Supporting Information

Observation of Olefin/Paraffin Selectivity in Azo Compound and Its Application into a Metal-Organic Framework

Seo-Yul Kim,^a Tae-Ung Yoon,^a Jo Hong Kang,^a Ah-Reum Kim,^a Tea-Hoon Kim,^a Seung-Ik Kim,^a Wanje Park,^a Ki Chul Kim^{b,*} and Youn-Sang Bae^{a,*}

^a Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro,

Seodaemun-gu, Seoul, 03722, Korea

^b Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea

E-mail: mowbae@yonsei.ac.kr (Youn-Sang Bae), kich2018@konkuk.ac.kr (Ki Chul Kim)

<Experimental details>

NMR

MIL-101(Cr) and MIL-101(Cr)_DAA samples were digested for nuclear magnetic resonance (NMR) spectroscopy measurements. Activated samples were immersed in 2 M NaOH solutions and then were ultrasonicated for 30 min. From the resulting slurries, water was removed through evaporation. The resulting powders were immersed in dimethyl sulfoxide-d6 (Sigma Aldrich). After the remaining crystals were excluded by a syringe filter, MIL-101(Cr) and MIL-101(Cr)_DAA samples were digested for nuclear magnetic resonance (NMR) spectroscopy measurements.

Breakthrough experiments

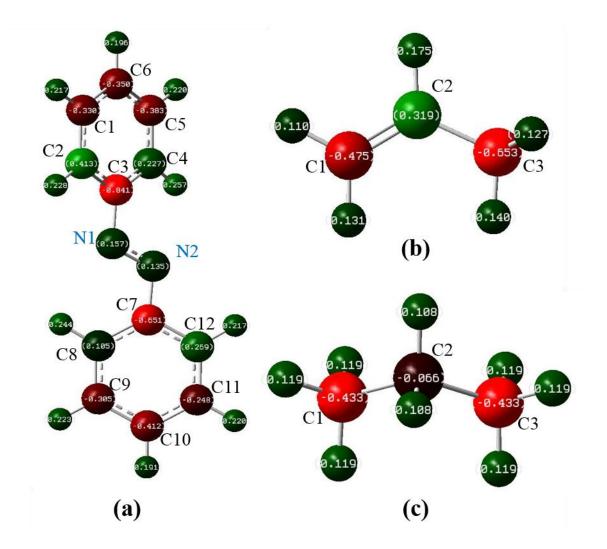
The breakthrough experiments were carried out in a custom-built fixed-bed experimental set up. Four mass flow controllers (0~100 ml/min) (Bronkhorst, Germany) were used to regulate the gas flow rates. Three of them were used for pure propylene, propane and helium streams, which were mixed well with each other by flowing through a gas mixer. The first combination made helium/propylene/propane mixtures and the other one was used for the helium stream for in situ regeneration of the adsorbent packed in the column. The column was placed in a ventilated thermostatic oven for measurements at a constant temperature. The composition of the gas flow at the outlet of the column was measured online with a Max300-LG mass spectrometer (Extrel, USA). To avoid large pressure drops, the powder sample was pelletized using a Carver press (Carver, Inc., USA). As-synthesized powders were put into a die with an inner diameter of 13 mm and pressed at 0.5 ton for approximately 1 min. The obtained solid disk was then crushed and sieved to obtain binderless pellets with a size of 500~1000 µm. The pellets were initially activated at 423 K for 12 h under vacuum. The activated pellets were then packed into a stainless-steel column with a length of 15 cm and an internal diameter of 0.44 cm. The column was then degassed by a He flow of 100 ml/min at 423 K for 60 min to remove all the impurities adsorbed during the packing procedure. All the experiments were carried out at 303 K and 1 bar. Before each measurement, a He flow of 100 ml/min at 303 K was introduced into the column for at least 20 min. At t = 0, the He flow was switched to a flow of helium/propylene/propane mixture (helium/propylene/propane = 92/4/4, total flow rate = 100 ml/min).

Table S1. Elemental analyses for MIL-101(Cr) and MIL-101(Cr)_DAA

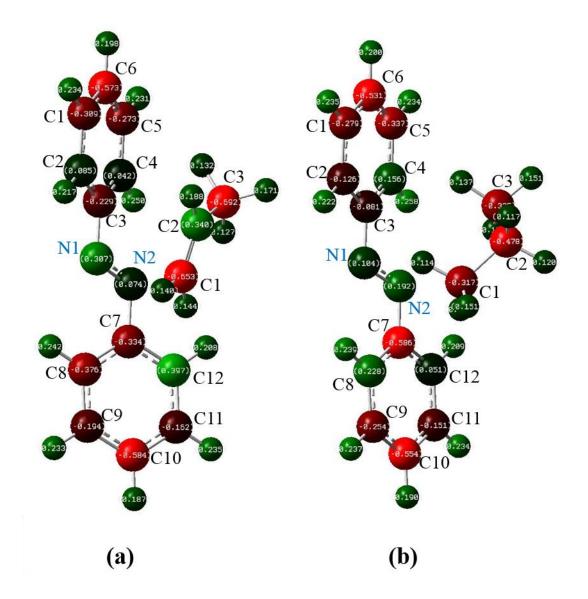
	C (%)	N (%)	N/C from EA	N/C from NMR
MIL-101(Cr)	39.2	ND*	0	0
MIL-101(Cr)_DAA	35	1.94	0.0554	0.0718

* Not detected.

Table S2. Comparisons with other benchmark adsorbents.


Adsorbent	q (mmol/g) at 100 kPa		q(C ₃ H ₆) /q(C ₃ H ₈)	IAST selectivity	Working capacity (mmol/g)	Ref
	C_3H_6	C_3H_8		$(50:50)^4$	10-100 kPa	
Zeolite 13X ¹	3.44	3.03	1.14	12.6	0.42	[1]
HKUST-1 ¹	6.63	5.81	1.14	3.3	1.7	[2]
Cu(0.6)@MIL-100(Fe) ¹	4.52	3.37	1.34	11.7	1.52	[3]
Co-MOF-74 ²	7.34	5.48	1.33	37.1	0.74	[4]
Mn-MOF-74 ²	7.09	5.4	1.31	21.2	1.52	[4]
MIL-101(Cr)_DAA ³	7.60	6.55	1.16	4.6	5.33	This work

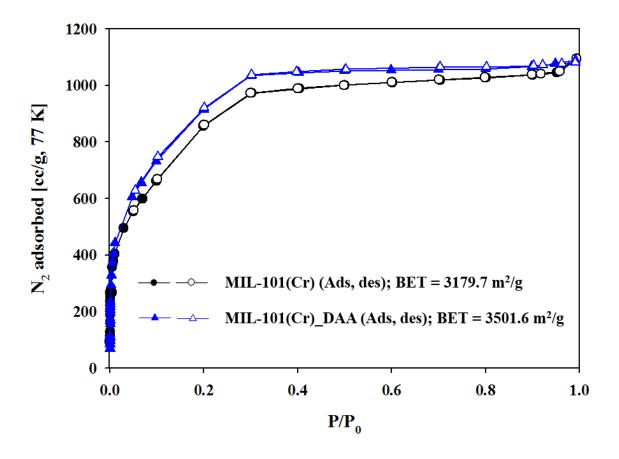
¹ calculated at 323 K


 $^{\rm 2}$ calculated at 298 K

³ calculated at 303 K

⁴ calculated at 30 kPa

Figure S1. Atomic charge distributions of individual molecules; (a) azobenzene, (b) propylene, (c) propane.


Figure S2. Atomic charge distributions of complexes; (a) azobenzene - propylene, (b) azobenzene - propane. In both structures, N1 and C1 are the closest atoms between Azob and propylene or propane.

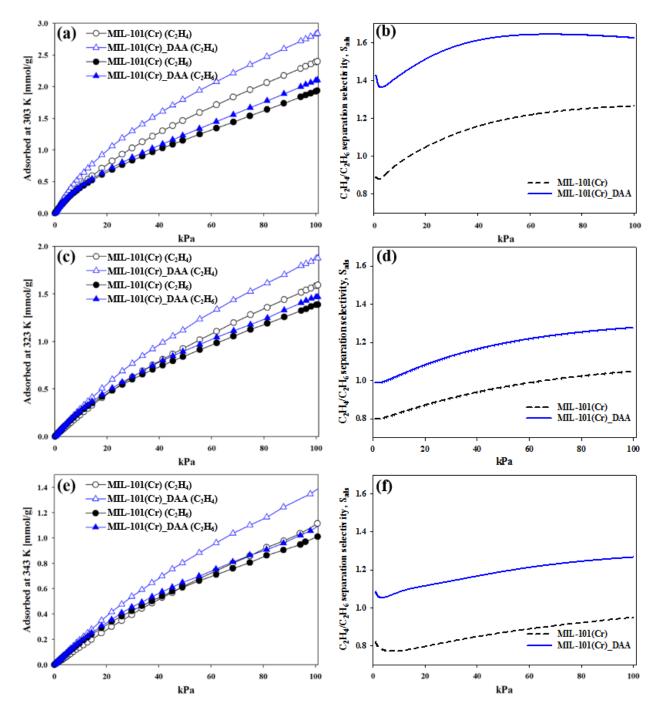

Figure S3. PXRD patterns for MIL-101(Cr) and MIL-101(Cr)_DAA.

Figure S4. (a) A STEM image of MIL-101(Cr) and (b) corresponding EDS mappings of C (cyan), N (red), O (purple) and Cr (green).

Figure S5. N₂ isotherms of MIL-101(Cr) and MIL-101(Cr)_DAA at 77 K. Calculated BET surface areas are also given in the figure.

Figure S6. Single component gas adsorption isotherms of MIL-101(Cr) and MIL-101(Cr)_DAA for ethylene and ethane at (a) 303 K, (c) 323 K and (e) 343 K. IAST-predicted ethylene/ethane selectivities at (b) 303 K, (d) 323 K and (f) 343 K.

Reference

- [1] Campo, M. C.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Lutz, C.; Loureiro, J. M.; Rodrigues, A. E. New 13X zeolite for propylene/propane separation by vacuum swing adsorption. *Sep. Purif. Technol.* **2013**, 103, 60-70.
- [2] Plaza, M. G.; Ferreira, A. F. P.; Santos, J. C.; Ribeiro, A. M.; Müller, U.; Trukhan, N.; Loureiro, J. M.; Rodrigues, A. E. Propane/propylene separation by adsorption using shaped copper trimesate MOF. *Micropor. Mesopor. Mater.* **2012**, 157, 101-111.
- [3] Kim, A.-R.; Yoon, T.-U.; Kim, E.-J.; Yoon, J. W.; Kim, S.-Y.; Yoon, J. W.; Hwang, Y. K.; Chang, J.-S.; Bae, Y.-S. Facile loading of Cu(I) in MIL-100(Fe) through redox-active Fe(II) sites and remarkable propylene/propane separation performance. *Chem. Eng. J.* 2018, 331, 777-784.
- [4] Bae, Y.-S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. High Propene/Propane Selectivity in Isostructural Metal-Organic Frameworks with High Densities of Open Metal Sites. *Angew. Chem. Int. Ed.* **2012**, 51, 1857-1860.