

Figure 1S. $\mathrm{Cd}_{4} \mathrm{SeX}_{6} \mathrm{~L}_{6}(\mathrm{X}=$ benzoate, $\mathrm{L}=$ methylamine) structures predicted with PBEO (a), PBEO-D3 (b), and MP2 (c) methods.
a

b

Figure 2S. $\mathrm{Cd}_{35} \mathrm{Se}_{20} \mathrm{X}_{30} \mathrm{~L}_{30}(\mathrm{X}=$ benzoate, $\mathrm{L}=$ methylamine) structures predicted with PBEO (a), PBEO-D3 (b) methods.

Figure 3S. Structures of the T 1 isomers of $\mathrm{Cd}_{4} \mathrm{SeX}_{6} \mathrm{~L}_{6}(\mathrm{X}=$ benzoates, $\mathrm{L}=$ methylamine $)$.

Figure 4 S . Structures of the $T 2$ isomers of $\mathrm{Cd}_{10} \mathrm{Se}_{4} \mathrm{X}_{12} \mathrm{~L}_{12}$ ($\mathrm{X}=$ benzoate, $\mathrm{L}=$ methylamine),
$4 A_{x, 2 L} 2 E_{2 x} 4 E_{x, L}(a), 3 A_{x, 2 L} A_{2 x, L} E_{2 x} 5 E_{x, L}(b),\left(4 A_{2 x, L} 2 E_{2 x} 4 E_{2 L}(c), 2 A_{x, 2 L} 2 A_{2 x, L} 6 E_{x, L}(d), 4 A_{2 x, L} 2 E_{2 L} 4 E_{x, L}(e)\right.$, $3 A_{2 X, L} A_{2 X, L} 2 E_{2 L} 4 E_{x, L}(f), 4 A_{2 \times 1} 4 E_{2 L} 2 E_{2 x}(g)$.

Figure 5S. Structures of the $T 3$ isomers of $\mathrm{Cd}_{20} \mathrm{Se}_{10}$ ($X=$ formate, $L=$ ammonia), $2 \mathrm{~A}_{2 x, 1} 2 \mathrm{~A}_{\mathrm{x}, 2 \mathrm{~L}} 5 \mathrm{E}_{2 \mathrm{XX}, 2 \mathrm{~L}} \mathrm{E}_{4 \mathrm{x}}$ $4 F_{L}(a), 2 A_{2 X, L} 2 A_{x, 2 L} 6 E_{2 X, 2 L} 2 F_{x} 2 F_{L}(b), 4 A_{x, 2 L} 6 E_{2 X, 2 L} 4 F_{X}(c), 4 A_{2 X, L} 6 E_{2 X, 2 L} 4 F_{L}(d), 2 A_{2 x, L} 2 A_{x, 2 L} 5 E_{2 X, 2 L} E_{4 x} 4 F_{1}$ (e), $4 \mathrm{~A}_{\mathrm{X}, 2 \mathrm{~L}} 5 \mathrm{E}_{2 \mathrm{X}, 2 \mathrm{~L}} \mathrm{E}_{4 \mathrm{X}} 4 \mathrm{~F}_{\mathrm{L}}(\mathrm{f}), 4 \mathrm{~A}_{2 \mathrm{X}, \mathrm{L}} 6 \mathrm{E}_{2 \mathrm{X}, 2 \mathrm{~L}} 4 \mathrm{~F}_{\mathrm{L}}$ with C_{2} symmetry (g), $4 \mathrm{~A}_{2 \mathrm{X}, \mathrm{L}} 4 \mathrm{E}_{2 \mathrm{X}, 2 \mathrm{~L}} 2 \mathrm{E}_{4 \mathrm{X}} 4 \mathrm{~F}_{\mathrm{L}}$ (h), $4 \mathrm{~A}_{\mathrm{X}, 2 \mathrm{~L}} 4 \mathrm{E}_{3 \mathrm{X}, \mathrm{L}} \mathrm{E}_{2 \mathrm{X}, 2 \mathrm{~L}} 4 \mathrm{~F}_{\mathrm{L}}(\mathrm{i})$

Figure 6 S . Structures of the $T 4$ isomers of $\mathrm{Cd}_{35} \mathrm{Se}_{20}\left(X=\right.$ formate, $L=$ ammonia), $4 \mathrm{~A}_{2 \mathrm{x}, \mathrm{L}} 4 \mathrm{E}_{4 \mathrm{X}, 2 \mathrm{~L}} 2 \mathrm{E}_{3 \mathrm{X}, 3 \mathrm{~L}}$ $4 F_{3 L}(a), 2 A_{2 X, L} 2 A_{x, 2 L} 6 \mathrm{E}_{4 x, 2 L} 2 \mathrm{~F}_{x} 4 \mathrm{~F}_{3 L}$ (b), $2 \mathrm{~A}_{2 \mathrm{X}, \mathrm{L}} 2 \mathrm{~A}_{\mathrm{x}, 2 \mathrm{~L}} 6 \mathrm{E}_{4 \mathrm{X}, 2 \mathrm{~L}} 4 \mathrm{~F}_{2 \mathrm{~L}}$ with C_{2} symmetry (c), $4 \mathrm{~A}_{\mathrm{x}, 2 \mathrm{~L}} 6 \mathrm{E}_{4 \mathrm{X}, 2 \mathrm{~L}} 4 \mathrm{~F}_{\mathrm{L}}(\mathrm{d})$, $2 A_{2 x, L} 2 A_{x, 2 L} 5 E_{2 x, 2 L} E_{4 x} 4 F_{1}(e), 2 A_{2 x, L} 2 A_{x, 2 L} 6 E_{4 x, 2 L} 6 F_{3 L}(f), 2 A_{2 x, L} 2 A_{x, 2 L} 6 E_{3 X, 3 L 3} F 2_{x, L} F_{3 L}(\mathbf{g})$,
$4 A_{2 X, L} 3 E 4_{X, 2 L} E_{2 X, 4 L}, 2 E_{3 X, 3 L} F_{2 X, L 3} F_{3 L}(h), .4 A_{2 X, L} 4 E_{3 X, 3 L} 2 E_{2 X, 4 L} 3 F_{2 X, L} F_{3 L}(i)$

