Supporting Information for

Bilirubin oxidase adsorption onto charged self-assembled monolayers: Insights from multiscale simulations

Shengjiang Yang^a, Jie Liu^b, Xuebo Quan^a, Jian Zhou^{a*}

^a School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology,

Guangzhou 510640, P. R. China

^b Key Laboratory for Green Chemical Process of Ministry of Education, School of

Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073,

P. R. China

The number of pages: 4

The number of figures: 4

The number of tables: 1

Tel./fax: +86 20 87114069

E-mail address: jianzhou@scut.edu.cn

^{*} Corresponding author

Table S1. The key adsorption residues of MvBOx adsorbed on charged surfaces.

system	The main adsorption residues
MvBOx on HOOC-SAM (7%)	Thr348, Gln351, Arg353, Arg356, Thr357, Gly358,
	Gly365, Asn394, Gly415, Asn416, Arg437
MvBOx on HOOC-SAM (25%)	Arg353, Arg356, Thr357, Gly358, Asn364, Gly365,
	Val366Asp370, Gln372, Asn373, Asn394, Arg437
MvBOx on NH ₂ -SAM (7%)	Val13, Pro14, Gln22, Thr47, Gln49, Pro52, Asp53,
	Gly55, Ser56, Phe213, Asn215, Asp322, Asp323,
	Thr325, Gln505, Ala506, Gln507, Ser508, Val513,
	Gln514
MvBOx on NH ₂ -SAM (25%)	Pro14, Gln22, Pro52, Asp53, Phe172, Asp322, Asp323,
	Thr324, Thr325, Gln505, Ala506, Gln507

Figure S1 Interaction energies versus electric dipole and hydrophobic dipole of MvBOx in PTMC sampling. (a) MvBOx on the positively charged surface; (b) MvBOx on the negatively charged surface.

Figure S2. The time evolution of total protein-surface interaction energy during the MD simulation

Figure S3. Contact maps between MvBOx and charged SAMs during simulations: (a) 7% dissociated COOH-SAM; (b) 7% dissociated NH₂-SAM; (c) 25% dissociated COOH-SAM; (d) 25%

Figure S4. Time evolution of the secondary structures of MvBOx adsorbed on different charged surfaces: (a) on 7% dissociated COOH-SAM; (b) on 7% dissociated NH₂-SAM; (c) on 25% dissociated COOH-SAM; (d) on 25% dissociated NH₂-SAM.