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1. Detailed Image Analysis 
 

All image analysis was performed using Matlab-based software written in house.  For both 

binding and conformation studies, the two imaging channels were aligned using a non-uniform pixel 

displacement field.  The image used to determine the displacement field consisted of time-average 

image of all frames from one or more of the videos or a scratched slide illuminated with white light and 

imaged using the experimental set up.  The latter was necessary for binding experiments where objects 

colocalized between channels were the minority.   Fluorescent objects in each channel and excitation 

were identified using a user-defined background removal and thresholding procedure.  The positions of 

the fluorescent molecules were quantified by fitting a linearized circular Gaussian to the background 

subtracted intensities of the pixels encompassing each object, while the intensity was taken as the sum 

of these background subtracted pixel intensities. 

The objects identified in each channel during the Donor (532nm) excitation of the ALEX-SM-FRET 

experiments were colocalized within a radius of two pixels (440 nm).  These objects were then 

colocalized with the objects detected during the red excitation using the same radius.   All objects that 

were not detected during both excitations were discarded as mislabeled.   At this point, the acceptor-

excited data was discarded and all further analysis was performed on the donor excitation results.  

Trajectories were identified by colocalizing the objects in subsequent frames within a radius of 2 pixels, 

which accounts for localization error.   

For binding experiments, the emission from the Alexafluor 647 labeled NfsB was too weak to 

consistently identify objects in individual frames.  Instead, an average z-projection of the red channel 

was used to identify and locate the enzymes.  The substrates identified in the blue channel from each 

frame were then colocalized with the known enzyme positions.  Details on the method for channel 



alignment, object identification, intensity quantification, and colocalization of objects in either channel 

can be found elsewhere.1  Here, the uncertainty in object intensity was calculated as 𝛿 = √2(𝑁 − 𝐵)/𝐹 

where 𝑁 is the object intensity counts, 𝐵 is the baseline count added to the camera signal, 𝐹 is the 

camera-specific count-to-photon conversion factor, and the √2 factor is the additional noise multiplier 

that results from the electron multiplying process of the EMCCD camera. This uncertainty is equivalent 

to shot noise multiplied by √2. 

To prevent noise from being misidentified as objects, any detected substrate or dual labeled 

enzyme that did not last more than two frames (200 ms for substrates, 400 ms for NfsBFRET molecules) 

was removed from the data.  The data was also filtered to remove potential aggregates. To do this, both 

the trajectory duration (i.e. time to photobleach) and trajectory median intensity in each channel were 

assigned a cutoff at the parametric 95th percentile, above which trajectories were discarded.  To reduce 

the effect of very large outliers that are occasionally measured, the cutoff for each intensity was 

estimated as 2*𝜎 ≈ 2 ∗ 1.4826 ∗ 𝑀𝐴𝐷(𝐼) where 𝑀𝐴𝐷(𝐼) is the mean absolute deviation of the set of 

trajectory median intensities, 𝐼.  The trajectory duration cutoff was defined as the 95th percentile of the 

best-fit exponential distribution.   No aggregate removal procedure was applied to the binding data, as 

aggregates were not expected to significantly affect binding results, which have no sensitivity to object 

intensity or trajectory duration. 

Premature loss of a trajectory sometimes occurs during tracking conformation data due to the 

signal dipping below the object detection threshold.  This can be a result of shot noise, photo-blinking, 

or mid-frame FRET state transitions causing a reduced intensity in both channels.  To overcome this 

effect, trajectories that were in the same location but separated by a short time were linked, and the 

missing entries in in the trajectory data were assigned values.  The position data for the frames where 

the object was not detected were set to the average of all other positions of the trajectory, and the 

intensity data was calculated from the raw image data of the corresponding frame, using the same 



method as was used to quantify the intensities of the detected objects.  This procedure was performed 

after applying the excitation colocalization and minimum residence time cutoff, which prevents noise 

from artificially extending trajectories.  The allowable duration of reduced intensity (hereon referred to 

as the blink tolerance) was set to five frames (1 second).  In general, increases in the blink tolerance 

between 0 and 10 frames increased the exponentiality of the distribution of trajectory durations as 

shown in Figure S1, indicating that the added blink tolerance allowed objects to be more consistently 

tracked until photobleaching, which is theoretically expected to be exponential.  

Finally, objects that were initially detected at a time greater than one blink tolerance from the 

start of the movie were discarded to prevent the adsorption of fluorescent contaminants (including 

mobile, labeled enzyme) from affecting the results. 

 

Figure S1  (A) Semi-log plot showing the complimentary cumulative distribution of the bleach times (duration that an object is 

observed prior to photobleaching) for non-specifically tethered NfsB analyze with varying blink tolerances.  The distribution 

becomes increasingly exponential (the theoretically expected distribution of bleach times) as longer blinks are tolerated, 

indicating that fewer trajectories are being lost prematurely.  (B) A plot of the standard error of the rate parameter for the best-

fit exponential distribution for each blink tolerance, averaged for all 9 conditions (i.e., immobilization methods and urea 

concentrations).  This is used as a quantitative measure of the exponentiality of each distribution in (A), and demonstrates that 

the bleach times are continuously more exponential as the blink tolerance is increased.  This indicates that trajectories are not 

being prematurely lost.  A conservative blink tolerance of 5 frames was selected to prevent trajectories from being 

predominantly composed of low intensity objects.   

 



2. Sensitivity to Blink Tolerance, Intensity Cutoff, and Duration Cutoff 
 

A sensitivity analysis was performed by varying median intensity cutoff, duration (residence 

time) cutoff, and blink tolerance.  Each variable was varied one-at-a-time from the base values (i.e., the 

values used in the manuscript).  Specifically the median intensity cutoff was defined as 1σ, 2σ and 3σ 

where 𝜎 ≈ 1.4826 ∗ 𝑀𝐴𝐷(𝐼); the residence time cutoff was defined at 68th, 95th, and 99.7th percentile 

of the best fit exponential distribution; and the  blink tolerance was defined as 2, 5,  and 8 frames, 

where the middle value for parameters was the base value.  The results were used to calculate the 

folded fraction and average number of transitions for each condition, which are plotted in Figure S2 and 

Figure S3, respectively.  For the most part the folded fraction shows a weak sensitivity to all 3 

parameters, and the reported trend is maintained at all tested parameter sets.  The variation in the 

transition rates with changes to the parameters is more significant.  However, the observed trend is 

similar with all parameter sets.  The analysis of the substrate binding rate on folded enzymes, 𝜆̅𝑓𝑜𝑙𝑑𝑒𝑑, 

were also carried out using the results of the sensitivity analysis, and the models described in section 4.  

These are shown in Figures S4.  While the values determined using different parameter sets are 

nominally different, the main conclusions can still be drawn from all of the data sets.  Specifically, the 

value of 𝜆̅𝑓𝑜𝑙𝑑𝑒𝑑 significantly increases from adsorbed NfsB to tethered NfsB, and from nonspecifically 

tethered NfsB to site-specifically tethered NfsB in all cases.  Thus, variation in these selected parameters 

does not alter the important finding reported in the manuscript. 



 

Figure S2 Ribbon plots showing the folding fraction of the 9 conditions (x-axis) determined from data analyzed using the 

indicated blink tolerance, intensity cutoff, or residence time cutoff with the other two parameters set to the values used to 

produce the results reported in the manuscript (indicated in the legend with an asterisk). 



 

Figure S3 Ribbon plots showing the average counted transition/second  of the 9 conditions (x-axis) determined from data 

analyzed using the indicated blink tolerance, intensity cutoff, or residence time cutoff with the other two parameters set to the 

values used to produce the results reported in the manuscript (indicated in the legend with an asterisk). 

 



 

Figure S4 Bar plots showing the folded binding rate (𝜆̅)  of (A) LF and (B) FMN determined from data analyzed using the 

indicated blink tolerance, intensity cutoff, or residence time cutoff with the other two parameters set to the values used to 

produce the results reported in the manuscript (indicated in the legend with an asterisk). 

 

3. Modeling Enzyme Conformation 
 

The folding states of the enzymes were modeled using a 3-state Markov chain model, in which 

enzymes can take on an unfolded, folded or photobleached state (it was important to account for 

photobleaching because the acceptor dye bleached on a similar time scale to the enzyme folding 

transitions). The transition probability matrix takes the form, 

 

𝑇𝑅 = (
1 − 𝑝𝑓 − 𝑝𝑏 𝑝𝑓 𝑝𝑏

𝑝𝑢 1 − 𝑝𝑢 − 𝑝𝑏 𝑝𝑏

0 0 1

)                (S1), 

 



 where 𝑝𝑓, 𝑝𝑢, and 𝑝𝑏 are the probabilities that a molecule will fold, unfold or bleach between two 

consecutive frames.  The value of 𝑝𝑏 was independently determined by fitting the distribution of times 

before the first fluorescent label bleaches to an exponential distribution.  The bleaching rate was treated 

as identical for both folded and unfolded molecules, which is reasonable because both the acceptor and 

donor label were directly excited throughout the video, and the directly excited acceptor dye bleached 

much faster than donor-excited acceptor dye for both high and low FRET molecules.  The values for 𝑝𝑓 

and 𝑝𝑢 were estimated by maximizing the likelihood function, 

 

𝐿𝐹(𝑆|𝑝𝑓 , 𝑝𝑢) = ∏ [∏ 𝑇𝑅(𝑆𝑖−1,𝑘, 𝑆𝑖,𝑘|𝑝𝑓 , 𝑝𝑢)𝑖=1 ]𝑘   (S2), 

 

where {𝑆1,𝑘 ⋯ 𝑆𝑛,𝑘} is the sequence of observed folding states for the 𝑘th trajectory.  The maximum 

likelihood estimate can be defined explicitly for this as 

 

𝑝̂𝑢 =
𝑁𝑓𝑢(1−𝑝𝑏)

𝑁𝑓𝑓+𝑁𝑓𝑢
   (S3) 

and   

𝑝̂𝑓 =
𝑁𝑢𝑓(1−𝑝𝑏)

𝑁𝑢𝑢+𝑁𝑢𝑓
            (S4), 

 

where 𝑁𝑢𝑓, 𝑁𝑢𝑢, 𝑁𝑓𝑢, 𝑁𝑓𝑓 , and 𝑁𝑏  are the total number times an object folds, remains unfolded, 

unfolds, or remains folded, respectively, throughout the population.  This homogeneous estimate has 

been used by us previously.2  

The simplest form of this model assumes that the folding kinetic are first order and that 

molecules exhibit homogeneous folding kinetics.  The latter assumption is not physically realistic given 

the heterogeneous environment that the enzymes will experience on the surface. Markov chain 



mixtures were employed to account for possible heterogeneity in the enzyme population, where the 

definition of 𝑇𝑅 varies between molecules, while remaining constant with time. Specifically, a mixture 

model of several discrete populations with distinct transition probabilities, and an over-disperse Markov 

chain model where 𝑝𝑓  and  𝑝𝑢  vary throughout the population and follow independent beta 

distributions (chosen for the diversity of the distribution shape and because it is appropriately double 

bounded).  The maximum likelihood estimates could not be defined explicitly for either of these more 

complex models, so the parameters were estimated using numeric optimization of the likelihood 

functions.  For the discrete 𝑇𝑅 model, the likelihood was a simple extension of Eq S2,  

 

𝐿𝐹(𝑆|𝑓, 𝑝𝑓 , 𝑝𝑢) = ∏ [∑ 𝑓𝑗 ∗ ∏ 𝑇𝑅𝑗(𝑆𝑖−1,𝑘, 𝑆𝑖,𝑘|𝑝𝑓,𝑗, 𝑝𝑢,𝑗) 𝑖=2𝑗 ]𝑘   (S5), 

 

where 𝑓𝑗 is the fraction of the enzyme population that exhibits the 𝑖th transition matrix and transition 

probabilities.  The log of 𝐿𝐹 was maximized by varying the values of 𝑓, 𝑝𝑓 , and  𝑝𝑢, which make up 5 

parameters for a 2-population model. 

The likelihood function for the model with Beta-distributed transition probabilities is given by 

 

𝐿𝐹(𝑆|𝑎𝑓 , 𝑏𝑓 , 𝑎𝑢 , 𝑏𝑢) = ∏ [
Β(𝑎𝑓+𝑁𝑢𝑓,𝑘,𝑏𝑓+𝑁𝑢𝑢,𝑘)Β(𝑎𝑢+𝑁𝑓𝑢,𝑘,𝑏𝑢+𝑁𝑓𝑓,𝑘)

Β(𝑎𝑓,𝑏𝑓)Β(𝑎𝑢,𝑏𝑢)
𝑝𝑏

𝑁𝑏,𝑘(1 − 𝑝𝑏)𝑁𝑢𝑢,𝑘+𝑁𝑢𝑓,𝑘+𝑁𝑓𝑓,𝑘+𝑁𝑓𝑢,𝑘]𝑘    (S6), 

 

where Β is the beta function.  The model is parameterized by 𝑎𝑓 , 𝑏𝑓 , 𝑎𝑢, and 𝑏𝑢, which are the 

parameters defining the beta distribution of 𝑝𝑓 and  𝑝𝑢, respectively. These values were estimated by 

maximizing the log of the likelihood function given by Eq S6. The derivation of Eq S6 is given in section 5.  

Once the average maximum-likelihood estimates of the transition probabilities, 𝑝̂𝑢  and 𝑝̂𝑓 , were 

determined, the average folding and unfolding rate constant could be estimated as 

𝑘𝑓 = −𝑙𝑜𝑔 (1 − 𝑝̂𝑓) (𝜏 − 𝜏𝑝𝑏)⁄  and 𝑘𝑢 = −𝑙𝑜𝑔(1 − 𝑝̂𝑢) (𝜏 − 𝜏𝑝𝑏)⁄  where 𝜏  is the frame acquisition 



time.  For the beta-distributed transition probabilities, this translated to average rate constants of 

𝑘𝑓 = − (𝜓(𝑏𝑓) − 𝜓(𝑎𝑓 + 𝑏𝑓)) /𝜏 and 𝑘𝑢 = −(𝜓(𝑏𝑢) − 𝜓(𝑎𝑢 + 𝑏𝑢))/𝜏, respectively, where 𝜓 is the 

digamma function. 

4. Modeling Substrate Binding 
 

As described in the manuscript, to account for enzyme conformation, the average binding rate, 

𝜆, was defined as 𝜆 = 𝜆0 ∗ 𝑥, returning a binding rate distribution of 

 

𝑃𝑏𝑖𝑛𝑑(𝑘|𝜆0) = ∫
(𝜆0∗𝑥)𝑘exp (−𝜆0∗𝑥)

𝑘!

1

0
∗ 𝑃𝑓𝑜𝑙𝑑(𝑥)𝑑𝑥  (S7) 

 

where 𝜆0 represents the unperturbed binding rate of a fully functional and active enzyme, 𝑘 is the 

number of observed binding events, and 𝑥 is the fraction of time an enzyme spends folded which is 

distributed by the probability density function, 𝑃𝑓𝑜𝑙𝑑. Additional contributions were considered by 

redefining 𝜆 as 𝜆 = 𝜆0 ∗ 𝑥 ∗ 𝑦.   Applying this to Eq. S8 gives a binding rate distribution of 

 

𝑃𝑏𝑖𝑛𝑑(𝑘) = ∫ ∫
(𝜆0∗𝑥∗𝑦)𝑘 exp(−𝜆0∗𝑥∗𝑦)

𝑘!

1

0

1

0
∗ 𝑃𝑓𝑜𝑙𝑑(𝑥) ∗ 𝑃𝑎𝑐𝑡𝑖𝑣𝑒(𝑦)𝑑𝑦𝑑𝑥 (S8), 

 

where 𝑦 is the fraction of full activity of an enzyme whose folded activity, 𝜆0, is reduced by a system 

property that is independent of the folding state and 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 is the probability distribution of 𝑦. This can 

be thought of as an additional reduction in the activity of folded enzymes that would otherwise be fully 

active.   



This approach was used to introduce one additional fitting parameter, 𝑝𝑎𝑐𝑡𝑖𝑣𝑒, which is the 

fraction of time a folded enzyme is also fully active. This was applied to Eq. S9 by defining  

𝑃𝑎𝑐𝑡𝑖𝑣𝑒(𝑦|𝑝𝑎𝑐𝑡𝑖𝑣𝑒)  as a Bernoulli distribution, yielding the zero-inflated Poisson mixture, 

 

𝑃𝑏𝑖𝑛𝑑(𝑘|𝜆0, 𝑝𝑎𝑐𝑡𝑖𝑣𝑒) = 𝑝𝑎𝑐𝑡𝑖𝑣𝑒 ∫
(𝜆0∗𝑥)𝑘exp (−𝜆0∗𝑥)

𝑘!

1

0
∗ 𝑃𝑓𝑜𝑙𝑑(𝑥)𝑑𝑥  (S9). 

 

The distribution 𝑃𝑓𝑜𝑙𝑑  was estimated for each of the conformation state models described above 

by defining a probability mass function based on simulations of 50,000 trajectories.  The simulations 

were defined by the conformation models and maximum likelihood estimates described in the previous 

section, except that the photobleaching probability, 𝑝𝑏, was set to zero, the other probabilities defined 

in Eq. S1 were accordingly renormalized, and the duration of each trajectory was equal to the movie 

length used for binding experiments of one minute.  For the Markov chain mixture models, prior to 

simulating the state sequence, each trajectory was assigned values for 𝑝𝑓 and 𝑝𝑢, as well as an initial 

state of either folded or unfolded.  The transition probabilities for each trajectory of the models that use 

a mixture of discrete transition matrices were assigned by direct sampling according to the population 

fractions, 𝑓 in Eq. S5.  For the Markov chain mixture with Beta-distributed transition probabilities, the 

transition probabilities for each trajectory were randomly sampled from the best-fit beta distribution 

using the built-in Matlab function betarnd. After the transition matrix was defined, the initial state was 

randomly selected according to the probability of occupying either state at equilibrium, 𝑃𝑒𝑞.  The 

equilibrium probability was determined by 

 

𝑃𝑒𝑞 = [0 1] ∗ 𝑇𝑅∞ =
1

𝑝𝑓+𝑝𝑢
∗ [𝑝𝑢 𝑝𝑓]  (S10). 

 



Maximum likelihood fitting was use to estimate the unperturbed binding rate, 𝜆0, and 𝑝𝑎𝑐𝑡𝑖𝑣𝑒 where 

applicable.  The likelihood function was simply defined by 𝐿𝐹 = ∏ 𝑃𝑏𝑖𝑛𝑑(𝑘𝑖)𝑖 , where 𝑘𝑖 is the number of 

binding events observed on the 𝑖th enzyme and 𝑃𝑏𝑖𝑛𝑑 was defined by either Eq. S8 or S10. 

5. Derivation of Equation S5 
 

The likelihood function for the Markov-chain with Beta-distributed transition probabilities is 

given by  

𝐿𝐹(𝑆|𝑎𝑓 , 𝑏𝑓 , 𝑎𝑢 , 𝑏𝑢) = ∏ [∫ ∫ 𝑃𝑓(𝑝𝑓|𝑎𝑓 , 𝑏𝑓)𝑃𝑢(𝑝𝑢|𝑎𝑢 , 𝑏𝑢) ∏ 𝑇𝑅(𝑆𝑖−1,𝑘, 𝑆𝑖,𝑘|𝑝𝑓 , 𝑝𝑢)𝑑𝑝𝑓𝑑𝑝𝑢
𝑛
𝑖=2

1−𝑝𝑏

0

1−𝑝𝑏

0
]𝑘   (S11), 

 

where 𝑃𝑓 and 𝑃𝑢 are the beta distributions of the folding and unfolding transition probabilities and are 

rescaled to be defined on the interval (0,1 − 𝑝𝑏) which encompases all values that 𝑝 can take. Written 

out, these take the form  

 

𝑃𝛽(𝑝|𝑎, 𝑏) =
(

𝑝

1−𝑝𝑏
)

𝑎−1

(1−
𝑝

1−𝑝𝑏
)

𝑏−1

Β(𝑎,𝑏)
  (S12). 

 

By evaluating the product around the transition matrix and considering the likelihood of a single 

trajectory, 𝑘, Eq. S11 becomes 

 

𝐿𝐹𝑘 = ∫ ∫ 𝑃𝑓(𝑝𝑓|𝑎𝑓 , 𝑏𝑓)𝑃𝑢(𝑝𝑢|𝑎𝑢 , 𝑏𝑢)
1−𝑝𝑏

0

1−𝑝𝑏

0
𝑝𝑏

𝑁𝑏,𝑘𝑝
𝑓

𝑁𝑢𝑓,𝑘(1 − 𝑝𝑏 − 𝑝𝑓)
𝑁𝑢𝑢,𝑘

𝑝𝑢

𝑁𝑓𝑢,𝑘(1 − 𝑝𝑏 − 𝑝𝑢)𝑁𝑓𝑓,𝑘𝑑𝑝𝑓𝑑𝑝𝑢   

(S13). 



 

The double integral can be separated into the product of two independent integrals, giving 

 

𝐿𝐹𝑘 = 𝑝𝑏

𝑁𝑏,𝑘 [∫ 𝑃𝑓(𝑝𝑓|𝑎𝑓 , 𝑏𝑓)𝑝
𝑓

𝑁𝑢𝑓,𝑘(1 − 𝑝𝑏 − 𝑝𝑓)
𝑁𝑢𝑢,𝑘

𝑑𝑝𝑓 
1−𝑝𝑏

0
]   

× [∫ 𝑃𝑢(𝑝𝑢|𝑎𝑢 , 𝑏𝑢)
1−𝑝𝑏

0
𝑝𝑢

𝑁𝑓𝑢,𝑘(1 − 𝑝𝑏 − 𝑝𝑢)𝑁𝑓𝑓,𝑘𝑑𝑝𝑢] (S14) 

 

These two integral are treated identically from this point on, so we will continue only with the integral 

with respect to 𝑝𝑓, referred to as 

 

𝐼𝑓 = ∫ 𝑃𝑓(𝑝𝑓|𝑎𝑓 , 𝑏𝑓)𝑝
𝑓

𝑁𝑢𝑓,𝑘(1 − 𝑝𝑏 − 𝑝𝑓)
𝑁𝑢𝑢,𝑘

𝑑𝑝𝑓  
1−𝑝𝑏

0
 (S15). 

 

Substituting Eq. S12 into Eq. S15 for 𝑃𝑓 returns 

 

𝐼𝑓 = ∫
(

𝑝𝑓

1−𝑝𝑏
)

𝑎𝑓−1

(1−
𝑝𝑓

1−𝑝𝑏
)

𝑏𝑓−1

𝑝
𝑓

𝑁𝑢𝑓,𝑘
(1−𝑝𝑏−𝑝𝑓)

𝑁𝑢𝑢,𝑘

Β(𝑎𝑓,𝑏𝑓)
𝑑𝑝𝑓 

1−𝑝𝑏
0

  (S16). 

 

From here, we divide out (1 − 𝑝𝑏) such that (1 − 𝑝𝑏) has the same degree in the base of each 

exponential term, giving   

 



𝐼𝑓 =
(1−𝑝𝑏)

𝑁𝑢𝑓,𝑘+𝑁𝑢𝑢,𝑘

Β(𝑎𝑓,𝑏𝑓)
∫ (

𝑝𝑓

1−𝑝𝑏
)

𝑎𝑓−1

(1 −
𝑝𝑓

1−𝑝𝑏
)

𝑏𝑓−1

(
𝑝𝑓

1−𝑝𝑏
)

𝑁𝑢𝑓,𝑘
(1 −

𝑝𝑓

1−𝑝𝑏
)

𝑁𝑢𝑢,𝑘
𝑑𝑝𝑓  

1−𝑝𝑏
0

  (S17). 

 

These can then be multiplied to 

 

𝐼𝑓 =
(1−𝑝𝑏)

𝑁𝑢𝑓,𝑘+𝑁𝑢𝑢,𝑘

Β(𝑎𝑓,𝑏𝑓)
∫ (

𝑝𝑓

1−𝑝𝑏
)

𝑁𝑢𝑓,𝑘+𝑎𝑓−1

(1 −
𝑝𝑓

1−𝑝𝑏
)

𝑁𝑢𝑢,𝑘+𝑏𝑓−1

𝑑𝑝𝑓 
1−𝑝𝑏

0
  (S18). 

 

By rearranging Eq. S12, we can see that the integrand of Eq. S18 is equal to a beta distribution 

multiplied by its normalizing constant, 𝑃𝛽Β, which is substituted into Eq. S18 such that 

 

𝐼𝑓 =
Β(𝑎𝑓+𝑁𝑢𝑓,𝑘,𝑏𝑓+𝑁𝑢𝑢,𝑘)(1−𝑝𝑏)

𝑁𝑢𝑓,𝑘+𝑁𝑢𝑢,𝑘

Β(𝑎𝑓,𝑏𝑓)
∫ 𝑃𝛽(𝑝𝑓|𝑎𝑓+𝑁𝑢𝑓,𝑘, 𝑏𝑓 + 𝑁𝑢𝑢,𝑘)𝑑𝑝𝑓 

1−𝑝𝑏
0

 (S19). 

 

 

At this point, the integral can be evaluated to one, leaving the coefficient.  Substituting this and the 𝑝𝑢 

analog back into Eq. S14 returns the final likelihood function for a single trajectory, 

 

𝐿𝐹𝑘 =
Β(𝑎𝑓+𝑁𝑢𝑓,𝑘,𝑏𝑓+𝑁𝑢𝑢,𝑘)Β(𝑎𝑢+𝑁𝑓𝑢,𝑘,𝑏𝑢+𝑁𝑓𝑓,𝑘)

Β(𝑎𝑓,𝑏𝑓)Β(𝑎𝑢,𝑏𝑢)
𝑝

𝑏

𝑁𝑏,𝑘(1 − 𝑝𝑏)𝑁𝑢𝑢,𝑘+𝑁𝑢𝑓,𝑘+𝑁𝑓𝑓,𝑘+𝑁𝑓𝑢,𝑘   (S20) 

 

6. Estimation of the Fraction of Falsely Identified Binding Events 
 



 During SM-TIRFCM measurement, substrate adsorption to the surface within the co-localization 

radius of an enzyme can occasionally be mistaken for active-site binding.  To estimate the fraction of 

binding events that were falsely interpreted adsorption events, we first determined the rate of surface 

adsorption events (𝜆𝑎𝑑𝑠 ) by counting the number of non-co-localized substrate molecule adsorption 

events per frame.  We then estimated the fraction of falsely identified binding events (𝑃𝑓𝑎𝑙𝑠𝑒) as  

𝑃𝑓𝑎𝑙𝑠𝑒 =
𝜆𝑎𝑑𝑠𝑁𝑒𝑛𝑧𝑦𝑚𝑒

𝜆𝑏𝑖𝑛𝑑𝑁𝑓𝑟𝑎𝑚𝑒
    (S21) 

where 𝑁𝑒𝑛𝑧𝑦𝑚𝑒 is the total number of pixels that were colocalized with an enzyme,  and 𝜆𝑏𝑖𝑛𝑑 is the 

average substrate binding rate (as shown in Figure 5A) and 𝑁𝑓𝑟𝑎𝑚𝑒 is the total number of pixels in the 

frame.  The results for each immobilization method and enzyme are shown in Table S1.  As can be seen, 

LF had a much higher affinity for the surrounding surface than FMN.  Nonetheless, the uncertainties of 

the mean binding rates, folded binding rates, and 𝜆̅𝑓𝑜𝑙𝑑𝑒𝑑 were greater than 𝜆̅𝑓𝑜𝑙𝑑𝑒𝑑 ∗ 𝑃𝑓𝑎𝑙𝑠𝑒 except in 

the case of physically adsorbed enzymes where the binding rate was very low.  In this case, the bottom 

error bars were adjusted to reflect the uncertainty due to 𝑃𝑓𝑎𝑙𝑠𝑒, which would only serve to reduce the 

average binding rates.  These values represent the upper bound estimate, as the calculation of 𝑃𝑓𝑎𝑙𝑠𝑒 

does not account for unlabeled NfsB, which exists on the surface, and would inflate the adsorption rate.  

Table 1 Values of the estimated fraction of falsely identified binding event due to 
surface adsorption for each of the substrates and immobilization methods.  

 𝑃𝑓𝑎𝑙𝑠𝑒 FMN Binding 𝑃𝑓𝑎𝑙𝑠𝑒 LF Binding 

Physically Adsorbed 0.20 0.18 

Non-specifically Tethered 0.03 0.11 

Site-specifically Tethered 0.03 0.10 

 

7. Lower Bound Estimate of Substrate Binding Rate for FMN on Fully 

Active Non-Specifically Tethered NfsB 
 



The average binding rate of fully active enzymes must be greater than 9 events/min such that all 

observed binding rates can be explained by either Poisson variance (if greater than the fully active 

binding rate) or reduced activity (if lower than the fully active binding rate). For this distribution, 8.5 

events/min was determined as the minimum value for which the maximum observed binding rate of 18 

events/min (which is, most likely, still only partially active) was statistically feasible and would occur 

with the same probability shown in Figure 6A (0.001). 

 

8. Supplemental Figures 
 

 

Figure S5 Circular dichroism spectrum of unlabeled NfsBFRET (green circles) mutant and wild-type NfsB (blue line), 
demonstrating that the structure of NfsB in solution was unaffected by the mutations.   The spectra are averaged from three 
successive scans between 185-260 nm in 0.5 nm increments and an integration time of 0.5 s per increment. 
 



 

Figure S6 Normalized fluorescent emission of 0.005 µM FRET-labeled NfsB in buffer solutions containing different 
concentrations of urea.  The measurements were taken using an excitation of 532 nm. Estimated FRET efficiencies for each 
curve were 0.371, 0.317, and 0.12 for NfsB in 0 M, 3.5 M, and 8M urea, respectively, demonstrating that the FRET-labeled NfsB 
unfolds in urea.  These estimates were calculated as 𝐼𝐴/(𝐼𝐴 + 𝐼𝐷) where  𝐼𝐴 is the area under each curve from 565nm to 605nm 
and 𝐼𝐷 is the area under each curve from 665nm to 705nm, corresponding to the filtered light detected in each imaging channel 
during single molecule imaging.  
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Figure S5 Heat map representations of binned acceptor and donor intensities of immobilized NfsB.  All maps shows two discrete 

population peaks corresponding to folded and unfolded populations, where the black line is used to divide the two populations 

and assign either a folded or an unfolded state to each observation.  From left to right, the plot correspond to physically 

adsorbed, nonspecifically tethered and site-specifically tethered NfsB, while from top to bottom the figure correspond to 0M, 

3.5M and 8M urea.    



 

 

Figure S6 Semi-log plot showing the complimentary cumulative state dwell-time distribution (circles) for folded 
(blue) and unfolded (orange) NfsB. The system was fit assuming a single population with homogeneous folding and 
unfolding kinetics (dotted line), two discrete populations with distinct kinetics (dashed line) and continuously 
variable kinetic parameters (solid lines). From left to right, the plot correspond to physically adsorbed, 
nonspecifically tethered and site-specifically tethered NfsB, while from top to bottom the figure correspond to 0M, 
3.5M and 8M urea.    



 

Figure S7 Plots of the same data shown in Figure S8 except that it is zoomed in to show more detail at low dwell 
times, where the model with continuously variable kinetic parameters is typically superior to the other 2 models. 
From left to right, the plot correspond to physically adsorbed, nonspecifically tethered and site-specifically 
tethered NfsB, while from top to bottom the figure correspond to 0M, 3.5M and 8M urea.    

 



 

Figure S8 Semi-log plot showing the distribution of the fractions of time that each trajectory spent in the folded 
state (circles). The system was fit assuming a single population with homogeneous folding and unfolding kinetics 
(dotted line), two discrete populations with distinct kinetics (dashed line) and continuously variable kinetic 
parameters (solid lines), where MC stands for Markov chain. From left to right, the plot correspond to physically 
adsorbed, nonspecifically tethered and site-specifically tethered NfsB, while from top to bottom the figures 
correspond to 0M, 3.5M and 8M urea.    

 



Figure S9 Plots showing the beta distributions of folding and unfolding transition probabilities corresponding to the best-fit 
beta-mixed Markov-Chain model shown by the solid lines in Figures S8-S10.  From left to right, the plot correspond to physically 
adsorbed, nonspecifically tethered and site-specifically tethered NfsB, while from top to bottom the figures correspond to 0M, 
3.5M and 8M urea.    

 



 

Figure S10 Plots showing the probability density of the folding and unfolding rate constants corresponding to the best-fit beta-

mixed Markov-Chain model shown by the solid lines in Figures S8-S10, and corresponding to the distributions of transition 

probabilities shown in Figure S11.  From left to right, the plot correspond to physically adsorbed, nonspecifically tethered and 

site-specifically tethered NfsB, while from top to bottom the figures correspond to 0M, 3.5M and 8M urea. 



 

Figure S11 𝑃𝑓𝑜𝑙𝑑  distribution simulated using each of the 3 models used to describe the enzyme conformational dynamics. The 

simulations are described in section 4.  From left to right, the plot correspond to physically adsorbed, nonspecifically tethered 

and site-specifically tethered NfsB, while from top to bottom the figures correspond to 0M, 3.5M and 8M urea. 



 

Figure S12  Semi-log plot showing the measured binding rate distribution of FMN (top row) and LF (bottom row) on 

NfsB immobilized by physical adsorption (left) non-specific tethering (middle) and specific tethering (right) along 

with the best fit distributions when modeled using a single Poisson distribution (𝜆 = 𝜆0) and two Poisson mixture 

models; one which accounts for the fraction of time spent folded, x, and one which accounts for both x and 

additional loss of activity for reasons other than the folding state, y. 
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