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1 Device design details

1.1 MD details

The velocity-Verlet algorithm is used to solve the equations of motion. The Nosé-Hoover

thermostat with relaxation time equal to 100 fs was used to control the simulation tem-

perature. All the interactions were cut off at 0.8 nm. A possible choice to reduce the

computational cost is to increase the timestep, provided that the calculated properties are

unaffected and that the energy is conserved in microcanonical (NVE) runs. To this aim,

we performed several simulations at increasing timesteps, followed by a NVE 1 ns long run.

The final configuration and mass density were unaffected by the timestep size up to more

than 10 fs, and energy was conserved during the NVE run. We thus set the timestep of all

our simulations to 10 fs. Further information is available elsewhere.1

1.2 Filling Factor, Volume and Thickness

Formally the Filling Factor (FF ) of the Ag NPs film is defined as the ratio between the

volume occupied by the Ag NPs VNP and the total volume of the film V (for a slab of non

porous silver, FF = 1). The relation between the FF and the film porosity hence reads:

porosity = 1− FF .

The MD simulations are performed by shooting the NPs on a rectangular domain of size

Lx × Ly=35×20 nm2. The z axis is perpendicular to this rectangular domain. The film

thickness is calculated by reticulating the rectangular domain (serving as the sample base)

into square cells of 0.5×0.5 nm2. Each cell is indexed by a pair of integers (nx, ny), where

nx ∈ {1, 2, 3, ..70} and ny ∈ {1, 2, 3, ..40}. The z-coordinate of the top-most atom falling

inside the cell (nx, ny) is z̃(nx, ny). Averaging the latter quantity on all the available cells

it is possible to obtain the average film thickness h. From the average thickness, the total

number of deposited atoms N and the volume of the Ag primitive cell V1Ag, the film filling
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factor is retrieved as:

FF =
VNP
V

=
N V1Ag
h(LxLy)

(S1)

1.3 Pore size

To quantify the pore size, we employed the method developed by Sainto and Toriwaki2 and

later optimised to study the trabecular bone structures.2–4

Briefly, the 3D void scaffold is partitioned in small cubic voxels (cube edge of 0.25 nm).

For each voxel V , the punctual pore size is defined as the diameter of the greatest sphere

completely inscribed in the void scaffold and containing V . By averaging the punctual pore

size for all the potentially permeable empty voxels, we obtained the average pore size and

its standard deviation.
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2 Sensing scheme

2.1 Derivation of Eq.2 and its applicability

In this section we derive Equation 2 of the main text. We have already discussed in the main

text that the contribution of the n-th breathing mode to the time-resolved optical trace is

described by the expression:

Fn(t) = Ane
−t/τn cos(2πfn t+ φn) θ(t). (S2)

Now we perform Fourier’s transform of Fn(t):

F̃n(f) =

∫ +∞

−∞
Fn(t)e

−i(2πf)tdt = An

∫ +∞

0

e−t/τn cos(2πfn t+ φn)e
−i(2πf)tdt =

=
An
2

{
eiφ
∫ +∞

0

exp

[(
− 1

τn
+ 2πi (fn − f)

)
t

]
dt+ e−iφ

∫ +∞

0

exp

[(
− 1

τn
− 2πi (fn + f)

)
t

]
dt

}
=

=
An
2

{
eiφ

1
τn

+ 2πi (f − fn)
+

e−iφ

1
τn

+ 2πi (f + fn)

}
= An

(
1
τn

+ 2πif
)

cosφ− 2πfn sinφ[
4π2(f 2

n − f 2) + 1
τ2n

]
+ 4πi f

τn

(S3)

As a consequence, the modulus of the Fourier’s transform is:

∣∣∣F̃n(f)
∣∣∣ = |An|

√√√√√√
(

1
τ2n

+ 4π2f 2
)

cos2 φ+ 4π2f 2
n sin2 φ− 2πfn

τn
sin (2φ)[

4π2(f 2
n − f 2) + 1

τ2n

]2
+ 16π2 f

2

τ2n

. (S4)

The latter expression is maximized for the following frequencies:

fMAX = ±

√√√√2πfn

√
4
τ2n

cos2 φ+ 4π2f2n −
4πfn
τn

sin (2φ) + 2πfn
τn

sin (2φ)− 1
τ2n

cos2 φ− 4π2f2n sin
2 φ

4π2 cos2 φ

(S5)

The modulus of the acoustic signal’s Fourier’s transform (equation S4) displays a compli-

cated expression, which depends on the signal phase φ. However, if the oscillation period is

much smaller than the decay times, i.e. fn � 1/τn, and for frequencies around the breathing
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mode frequencies (|f | ' fn) a simplification can be introduced.

First of all, 1
τ2n

is negligible with respect to 4π2f 2
n and hence N , the numerator of the fraction

under the square root in expression S4, reduces to:

N ≈ 4π2f 2 cos2 φ+ 4π2f 2
n sin2 φ− 2πfn

τn
sin (2φ) ≈

≈ 4π2f 2
(
cos2 φ+ sin2 φ

)
− 2πfn

τn
sin (2φ) = 4π2f 2 − 2πfn

τn
sin (2φ) ≈ 4π2f 2.

Now we introduce some approximations also for D, the denominator of the fraction under

the square root in equation S4. First of all we drop the term 1/τ 4n to obtain:

D ≈ 16π4(f 2
n − f 2)2 + 8π2f

2
n − f 2

τ 2n
+ 16π2f

2

τ 2n
.

Furthermore, if |f | ' fn, then we can write |f | ' fn + ξ, with ξ � fn, and hence f 2
n − f 2 =

−ξ2 − 2fnξ ≈ −2fnξ ≈ −2|f |ξ = −2|f |(|f | − fn). Considering this approximation we get

the following expression:

D ≈ 64π4f 2(|f | − fn)2 − 16π2|f | |f | − fn
τ 2n

+ 16π2f
2

τ 2n
≈ 64π4f 2(|f | − fn)2 + 16π2f

2

τ 2n
.

Now substituting the aforementioned approximations for N and D into the expression for∣∣∣F̃n(f)
∣∣∣ to obtain:

∣∣∣F̃n(f)
∣∣∣ = |An|

√
N

D
≈ |An|

√
4π2f 2

64π4f 2(|f | − f)2 + 16π2 f
2

τ2n

=
|An|

2

τn√
[2πτn(|f | − fn)]2 + 1

.

(S6)

Equation S6, which is valid under the limits fn � 1/τn and |f | ' fn, does not depend

on the phase φ and it displays a peak for the frequency fMAX = ±fn. As a consequence,

under these approximations the modulus of the Fourier’s transform is independent on the

acoustic signal’s phase. In Figure S1 a comparison between the non-approximated function
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from Equation S4, calculated for the phases φ ∈ {0, π/8, π/4, 3π/8, π/2}, is visible. The used

values are n=1, f1=30GHz, τ1=0.2ns (in agreement with the numbers reported in Figure 3

of the main text), so that f1= 6/τ1, and hence the condition f1 >> 1/τ1 is satisfied for the

system under investigation. The differences among the functions plotted in Figure S1 are

negligible (vertical axis is in logarithmic scale) and, consequently, Equation S6 is a reliable

approximation for |F̃n(f)|.
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Figure S1: Normalized Fourier’s transform magnitude |F̃ (f)| of the photoacoustic signal
expected for different initial phases, from eq. S4 and for the approximated equation (S6).
The used values are n = 1, f1 = 30 GHz, τ1 = 0.2 ns. The vertical axis is in logarithmic
scale to ease its visualization. The peaks’ position and FWHM is almost the same for each
starting phase φ.

2.2 Details of the model: derivation of Eq.s 3 and 4

As we have already described in the main text, the technique excites the longitudinal breath-

ing modes, so the problem can be considered as one-dimensional (1D). Furthermore the Ag

NP film, whether fluid-infiltrated or not, is mimicked as a homogeneous isotropic layer of

thickness h,5 characterized by the effective stiffness constant C∗
11 and density ρ∗ (see figure
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PDMS

Ag NP

PDMS

Z

Z=h

Z=0
C11               ρ
∗ ∗

C11,S           ρS

Figure S2: Left: sketch of the Ag porous film on the PDMS substrate. Right: Continuum
mechanics model: the Ag NP thin film has been modeled as a homogeneous and isotropic
1D film, characterized by the effective stiffness constant C∗

11 and density ρ∗11. The film is
anchored to a semi-infinite homogeneous and isotropic PDMS substrate of stiffness constant
C11,S and density ρS.

S2). The film is anchored to a semi-infinite homogeneous and isotropic PDMS substrate

with stiffness constant C11,S and density ρS. Referring to the coordinate system reported in

Figure S2, the longitudinal displacement field component uz(z, t) satisfies the wave equation

∂2uz(z, t)

∂t2
= v2j

∂2uz(z, t)

∂z2
(S7)

where z is the direction perpendicular to the film surface, the subscript j={NP , S} identifies

the NPs film and PDMS substrate respectively, vNP=
√
C∗

11/ρ
∗ and vS=

√
C11,S/ρS are the

longitudinal wave velocities in the NP film and in the PDMS substrate, respectively.

The equation is separable and the solution can be written in the form uz(z, t)=U(z)T (t). We

search for solutions of the type U(z)=ukjexp(ikjz)+u−kjexp(-ikjz) and T (t)=uωexp(-iωt),

resulting in the dispersion relation ω2=v2jk
2
j with ω and kj the angular frequency and the

wave vector in material j respectively.

We assign a stress free (Equation S8) boundary condition on the film surface (z=h), while
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the interface (z=0) between the PDMS (z<0) and the NP film (z>0) is assumed as “perfect”.

The latter condition is formally defined requiring continuity of displacement (Equation S9)

and stress (equivalent to Equation S10) at the junction of the two media:

∂U

∂z

∣∣∣∣
z=h

= 0 (S8)

U(0−) = U(0+) (S9)

C11,S
∂U

∂z

∣∣∣∣
0−

= C∗
11

∂U

∂z

∣∣∣∣
0+

(S10)

The PDMS substrate is taken as semi-infinite. For this reason the plane wave solution

propagating from the substrate toward the interface - regressive solution - is set to zero,

resulting in U(z)=u−ksexp(-jksz) for z<0. Forcing U(z) to satisfy the above-mentioned

boundary conditions, and accounting for the fact that Z > ZS, we obtain a dispersion

relation allowing for complex solutions ωn=Re{ωn}+iIm{ωn} only:

Re{ωn} = π
vNP
h
n (S11)

Im{ωn} =
vNP
2h

ln

(
Z − ZS
Z + ZS

)
(S12)

where Z=
√
C∗

11ρ
∗ and ZS=

√
C11,SρS are the acoustic impedance of the film and of the

substrate respectively, while n={1, 2, 3...}.

It is worth mentioning that Im{ωn}<0 and it does not depend on the mode index n. We

obtain a complex angular frequency since the regressive propagating wave in the substrate

has been forcibly avoided, leaving the elastic wave radiated from the NP film to the substrate

as the only possible solution within the substrate. The acoustic problem is thus energetically

open and the solutions are promoted to quasi-stationary states, the film’s breathing modes

being exponentially damped harmonic oscillations.

From equations S11 and S12 it is possible to obtain the expressions for breathing mode
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frequency and dacay time, as described in equations S13 and S14

fn =
Re{ωn}

2π
=
vNP
2h

n = f1n, (S13)

τn =
1

|Im{ωn}|
=

∣∣∣∣f1 ln

(
Z − ZS
Z + ZS

)∣∣∣∣−1

(S14)

which correspond to equation 3 and 4 of the main text.

2.3 A possible mechanism to convey water to the device

The description of the mechanisms to convey water to the device is beyond the scopes of the

present paper. Nevertheless we here suggest a possible route (one among many) to achieve

an homogeneous filling of the porous film avoiding a superficial thick water layer and air

clogging of the scaffold channels. The device may be homogeneously water infiltrated by

means of the surface adsorbed water layer due to moisture. It has been shown that it is

possible to tune the thickness of the water adsorbed layer on a flat SiO2 wafer from 0 to 3

nm just by varying the relative humidity.6 Considering that the contact angles for SiO2 and

metallic Ag are similar,7,8 especially in humid environment,9 we expect a similar wetting of

the scaffold here proposed. Furthermore, the nano-granular nature of the scaffold does not

strongly affect its surface energy.10
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3 The Practical Case

3.1 Materials constants

Here we report the literature values for bulk Ag, water and PDMS, together with the com-

puted effective elastic constants and acoustic impedances for the infiltrated porous film

described in the main text.

The film constituents normalised concentrations are:

• cAg = FF ≈ 64%

• cwater = (1− FF ) l

• cvoids = (1− FF ) (1− l)
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Figure S3: Computed values for the porous film as a function of the water loading. Top-
left: shear (G∗, red line) and bulk (K∗, blue line) effective moduli. Top-right: effective C∗

11

(red line) and density (ρ∗, blue line). These values are retrieved by using the Budiansky
method.11 Bottom: effective acoustic impedance Z=

√
C∗

11ρ
∗.
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In Table S1 the elastic constants (K and G) for the used materials are reported together

with references from the literature.

Figure S3 shows the computed elastic constants and acoustic impedance for the porous film

as a function of the water loading l.

Table S1: Summary of the mechanical properties adopted in this article.

KAg 100 GPa 5

GAg 30 GPa 5

ρAg 10490 kg/m3 12

Kw 2.2 GPa 13

Gw 0
ρw 1000 kg/m3 14

vs 1290 m/s 15

ρs 965 kg/m3 16

Zs 1.2×106 kg s-1 m-2 vs ∗ ρs

3.2 Layered cases for n≤3

We report the device loading curves for the first three breathing modes both for the cases of

homogeneous and layered filling. These include Figure 4 of the main manuscript.
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Figure S4: Frequency of the n=1 acoustic breathing modes (left axis, red) and decay times
(right axis, blue) vs water filling within the layered adsorption scenarios L-TOP (full lines), L-
BOT (dashed lines) and, for sake of comparison, for the homogeneous wetting case (markers).
Water filling is expressed both as relative volumetric loading l (bottom axis) and equivalent
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Figure S6: Frequency of the n=2 acoustic breathing modes (left axis, red) and decay times
(right axis, blue) vs water filling within the layered adsorption scenarios L-TOP (full lines), L-
BOT (dashed lines) and, for sake of comparison, for the homogeneous wetting case (markers).
Water filling is expressed both as relative volumetric loading l (bottom axis) and equivalent
areal mass loading ms (top axis).
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areal mass loading ms (top axis).
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Figure S8: Frequency of the n=3 acoustic breathing modes (left axis, red) and decay times
(right axis, blue) vs water filling within the layered adsorption scenarios L-TOP (full lines), L-
BOT (dashed lines) and, for sake of comparison, for the homogeneous wetting case (markers).
Water filling is expressed both as relative volumetric loading l (bottom axis) and equivalent
areal mass loading ms (top axis).
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