Supporting Information

Investigating Reaction Mechanisms for Furfural Hydrodeoxygenation on Ni and the effect of Boron Doping on the Activity and Selectivity of the Catalyst

Arghya Banerjee^[a,b], Samir H. Mushrif^{*[a,c]}

^aSchool of Chemical and Biomedical Engineering, Nanyang Technological University, 62

Nanyang Drive, Singapore 637459

^bCentral Institute of Mining and Fuel Research (CIMFR) Digwadih Campus, PO FRI 828108,

Dhanbad, Jharkhand, India

^c Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St NW,

Edmonton, Alberta T6G 1H9, Canada

Corresponding Author: <u>mushrif@ualberta.ca</u> (SHM)

Table of Contents

- 1. S1.1 Effect of H coverage on the H adsorption energies on Ni(111) surfaces.
- 2. SI. 2 Calculation of free energy of adsorption of furfural on Ni(111).
- **3. SI.3** Convergence Studies: Effect of slab thickness, vacuum layer spacing and unit cell size on furfural binding energy.
- 4. SI. 4 Reaction rates for the first step of furfural activation on Ni surfaces.
- **5. SI.5** Detailed Energetics of furfural activation on clean Ni(111), H-saturated Ni(111) and sub-surface boron doped Ni (NiB) surfaces.

S1.1 H adsorption energies

Figure S1. Effect of H coverage on the H adsorption energies on Ni(111) surfaces. H adsorbs preferentially on the fcc hollow site on Ni(111) surfaces. H coverages higher than 1 ML is not favorable.

SI. 2 Calculation of free energy of adsorption of furfural on Ni(111)

Molecule	Vibration Frequencies (cm ⁻¹)		
	3203 3191 3175 2827 1651 1540		
e e e e e e e e e e	1437 1398 1360 1238 1144 1136		
	1064 1015 968 911 882 870 822		
	744 732 611 587 476 250 207 158		
	3197 3185 3167 2913 1514 1484		
	1423 1377 1318 1246 1140 1132		
	1063 1023 903 896 882 865 822		
	755 725 603 576 484 315 228		
	200 125 98 72 64 35 9		

Table S1. Vibrational Frequencies of gas phase and adsorbed furfural on Ni (111) surface.

A sample calculation for the Gibbs free energy of adsorption of furfural molecule (C_4H_3O)-CHO on Ni(111) surface at 500 K, 1 bar for a 4 layer p(4x4) unit cell having a vacuum spacing of 12 Å is shown below

(C_4H_3O) -CHO (gas) + * \rightarrow (C₄H₃O)-CHO*

Table S2 DFT calculated electronic energies, ZPE, enthalpy and entropy temperature corrections for furfural adsorption on a Ni(111) terrace.

Species	DFT calculated energy (eV)	ZPE (kJ/mol)	Enthalpy correction (kJ/mol)	Entropy Correction (J/mol K)
(C ₄ H ₃ O)-CHO (gas)	-59.36	202.6	42	385
Slab	-163.93	-	-	-
(C ₄ H ₃ O)-CHO*	-103.99	201.6	47.6	227

Reaction Enthalpy:	$\Delta H_{rxn}(T) = H((C_4H_3O)-CHO^*) - H((C_4H_3O)-CHO)$
--------------------	---

 $\Delta H (500 \text{ K}) = (-163.93 + 103.99 + 59.36) \times 96.48 + 201.6 - 202.6 + 47.6 - 42$ = -51 kJ/mol $\Delta G(500 \text{ K}) = -51 - 0.5 \times (227 - 385)$ = 28 kJ/mol

Where $H((C_4H_3O)-CHO)$ and $H((C_4H_3O)-CHO^*)$ are the enthalpies of the gas phase and adsorbed furfural respectively.

SI. 3 Convergence Studies: Effect of slab thickness, vacuum layer spacing and unit cell size on furfural binding energy

Table S3. Effect of slab thickness on the adsorption free energies (kJ/mol) of the most stable adsorption configurations of furfural at 500 K, 1 bar on a p(4x4) unit cell of Ni (111) with vaccum thickness of 12 Å. The Brillouin zone was sampled using a (3x3x1) Monkhorst Pack grid.

No. of layers	Furfural Binding Energy (kJ/mol)
3	-53
4	-57
5	-56

Table S4. Effect of vacuum spacing on the adsorption free energies of the most stable adsorption configurations of furfural at 500 K, 1 bar on a p(4x4) unit cell, 4 layer slab of Ni (111). The Brillouin zone was sampled using a (3x3x1) Monkhorst Pack grid.

Vacuum thickness	Furfural Binding Energy (kJ/mol)
12 Å	-57
15 Å	-55
20 Å	-55

Table S5. Effect of unit cell size on the adsorption free energies of the most stable adsorption configurations of furfural at 500 K, 1 bar on a 4 layer slab of Ni (111), with vaccum thickness of 12 Å. The Brillouin zone was sampled using a (3x3x1) Monkhorst Pack grid.

Unit cell size	Furfural Binding Energy (kJ/mol)
p(4 x 4)	-57
p(5 x 5)	-57
p(6 x 6)	-58

SI. 4 Reaction rates for the first step of furfural activation on H-saturated Ni surfaces

Furfural activation can take place via 6 routes on the Ni(111) surface. The rates can be defined as follows:

Rate for C ¹ -H cleavage = $k_1 \theta_{fur} \theta^*$	(S1)
Rate for C ⁵ hydrogenation = $k_2 \theta_{fur} \theta_H$	(S2)
Rate for C ¹ -O hydrogenation = $k_3 \theta_{fur} \theta_H$	(S3)
Rate for C ¹ -O cleavage = $k_4 \theta_{fur} \theta^*$	(S4)
Rate for C^1 - C^2 cleavage = $k_5 \theta_{fur} \theta^*$	(S5)
Rate for ring opening (C^5 -O scission) = $k_6 \theta_{fur}$	(S6)

where k_x are the rate constants of the individual reactions, θ^* is the fraction of empty sites, θ_{fur} and θ_H is the fraction of sites covered by furfural and H respectively.

Assuming a H coverage of 0.9 ML, the reaction rates for each of the above reactions can be expressed as

(S7)
(S)

Where K_x is the coefficient of the reaction rate for the individual reactions.

Table S6. Reaction rates for the first activation of furfural on H-saturated Ni(111) surfaces.

	Activation	Rate		
	Barriers	constant*	Η	Coefficient of Reaction
	(kJ/mol)	k (s ⁻¹)	coverage	Rate K (s ⁻¹)
C ¹ -H cleavage	128	0.42	0.9	0.042
C ⁵ hydrogenation	167	3.57E-05	0.9	3.21-05
C ¹ -O hydrogenation	135	0.078	0.9	0.070
C ¹ -O cleavage	232	5.78E-12	0.9	5.78E-13
C ¹ -C ² cleavage	163	9.35E-05	0.9	9.35E-06
C ⁵ -O scission	203	6.19E-09	0.9	6.19E-09

*pre-exponential factor of 1e13 was assumed

From Table S6, we find that the reaction rate is comparable for C^1 -H cleavage and C^1 -O hydrogenation and much higher than the remaining furfural activation steps. This suggests the above two steps to be the dominant furfural activation steps for the first furfural activation

SI. 5 Detailed Energetics of furfural activation on clean Ni(111), H-saturated Ni(111) and sub-surface boron doped Ni (NiB) surfaces.

Reaction		$\Delta E_a^* / \Delta G_a$	$\Delta E_{rxn}^{*/}\Delta G_{rxn}$
	Reaction	(kJ/mol)	(kJ/mol)
	Hydrogenation Reactions		
1	(C ₄ H ₃ O)-CHO +H \rightarrow (C ₄ H ₃ O)-C ¹ HOH	115/135	82/85
2	(C ₄ H ₃ O)-CHO +H →(C ₄ H ₃ O)-C ¹ H ₂ O	126/154	85/102
3	$(C_4H_3O)\text{-}CHOH + H \rightarrow (C_4H_3O)\text{-}C^1H_2OH$	38/55	-32/-28
4	$(C_4H_3O)\text{-}CH_2O + H \rightarrow (C_4H_3O)\text{-}C^1H_2OH$	77/82	-35/-43
5	$(C_4H_3O)-CH_2+H \rightarrow (C_4H_3O)-C^1H_3$	152/171	-15/-15
6	$C_5H_4O_2+H \rightarrow C_4H_3O_2 (C^5H_2)$	139/167	74/104
7	$C_4H_3O_2$ (C^5H_2)+H → $C_3H_2O_2$ (C^5H_2) (C^4H_2)	132/139	38/45
8	$C_5H_3O_2+H \rightarrow C_4H_2O_2 (C^5H_2)$	190/209	25/45
9	$C_4H_3O+H \rightarrow C_4H_4O$ (Furan)	57/54	-63/-87
10	$C_2H_2O(C^2)(C^5H_2) + H \rightarrow C_2H_2O(C^2H)(C^5H_2)$	55/54	2/3
11	$C_2H_2O(C^2H)(C^5H_2)$ +H → $C_2H_2O(C^2H_2)(C^5H_2)$	103/105	60/72
12	C_2H_2 (C^2H_2)(C^5H_2) + H → (C_4H) (C^2H_2)(C^5H_2)		10/14
12	$(C^{3}H_{2})$		12/14
13	$(C_4H) (C^2H_2)(C^5H_2) (C^3H_2) + H \rightarrow$		20/15
15	$(C^{2}H_{2})(C^{5}H_{2})(C^{3}H_{2}) (C^{4}H_{2})$	8//86	20/17
14	$(C^{2}H_{2})(C^{5}H_{2})(C^{3}H_{2}) (C^{4}H_{2})+H \rightarrow$		
14	$(C^{2}H_{2})(C^{5}H_{3})(C^{3}H_{2})(C^{4}H_{2})$	80 / / /	-60 /-/1
15	$(C^{2}H_{2})(C^{5}H_{3})(C^{3}H_{2}) (C^{4}H_{2}) + H \rightarrow C_{4}H_{10} (Butane)$	22/9	-101/-120
16	$C_2H_2O(C^2H)(C^5H_2) + H \rightarrow C_2H_2(C^2H-OH)(C^5H_2)$	111/109	18/11
17	C_2H_2 (C ² H-OH)(C ⁵ H ₂) + H → C_2H_2 (C ² H ₂ -	00/00	10/04
17	$OH)(C^{5}H_{2})$	83/92	13/24
10	C_2H_2 (C^2H_2 -OH)(C^5H_2) + H → (C^4H) (C^2H_2 -	100/100	
10	$OH)(C^{5}H_{2})(C_{3}H_{2})$	100/100	45/38

Table S7. Activation energies and reaction energies (in kJ/mol) for all the studied reaction

 pathways for furfural activation on H-saturated Ni(111) surfaces.

10	$(C^{4}H) (C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2}) + H \rightarrow (C^{4}H_{2})$		
19	$(C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2})$	42 /40	-81 /-93
20	$(C^{4}H_{2}) (C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2}) + H \rightarrow C_{4}H_{10}O$		
20	(Butanol)	83/81	-71/-87
	C ¹ – O cleavage		
21	(C ₄ H ₃ O)-CHO → (C ₄ H ₃ O)-CH + O	197/221	65 /90
22	(C ₄ H ₃ O)-CHOH → (C ₄ H ₃ O)-CH + OH	205/222	137/154
23	(C_4H_3O) -CH ₂ O → (C_4H_3O) -CH ₂ + O	47/53	-9/-10
24	$(C^{2}H_{2}O)(C^{3}H)(C^{5}H_{2})(C^{4}H) \rightarrow$	01/50	00/100
24	$(C^{2}H_{2})(C^{3}H)(C^{5}H_{2})(C^{4}H)+O$	81/78	-92/-100
	C – C cleavage		
25	$(C_4H_3O)-C^1HO \rightarrow (C_4H_3O) + CHO$	140/163	107/125
26	C_2H_2 (C^5H_2)(C^2O)(C^1O) → C_2H_2 (C^5H_2)(C^2O)(C^1O)	<u>81/106</u>	70/ 46
20	+ CO	81/100	-/0/-40
77	$C_2H_1O(C^2H)(C^5H_2)(C^1O) \rightarrow C_2H_1O(C^2H)(C^5H_2)+$	26/24	126/ 1/2
21	C^1O	20/24	-130/-143
	C _{ring} – O cleavage		
28	$C_5H_4O_2 \rightarrow C_4H_4O (C^2O)$	168/203	84/117
29	$C_5H_3O_2 \rightarrow C_4H_3O(C^2O)$	114/143	43/72
30	$(C_4H_3O)-C^1HOH \rightarrow (C_3H_3O)(C^2O)-C^1HOH$	115/145	39 /69
31	$(C_4H_3O)-C^1H_2O \rightarrow (C_3H_3O)(C^5O)-C^1H_2O$	167/188	112/133
32	$C_4H_3O_2$ (C ⁵ H ₂) → C_3H_3O (C ⁵ H ₂)(C ² O)	113/113	-16/-16
	C ¹ – H cleavage		
33	$C_5H_4O_2 \rightarrow C_4H_3O_2 + H$	102/128	40/47
21	$C_2H_2 (C^5H_2)(C^2O)(C^1HO) \rightarrow C_2H_2$	71/75	1/9

 $(C^{*}H_{2})(C^{*}O)(C^{*}O) + H$ * $\Delta E_{a}/\Delta E_{rxn}$ and $\Delta G_{a}/\Delta G_{rxn}$ are the electronic energy difference and Gibbs free energy change between the reactant and transition state/product at 0 K and 500 K respectively.

	Dest	$\Delta E_a^* / \Delta G_a$	$\Delta E_{rxn}^{*/}\Delta G_{rxn}$
	Keaction	(kJ/mol)	(kJ/mol)
	Hydrogenation Reactions		
1	(C ₄ H ₃ O)-CHO +H \rightarrow (C ₄ H ₃ O)-C ¹ HOH	100/103	83/83
2	(C ₄ H ₃ O)-CHO +H →(C ₄ H ₃ O)-C ¹ H ₂ O	81/92	40/45
3	(C ₄ H ₃ O)-CH ₂ O +H →(C ₄ H ₃ O)-C ¹ H ₂ OH	90/91	-6/-16
4	(C ₄ H ₃ O)-CH ₂ +H →(C ₄ H ₃ O)-C ¹ H ₃	68/57	-24/-55
5	$C_5H_4O_2+H \rightarrow C_4H_3O_2 (C^5H_2)$	75/95	22/44
6	$C_4H_3O_2$ (C^5H_2)+H → $C_3H_2O_2$ (C^5H_2) (C^4H_2)	103/107	59/61
7	$C_4H_3O+H \rightarrow C_4H_4O$ (Furan)	77/76	7/-21
8	$C_2H_2O(C^2)(C^5H_2)$ + H → $C_2H_2O(C^2H)(C^5H_2)$	78/70	10/3
9	$C_2H_2O(C^2H)(C^5H_2)$ +H → $C_2H_2O(C^2H_2)(C^5H_2)$	82/96	50/63
10	$C_2H_2 (C^2H_2)(C^5H_2) + H \rightarrow (C_4H) (C^2H_2)(C^5H_2)$ (C ³ H ₂)	54/55	9/11
11	$(C_4H) (C^2H_2)(C^5H_2) (C^3H_2) + H \rightarrow$ $(C^2H_2)(C^5H_2)(C^3H_2) (C^4H_2)$	99/97	29/27
12	$(C^{2}H_{2})(C^{5}H_{2})(C^{3}H_{2}) (C^{4}H_{2})+H \rightarrow$ $(C^{2}H_{2})(C^{5}H_{3})(C^{3}H_{2}) (C^{4}H_{2})$	75 /72	-41 /-54
13	$(C^{2}H_{2})(C^{5}H_{3})(C^{3}H_{2}) (C^{4}H_{2}) + H \rightarrow C_{4}H_{10} (Butane)$	50/38	-77/-97
14	$C_2H_2O(C^2H)(C^5H_2) + H \rightarrow C_2H_2(C^2H-OH)(C^5H_2)$	95/93	32/30
15	C_2H_2 (C ² H-OH)(C ⁵ H ₂) + H → C_2H_2 (C ² H ₂ - OH)(C ⁵ H ₂)	70/70	8/30
16	C_2H_2 (C ² H ₂ -OH)(C ⁵ H ₂) + H → (C ⁴ H) (C ² H ₂ - OH)(C ⁵ H ₂)(C ₃ H ₂)	60/37	30/20
17	$(C^{4}H) (C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2}) + H \rightarrow (C^{4}H_{2})$ $(C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2})$	81 /75	-30 /-41
18	$(C^{4}H_{2}) (C^{2}H_{2}\text{-}OH)(C^{5}H_{2})(C_{3}H_{2}) + H \rightarrow C_{4}H_{10}O$ (Butanol)	71/71	-78/-94

Table S8 Activation energies and reaction energies (in kJ/mol) for all the studied reaction

 pathways for furfural activation on clean Ni(111) surfaces.

	C ¹ – O cleavage		
19	(C ₄ H ₃ O)-CHO → (C ₄ H ₃ O)-CH + O	135/138	11 /20
20	(C_4H_3O) -CH ₂ O → (C_4H_3O) -CH ₂ + O	35/47	-65/-46
21	$(C^{2}H_{2}O)(C^{3}H)(C^{5}H_{2})(C^{4}H) \rightarrow$		
	$(C^{2}H_{2})(C^{3}H)(C^{5}H_{2})(C^{4}H)+O$	40/30	-81/-76
	C – C cleavage		
22	$(C_4H_3O)-C^1HO \rightarrow (C_4H_3O) + CHO$	82/108	19/45
23	$(C_4H_3O)-C^1O \rightarrow (C_4H_3O) + C^1O$	73/70	-87/-86
24	$C_2H_1O(C^2H)(C^5H_2)(C^1O) \rightarrow C_2H_1O(C^2H)(C^5H_2)+$	26/22	111/11/
	C ¹ O	36/32	-111/-115
	C _{ring} – O cleavage		
25	$C_5H_4O_2 \rightarrow C_4H_4O (C^2O)$	58/82	-19/9
26	$C_5H_3O_2 \rightarrow C_4H_3O(C^2O)$	87/100	-8/3
27	$(C_4H_3O)-C^1H_2O \rightarrow (C_3H_3O)(C^5O)-C^1H_2O$	42/60	-40/-20
28	$C_4H_3O_2$ (C^5H_2) → C_3H_3O (C^5H_2)(C^2O)	74/70	-76/-76
	C ¹ – H cleavage		
29	$C_5H_4O_2 \rightarrow C_4H_3O_2 + H$	72/87	-15/1
30	C_2H_2 (C^5H_2)(C^2O)(C^1HO) → C_2H_2	55150	14/12
	$(C^{5}H_{2})(C^{2}O)(C^{1}O) + H$	22/22	14/13

 $\Delta E_a/\Delta E_{rxn}$ and $\Delta G_a/\Delta G_{rxn}$ are the electronic energy difference and Gibbs free energy change between the reactant and transition state/product at 0 K and 550 K respectively.

			$\Delta E_{rxn}^{*/} \Delta G_{rxn}$
Reaction		(kJ/mol)	(kJ/mol)
	Hydrogenation Reactions		
1	(C ₄ H ₃ O)-CHO +H → (C ₄ H ₃ O)-C ¹ HOH	121/104	80/65
2	(C ₄ H ₃ O)-CHO +H → (C ₄ H ₃ O)-C ¹ H ₂ O	71/76	9/4
3	$(C_4H_3O)-C^1H_2O + H \rightarrow (C_3H_2O)(C^5H_2)-C^1H_2O$	65/76	7/28
4	(C ₄ H ₃ O)-CH ₂ O +H \rightarrow (C ₄ H ₃ O)-C ¹ H ₂ OH	80/84	17/15
5	$(C_4H_3O)-CH_2+H \rightarrow (C_4H_3O)-C^1H_3$	83/82	-5/-24
6	$C_5H_4O_2+H \rightarrow C_4H_3O_2 (C^5H_2)$	58/66	9/17
7	$C_4H_3O_2 (C^5H_2)+H \rightarrow C_3H_2O_2 (C^5H_2) (C^4H_2)$	120/117	80/76
8	$C_4H_3O+H \rightarrow C_4H_4O$ (Furan)	30/24	-37/-44
9	$C_2H_2O(C^2)(C^5H_2) + H \rightarrow C_2H_2O(C^2H)(C^5H_2)$	14/30	-30/-16
10	$C_2H_2O(C^2H)(C^5H_2)$ +H → $C_2H_2O(C^2H_2)(C^5H_2)$	88/88	59/55
11	$C_2H_2O(C^2H)(C^5H_2) + H \rightarrow C_2H_2 (C^2HOH) (C^5H_2)$	71/70	19/15
12	C_2H_2 (C^2H_2)(C^5H_2) + H → (C_4H) (C^2H_2)(C^5H_2)		7/8
12	$(C^{3}H_{2})$	/4//5	
13	$(C_4H) (C^2H_2)(C^5H_2) (C^3H_2) + H \rightarrow$	1/2	-70/-75
15	$(C^{2}H_{2})(C^{5}H_{2})(C^{3}H_{2})(C^{4}H_{2})$		
14	$(C^{2}H_{2})(C^{5}H_{2})(C^{3}H_{2}) (C^{4}H_{2})+H \rightarrow$		(0 / 72
17	$(C^{2}H_{2})(C^{5}H_{3})(C^{3}H_{2}) (C^{4}H_{2})$	65 /64	-60 /- /2
15	$(C^{2}H_{2})(C^{5}H_{3})(C^{3}H_{2}) (C^{4}H_{2}) + H \rightarrow C_{4}H_{10} (Butane)$	17/15	-52/-68
16	$C_2H_2 (C^2H-OH)(C^5H_2) + H \rightarrow C_2H_2 (C^2H_2-$	00/02	42/45
10	$OH)(C^{5}H_{2})$	80/83	
17	C_2H_2 (C^2H_2 -OH)(C^5H_2) + H → (C^4H) (C^2H_2 -	123/123	65161
1/	$OH)(C^{5}H_{2})(C_{3}H_{2})$		65/61
18	$(C^{4}H) (C^{2}H_{2}\text{-}OH)(C^{5}H_{2})(C_{3}H_{2}) + H \rightarrow (C^{4}H_{2})$	17/16	-125/-113
10	$(C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2})$		

Table S9. Activation energies and reaction energies (in kJ/mol) for all the studied reaction

 pathways for furfural activation on sub-surface boron doped Ni surfaces.

	$(C^{4}H_{2}) (C^{2}H_{2}-OH)(C^{5}H_{2})(C_{3}H_{2}) + H \rightarrow C_{4}H_{10}O$		
19	(Butanol)	98/96	-53/-72
	$C^1 - O$ cleavage		
20	$(C_4H_3O)\text{-}CHO \rightarrow (C_4H_3O)\text{-}CH + O$	189/199	77 /87
21	$(C_4H_3O)\text{-}CH_2O \rightarrow (C_4H_3O)\text{-}CH_2 + O$	112/119	-53/-44
22	$C_2H_2(C^2HOH)(C^5H_2) \rightarrow C_2H_2(C^2H)(C^5H_2) + OH$	90/96	-24/-30
23	$(C_4H_3O)-C^1H_2OH \rightarrow (C_4H_3O)-C^1H_2+OH$	41/46	-65/-61
	C – C cleavage		
24	$(C_4H_3O)-C^1HO \rightarrow (C_4H_3O) + CHO$	152/154	35/36
25	$(C_4H_3O)-C^1O \rightarrow (C_4H_3O) + C^1O$	46/40	-62/-65
26	$C_2H_1O(C^2H)(C^5H_2)(C^1O) \rightarrow C_2H_1O(C^2H)(C^5H_2)+$	15/10	112/122
20	C ¹ O	43/42	-112/-123
	C _{ring} – O cleavage		
27	$C_5H_4O_2 \rightarrow C_4H_4O (C^2O)$	82/90	62/60
28	$C_5H_3O_2 \rightarrow C_4H_3O(C^2O)$	79/87	43/51
29	$(C_4H_3O)-C^1H_2O \rightarrow (C_3H_3O)(C^5O)-C^1H_2O$	75/88	59/68
30	$(C_4H_3O)-C^1H_2 \rightarrow (C_3H_3O)(C^2O)-C^1H_2$	55/66	37/31
31	$C_4H_3O_2$ (C^5H_2) → C_3H_3O (C^5H_2)(C^2O)	92/91	21/15
	$C^1 - H$ cleavage		
32	$C_5H_4O_2 \rightarrow C_4H_3O_2 + H$	72/69	49/51
22	C_2H_2 (C^5H_2)(C^2O)(C^1HO) → C_2H_2	25/41	25/27
55	$(C^{5}H_{2})(C^{2}O)(C^{1}O) + H$	33/41	25/27

 $\Delta E_a/\Delta E_{rxn}$ and $\Delta G_a/\Delta G_{rxn}$ are the electronic energy difference and Gibbs free energy change between the reactant and transition state/product at 0 K and 500 K respectively.

Table S10. Forces on the atoms at the transition state for selected furfural activation steps on H-saturated Ni surfaces.

Reaction	Atoms involved in bond breaking/bond forming	Calculated Forces of the atoms in X,Y and Z directions at the transition state
$ \overset{O}{ \overset{O}{ \overset{H}{ \overset{H}{ \overset{H}} } } H } \xrightarrow{O} \overset{OH}{ \overset{C}{ \overset{H}{ \overset{H}{ \overset{H}} } } H } $	О – Н	O: -0.039629 0.009554 -0.001837 H: -0.026258 -0.016215 0.018665
$ \bigcirc \overset{OH}{} \overset{H}{} H + H \longrightarrow \bigcirc \overset{OH}{} \overset{H}{} H $	$C^1 - H$	C ¹ : 0.006580 0.007232 0.001532 H: 0.032841 0.006223 -0.015527
	$C^1 - C^2$	$\begin{array}{cccccccc} C^1: & -0.015935 & -0.014048 & 0.016401 \\ C^2: & -0.005229 & 0.009028 & 0.003775 \end{array}$
° , +H → °	$C^2 - H$	C ² : -0.008966 0.028186 0.003947 H: -0.016859 0.018894 -0.022955
O O O O O O O O O O O O O O O O O	C ¹ – H	C ¹ : -0.005896 -0.030365 0.003394 H : -0.023045 -0.020052 0.046256