	10.189	DE+1	34078	903466	4.51%	1.369%

Table S23. GC-MS chromatogram analysis of self-metathesis of MO with HG2 at 100°C.

$$\% isomerization(C18) = \frac{1.19 + 3.72 + 4.97 + 0.21}{1.19 + 3.72 + 7.05 + 4.97 + 0.21} \times 100\% = 58.87\%$$

% isomerization(M0) = $\frac{0.59 + 3.72 + 9.52 + 8.81 + 3.56 + 0.29}{0.59 + 3.72 + 9.52 + 15.27 + 8.81 + 3.56 + 0.29} \times 100\%$
= 63.43%
% isomerization(DE) = $\frac{2.87 + 1.37}{2.87 + 3.91 + 1.37} \times 100\% = 51.67\%$

average %*isomerization* =
$$\frac{58.87 + 63.43 + 51.67}{3} = 57.99\%$$

7.2.2. Self-metathesis at 120°C

Scheme S17. Self-metathesis of methyl oleate at 120°C

Figure S100. Self-metathesis of MO by trans-10a at 120°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.516	Mesitylene	1364033	17321891	55.52%	24.308%
2	7.356	C18-1 (C17)	83066	1280333	4.10%	1.797%
3	7.728	C18	631725	8049604	25.80%	11.296%
4	8.082	C18+1 (C19)	113673	1721290	5.52%	2.416%
5	8.177	MO-2	29651	416479	1.33%	0.584%
6	8.516	MO-1	186037	3002079	9.62%	4.213%
7	8.839	MO	1814763	31197354	100.00%	43.780%
8	9.152	MO+1	181444	3213150	10.30%	4.509%
9	9.444	MO+2	24223	295347	0.95%	0.414%
10	9.533	DE-1	34878	654150	2.10%	0.918%
11	9.850	DE	137776	3776671	12.11%	5.300%
12	10.182	DE+1	13478	330996	1.06%	0.464%

Table S24. GC-MS chromatogram analysis of self-metathesis of MO with trans-10a at 120°C.

 $\% isomerization(C18) = \frac{1.80 + 2.42}{1.80 + 11.30 + 2.42} \times 100\% = 27.19\%$

 $\% isomerization(MO) = \frac{0.58 + 4.21 + 4.51 + 0.41}{0.58 + 4.21 + 43.78 + 4.51 + 0.41} \times 100\% = 18.15\%$

%*isomerization*(*DE*) = $\frac{0.92 + 0.46}{0.92 + 5.3 + 0.46} \times 100\% = 20.68\%$

average %*isomerization* = $\frac{27.19 + 18.15 + 20.68}{3} = 22.01\%$

Figure S101. Self-metathesis of MO by trans-10b at 120°C.

No reaction was observed in this case (in accordance with the experiment at 100°C).

7.2.2.3. cis-13a Abundance

Figure S102. Self-metathesis of MO by cis-13a at 120°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.513	Mesitylene	1818843	24617605	100.00%	29.157%
2	6.960	C18-2 (C16)	32615	490284	1.99%	0.581%
3	7.357	C18-1 (C17)	182952	2976023	12.09%	3.525%
4	7.730	C18	546310	7739071	31.44%	9.166%
5	8.086	C18+1 (C19)	272955	3981302	16.17%	4.715%
6	8.180	MO-2	96525	1343414	5.46%	1.591%
7	8.420	C18+2 (C20)	75729	798633	3.24%	0.946%
8	8.520	MO-1	410483	7968578	32.37%	9.438%
9	8.837	MO	1065054	18456777	74.97%	21.860%
10	9.154	MO+1	430859	7265634	29.51%	8.605%
11	9.449	MO+2	91985	1362470	5.53%	1.614%
12	9.536	DE-1	94545	1554878	6.32%	1.842%
13	9.855	DE	139574	4394970	17.85%	5.205%
14	10.188	DE+1	43331	1480877	6.02%	1.754%

Table S25. GC-MS chromatogram	analysis of self-metathesis	of MO with <i>cis</i> - 13a at 120°C.
-------------------------------	-----------------------------	---

$$\% isomerization(C18) = \frac{0.58 + 3.52 + 4.71 + 0.95}{0.58 + 3.52 + 9.17 + 4.71 + 0.95} \times 100\% = 51.56\%$$

% isomerization(M0) = $\frac{1.59 + 9.44 + 8.60 + 1.61}{1.59 + 9.44 + 21.86 + 8.60 + 1.61} \times 100\% = 49.28\%$
% isomerization(DE) = $\frac{1.84 + 1.75}{1.84 + 5.20 + 1.75} \times 100\% = 40.84\%$
average % isomerization = $\frac{51.56\% + 49.28\% + 40.84\%}{3} = 47.23\%$

Figure S103. Self-metathesis of MO by cis-13b at 120°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.509	Mesitylene	1437779	19195732	49.70%	23.427%
2	7.348	C18-1 (C17)	27804	307426	0.80%	0.375%
3	7.726	C18	1410930	17186516	44.50%	20.975%
4	8.079	C18+1 (C19)	32693	402195	1.04%	0.491%
5	8.512	MO-1	37429	423396	1.10%	0.517%
6	8.840	MO	2515493	38619661	100.00%	47.132%
7	9.149	MO+1	53093	582980	1.51%	0.711%
8	9.849	DE	247969	5221078	13.52%	6.372%

Table S26. GC-MS chromatogram analysis of self-metathesis of MO with cis-13b at 120°C.

%*isomerization*(C18) = $\frac{0.37 + 0.49}{0.37 + 20.97 + 0.49} \times 100\% = 3.94\%$

%*isomerization*(*M0*) =
$$\frac{0.52 + 0.71}{0.52 + 47.13 + 0.71} \times 100\% = 2.54\%$$

%*isomerization*(*DE*) =
$$\frac{0}{6.37} \times 100\% = 0\%$$

average %*isomerization* = $\frac{3.94+2.54+0}{3} = 2.16\%$

7.2.2.5. *cis*-14a Abundance

Figure S104. Self-metathesis of MO by cis-14a at 120°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.516	Mesitylene	3426121	39873985	51.79%	19.853%
2	7.344	C18-1 (C17)	221742	2745985	3.57%	1.367%
3	7.720	C18	2861231	31806721	41.31%	15.836%
4	8.077	C18+1 (C19)	327104	3713238	4.82%	1.849%
5	8.511	MO-1	496738	6680731	8.68%	3.326%
6	8.834	MO	6326625	76987840	100.00%	38.332%
7	9.146	MO+1	507097	8249333	10.72%	4.107%
8	9.528	DE-1	92992	1899486	2.47%	0.946%
9	9.841	DE	1092891	26524527	34.45%	13.206%
10	10.179	DE+1	52402	2363855	3.07%	1.177%

Table S27. GC-MS chromatogram analysis of self-metathesis of MO with cis-14a at 120°C.

 $\% isomerization(C18) = \frac{1.37 + 1.85}{1.37 + 15.84 + 1.85} \times 100\% = 16.89\%$ % isomerization(MO) = $\frac{3.33 + 4.11}{3.33 + 38.33 + 4.11} \times 100\% = 16.26\%$ % isomerization(DE) = $\frac{0.95 + 1.18}{0.95 + 13.21 + 1.18} \times 100\% = 13.88\%$ average % isomerization = $\frac{16.89 + 16.26 + 13.88}{3} = 15.68\%$

Figure S105. Self-metathesis of MO by cis-14b at 120°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.516	Mesitylene	1355160	16765590	52.05%	21.663%
2	7.347	C18-1 (C17)	71899	690012	2.14%	0.892%
3	7.727	C18	1086791	13090813	40.64%	16.915%
4	8.077	C18+1 (C19)	98781	996735	3.09%	1.288%
5	8.514	MO-1	131531	1867171	5.80%	2.413%
6	8.837	MO	2431623	32211664	100.00%	41.622%
7	9.151	MO+1	136972	2199925	6.83%	2.843%
8	9.527	DE-1	28708	492545	1.53%	0.636%
9	9.846	DE	297621	9076727	28.18%	11.728%

Table S28. GC-MS chromatogram	analysis of self-metathesis of	f MO with <i>cis-</i> 14b at 120°C.
-------------------------------	--------------------------------	---

%*isomerization*(*C*18) = $\frac{0.89 + 1.29}{0.89 + 16.92 + 1.29} \times 100\% = 11.41\%$

%*isomerization*(*M0*) =
$$\frac{2.41 + 2.84}{2.41 + 41.61 + 2.84} \times 100\% = 11.20\%$$

%*isomerization*(*DE*) =
$$\frac{0.64}{0.64 + 11.73} \times 100\% = 5.17\%$$

average%*isomerization* = $\frac{11.41 + 11.20 + 5.17}{3} = 9.26\%$

Figure S106. Self-metathesis of MO by HG2 at 120°C.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.515	Mesitylene	1304894	15442315	95.27%	23.915%
2	6.952	C18-2 (C16)	36392	384248	2.37%	0.595%
3	7.349	C18-1 (C17)	175729	2059642	12.71%	3.190%
4	7.724	C18	470402	6341680	39.12%	9.821%
5	8.079	C18+1 (C19)	255119	2892449	17.84%	4.480%
6	8.178	MO-2	84886	1186736	7.32%	1.838%
7	8.416	C18+2 (C20)	60190	738995	4.56%	1.144%
8	8.514	M0-1	398548	5749066	35.47%	8.904%
9	8.837	MO	1140473	16209049	100.00%	25.103%
10	9.149	MO+1	383719	5971245	36.84%	9.248%
11	9.447	MO+2	70819	1234760	7.62%	1.912%
12	9.531	DE-1	81747	1674198	10.33%	2.593%
13	9.844	DE	158263	4039718	24.92%	6.256%
14	10.174	DE+1	32431	646574	3.99%	1.001%

Table S29	GC-MS chr	omatogram	analysis c	of self-me	tathesis of	MO with	HG2 at 120°C.
-----------	-----------	-----------	------------	------------	-------------	---------	---------------

$$\% isomerization(C18) = \frac{0.59 + 3.19 + 4.48 + 1.14}{0.59 + 3.19 + 9.82 + 4.48 + 1.14} \times 100\% = 48.91\%$$

% isomerization(M0) = $\frac{1.84 + 8.90 + 9.25 + 1.91}{1.84 + 8.90 + 25.10 + 9.25 + 1.91} \times 100\% = 46.60\%$
% isomerization(DE) = $\frac{2.59 + 1.00}{2.59 + 6.26 + 1.00} \times 100\% = 36.45\%$
average % isomerization = $\frac{48.91\% + 46.60\% + 36.45\%}{3} = 43.99\%$

7.2.2.8. Summary of the results for thermal isomerization in self-metathesis of methyl oleate

Table S30. Summary of average isomerization percentage in thermally activated self-metathesisof MO.

Catalyst	Average isomerization at 100°C	Average isomerization at 120°C	Remarks
10a (trans)	10%	22%	
10b (trans)	no reaction	no reaction	no reaction even at 160°C
trans-13a	0%	NA	
<i>cis</i> -13a	0%	47%	
trans-13b	0%	NA	
cis-13b	0%	2%	
<i>cis</i> -14a	0%	16%	
<i>cis</i> -14b	0%	9%	
HG2	58%	44%	

7.2.3. Photo-activated self-metathesis of methyl oleate with cis-13a and cis-14a

Scheme S18. Self-metathesis of methyl oleate at 350nm irradiation

General procedure: precatalyst (*cis*-13a or *cis*-14a) (0.001 eq., 0.3 μ mol, 0.2 mg) was dissolved in 20 μ L of CH₂Cl₂ inside a 1.5 mL vial equipped with small magnet. Methyl oleate (**MO**) (110 μ L, 0.32 mmol) was added by syringe. The air in the vial was replaced by argon gas. Then, the reaction mixture was irradiated in a Luzchem LZC-ORG photoreactor overnight (14h) with 350nm lamps. At the end of the reaction, 50 μ L of the crude mixture were mixed with 10 μ L of mesitylene, and the mixture was injected to GC-MS for analysis.

The dark control experiments were done with the same amounts and conditions, but the vial was wrapped completely with aluminium foil.

Figure S107. The vials after reaction.

7.2.3.1. Methyl oleate and cis-13a irradiated by 350nm

Figure S108. Self-metathesis of MO by cis-13a at 350nm irradiation.

Table S31. GC-MS chromatogram analysis of photoinduced (350 nm) self-metathesis of **MO** with *cis*-**13a**.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.468	Mesitylene	1631447	19599426	37.33%	18.866%
2	7.651	C18	1581907	18451002	35.15%	17.761%
3	8.756	MO	4104013	52498956	100.00%	50.535%
4	9.744	DE	589336	13337532	25.41%	12.839%

Figure S109. Self-metathesis of MO by cis-13a at 350nm irradiation (dark control).

7.2.3.3. Methyl oleate and cis-14a irradiated by 350nm

Figure S110. Self-metathesis of MO by cis-14a at 350nm irradiation.

Table S32. GC-MS chromatogram analysis of photoinduced (350 nm) self-metathesis of **MO** with *cis***-14a**.

peak	R.T. (min)	identification	peak height	corr. area	corr. % max.	% of total
1	3.454	Mesitylene	897048	11539013	39.99%	20.670%
2	7.657	C18	883411	10384564	35.99%	18.602%
3	8.765	MO	2191445	28851797	100.00%	51.683%
4	9.760	DE	169923	5049309	17.50%	9.045%

7.2.3.3. Methyl oleate and cis-14a irradiated by 350nm - dark control experiment Abundance

Figure S111. Self-metathesis of MO by cis-14a at 350nm irradiation (dark control).

7.3. RCM of N-allyl-N-(pent-4-en-1-yl)tosylsulfonamide (15)

Scheme S19. RCM of **15**. The protons marked by red color were used for following the conversion.

15 (0.05 mmol) was dissolved in 480µL of $C_2D_2Cl_4$ inside a pear-shaped flask equipped with a small magnet and a condenser. The air in the flask was replaced by N₂. The precatalyst (0.01eq, 0.5 µmol) was dissolved in 20µL $C_2D_2Cl_4$ and added to the reaction. Then, the reaction was heated to 150°C for 1h. After cooling the reaction mixture to room temperature, the solution was analysed by ¹H-NMR.

The analysis of compound distribution in the final reaction mixture was done following the previously published method.¹¹ The analysis is based on the relative integration values of the protons shown on the scheme above.

Figure S112. ¹H-NMR spectra of reaction mixture of RCM of 15 after 1h at 150°C.

Figure S113. Expansion of carbene region in ¹H-NMR spectra of reaction mixture of RCM of **15** after 1h at 150°C. The spectra show that, with the exception of *trans*-**13a**, all benzylidenes are still present in the solution after the reaction is over.

- carbene of *cis*-13b.

8. References

(1) Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29, 2176-2179.

(2) Sheldrick, G. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* 2015, 71, 3-8.

(3) Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.* 2015, 71, 3-8.

(4) Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. *Angew. Chem., Int. Ed.* 2005, 44, 5705-5709.

(5) Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P. Assignment of pre-edge features in the Ru K-edge X-ray absorption spectra of organometallic ruthenium complexes. *Inorg. Chim. Acta* 2008, 361, 1059-1065.

(6) Anderson, D. R.; Lavallo, V.; O'Leary, D. J.; Bertrand, G.; Grubbs, R. H. Synthesis and Reactivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes. *Angew. Chem., Int. Ed.* 2007, 46, 7262-7265.

(7) Ginzburg, Y.; Anaby, A.; Vidavsky, Y.; Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N. G. Widening the Latency Gap in Chelated Ruthenium Olefin Metathesis Catalysts. *Organometallics* 2011, 30, 3430-3437.

(8) Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N. G. Latent sulfur chelated ruthenium catalysts: Steric acceleration effects on olefin metathesis. *J. Organomet. Chem.* 2008, 693, 2200-2203.

(9) Gawin, R.; Kozakiewicz, A.; Guńka, P. A.; Dąbrowski, P.; Skowerski, K. Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis. *Angew. Chem., Int. Ed.* 2017, 56, 981-986.

(10) Che, C.; Li, W.; Lin, S.; Chen, J.; Zheng, J.; Wu, J.-c.; Zheng, Q.; Zhang, G.; Yang, Z.; Jiang, B. Magnetic nanoparticle-supported Hoveyda-Grubbs catalysts for ring-closing metathesis reactions. *Chem. Commun.* 2009, 5990-5992.

(11) One peak that belongs to split CF_3 carbon signal is not visible on spectrum (probably overlaps with one of the aromatic carbons' peaks.

(12) Some of the low intensity peaks belong to *cis*-13b that appears due to spontaneous isomerization during data collection.

(13) Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;
Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H.
P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi,
F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.;
Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V.
N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

(14) Butilkov, D.; Frenklah, A.; Rozenberg, I.; Kozuch, S.; Lemcoff, N. G. Highly Selective Olefin Metathesis with CAAC-Containing Ruthenium Benzylidenes. *ACS Catal.* 2017, 7, 7634-7637.