
Supporting Information

Amino-Modified Fe-Terephthalate Metal-Organic Framework as an Efficient Catalyst for the Selective Oxidation of $\rm H_2S$

Xiao-Xiao Zheng, Li-Juan Shen, Xiao-Ping Chen, Xiao-Hai Zheng, Chak-Tong Au, and Li-Long Jiang*

National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China. E-mail: jll@fzu.edu.cn

Figure S1. XRD patterns of MIL-53(Fe) synthesized in the present study and that reported in literature simulated here for comparison.

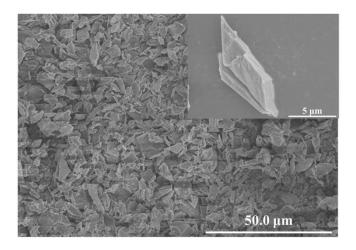


Figure S2. SEM images of MIL-53(Fe).

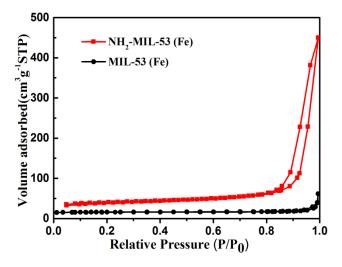
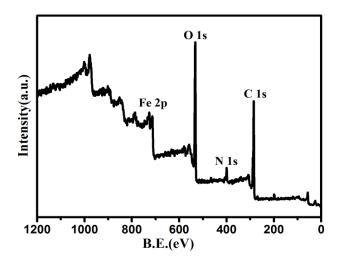
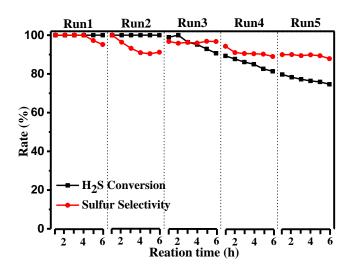
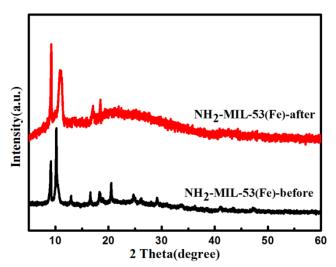


Figure S3. N₂ adsorption-desorption isotherms of MIL-53(Fe) and NH₂-MIL-53(Fe).


Figure S4. XPS survey spectrum of NH₂-MIL-53(Fe).

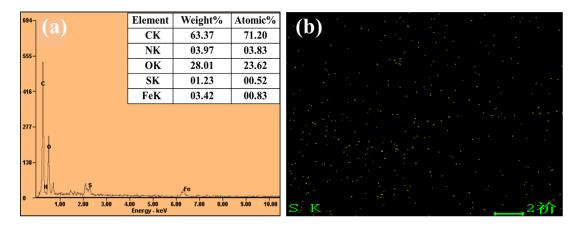

Figure S5. Pictures of sulfur recovered from the effluent.

Figure S6. Stability test of NH₂-MIL-53(Fe) at 160 °C. Reaction conditions: catalyst (0.2 g), $H_2S/O_2/N_2 = 5/2.5/92.5$ (wt %), WHSV (3000 mL·g⁻¹·h⁻¹), gas flow rate (10 mL/min).

Figure S7. XRD patterns of fresh and used NH₂-MIL-53(Fe) samples.

Figure S8. (a) EDX spectrum (inset are the elemental ratio of components), and (b) S elemental mapping of used NH₂-MIL-53(Fe).