Thienopyrimidine-Chalcones Hybrid Molecules Inhibits Fas-activatedSerine/ThreonineKinase:An ApproachtoAmelioratesAntiproliferation in Human Breast Cancer Cells

Nashrah Sharif Khan¹, Parvez Khan², Mohammad Fawad Ansari³, Saurabha Srivastava², Gulam Mustafa Hasan⁴, Mohammad Husain^{1,*} and Md. Imtaiyaz Hassan^{2,*}

¹Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India.
²Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India.
³Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India.
⁴Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj,

Running head: FASTK Inhibitors

Saudi Arabia.

*Correspondence Dr. Md. Imtaiyaz Hassan Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India Tel.: +91-9990323217 *E-mail: mihassan@jmi.ac.in*

Professor Mohammad Husain

Department of Biotechnology Jamia Millia Islamia, New Delhi-110025, India Tel.: 011-26981717, 3426 (Extn) *E-mail: mhusain2@jmi.ac.in*

Table S1: Structures of Thienopyrimidine based chalcones and their binding affinity to FASTK and IC₅₀ values.

Compound No.	R	IC _{50,} (µM), for FASTK Inhibition	Binding affinity (Ka), M ⁻¹	Compound No.	R	IC _{50,} (µM), for FASTK Inhibition	Binding affinity (Ka), M ⁻¹
2		0.32	7.6 x 10 ⁵	10	Cl	0.17	1.16 x 10 ⁷
3	CH ₃	> 1.0	3.08 × 10 ⁴				
4	C ₂ H ₅	> 1.0	6.95 × 10 ²	11	H ₃ CO ^{OCH₃}	> 1.0	0.0237
5	COCH ₃	> 1.0	2.43 × 10 ²	12	OCH ₃ OCH ₃	0.15	2.98 x 10⁷
6	OC ₂ H ₅	> 1.0	2.68 × 10 ⁴	13	OCH ₃ OCH ₃	> 1.0	ND
7	OC ₃ H ₇	> 1.0	$3.7 imes 10^4$	14	O	> 1.0	ND
8		> 1.0	$1.1 imes 10^4$	15	H ₃ C	> 1.0	$1.67 imes 10^4$
9		> 1.0	3.08×10 ³	16		> 1.0	ND

¹³C NMR Compound 2

¹³C NMR Compound 4

¹H NMR Compound 6

¹H NMR Compound 7

¹³C NMR Compound 8

¹H NMR Compound 10

¹H NMR Compound 11

¹H NMR Compound 13

¹H NMR Compound 14

Figure S1: Binding studies of different compounds (Compound No. 3, 4, 5. 6, 7, 8, 9, 11, 13, 14, 15 and 16) with FATSK using fluorescence spectroscopy. (A). Panel represents fluorescence emission spectra and (B). Panel represents the Modified Stern-Volmer plot of different compounds.