Supporting Information

Facile synthesis of graphene oxide for multi-cycle adsorption of aqueous Pb²⁺ in presence of divalent cations and polyatomic anions

Rishi Karan Singh Rathour^a, Jayanta Bhattacharya^{a, b*}, Abhijit Mukherjee^{a, c}

^aSchool of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India. E-mail: <u>rrathour@iitkgp.ac.in</u>

^bDepartment of Mining Engineering, Indian Institute of Technology Kharagpur, India.

^cDepartment of geology and geophysics, Indian Institute of Technology Kharagpur, India,

E-mail: abhijit@gg.iitkgp.ernet.in;

*Corresponding author; Jayanta Bhattacharya, E-mail: jayantab@mining.iitkgp.ernet.in; Tel: +91 - 3222 – 283702

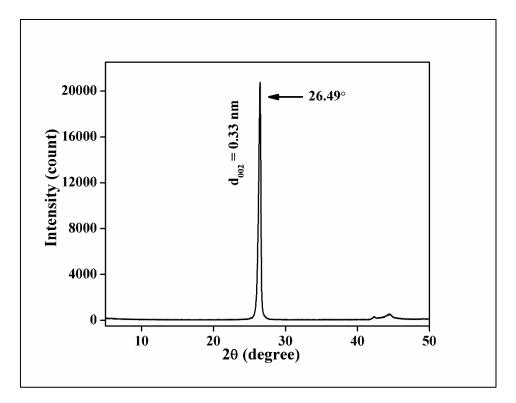
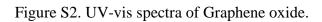



Figure S1. XRD spectra of Graphite.

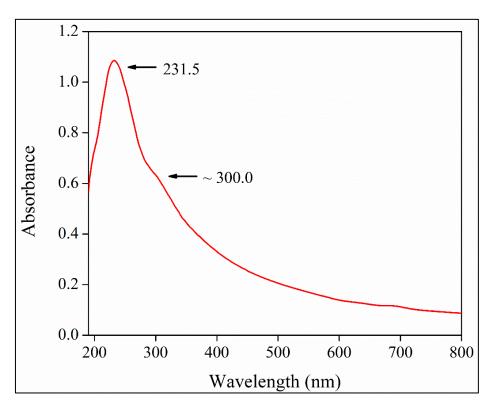
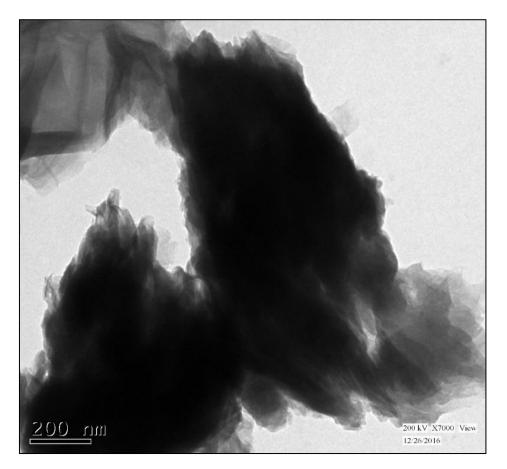



Figure S3. TEM image of Pb²⁺ adsorbed GO.

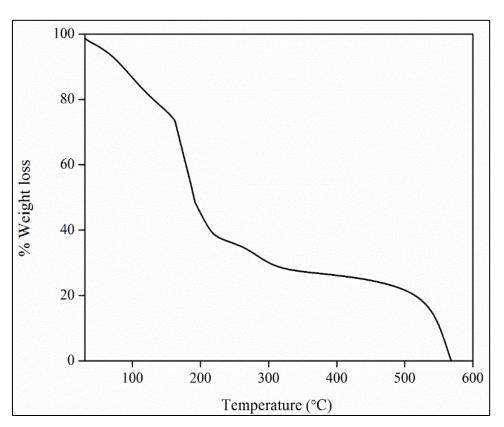


Figure S4. Thermogravimetric analysis (TGA) of GO.

Figure S5. Effect of SO_4^{2-} and NO_3^{-} presence in binary system on the adsorption of Pb²⁺ by GO.

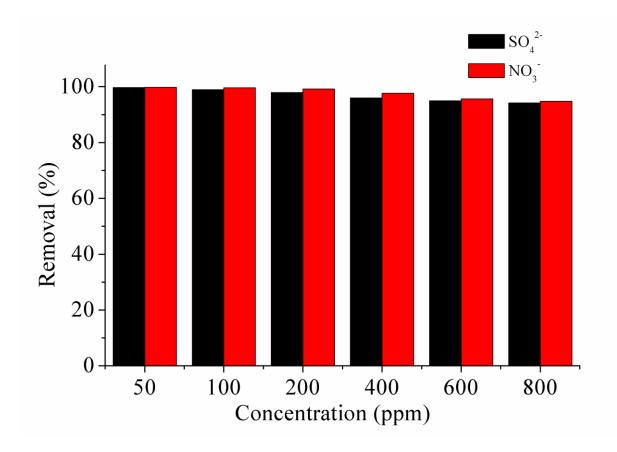
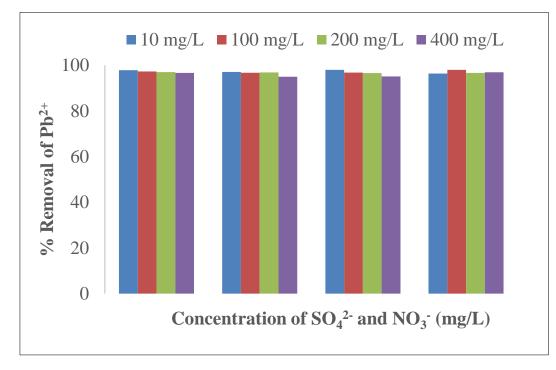



Figure S6. Effect of SO_4^{2-} and NO_3^{-} presence in ternary system on the adsorption of Pb^{2+} by GO.

	Parameter	Concertation (mg/L)		
Intraparticle diffusion		50	100	200
	C _i	35.97	39.76	42.695
	K _i	0.5358	0.1866	0.7748
	\mathbb{R}^2	0.7241	0.945	0.7628

Table S1. Intraparticle diffusion model constants for Pb²⁺ adsorption on GO.

Table S2: The adsorption of Pb^{2+} in binary solution Pb^{2+} — Cd^{2+} or Pb^{2+} — Ni^{2+} . Condition: initial concentration of $Pb^{2+} = 50 \text{ mg/L}$, pH— 5, Temperature– 303 K, Stirring speed– 170 rpm, and dose of GO– 1.00 g/L.

Concentration Ni ²⁺ or Cd ²⁺ (mg/L)	% Removal of Pb ²⁺ in Pb ²⁺ Ni ²⁺	% Removal of Pb ²⁺ in Pb ²⁺ Cd ²⁺
0	99.30	99.30
10	96.37	96.92
30	94.43	89.39
50	89.78	88.42

Table S3: The adsorption of Pb^{2+} in ternary solution of Pb^{2+} — Cd^{2+} — Ni^{2+} . Condition: pH—5, Temperature– 303 K, Stirring speed– 170 rpm, and dose of GO– 1.00 g/L.

Concentration (mg/L)			% Removal of Pb ²⁺
Pb ²⁺	Cd ²⁺	Ni ²⁺	
10	10	10	99.43
10	30	30	94.11

10	50	50	91.66
30	10	10	96.99
30	30	30	89.64
30	50	50	87.72
50	10	10	92.42
50	30	30	84.76
50	50	50	80.12

Table S4: The adsorption of Pb^{2+} in binary solution of Pb^{2+} — SO_4^{2-} and Pb^{2+} — NO_3^{-} . Condition: initial concentration of $Pb^{2+} = 50 \text{ mg/L}$, pH— 5, Temperature– 303 K, Stirring speed– 170 rpm, and dose of GO– 1.00 g/L.

Concentration SO ₄ ²⁻ or NO ₃ ⁻ (mg/L)	% Removal of Pb ²⁺ in Pb ²⁺ — SO4 ²⁻	% Removal of Pb ²⁺ in Pb ²⁺ — NO ₃ ⁻	
50	99.71	99.75	
100	98.92	99.64	
200	97.96	99.18	
400	95.97	97.65	
600	94.99	95.65	
800	94.21	94.78	

Table S5: The adsorption of Pb^{2+} in ternary solution of Pb^{2+} — SO_4^{2-} — NO_3^{-} . Condition: initial concentration of $Pb^{2+} = 50 \text{ mg/L}$, pH— 5, Temperature– 303 K, Stirring speed– 170 rpm, and dose of GO– 1.00 g/L.

			Percentage rer	noval of Pb ²⁺	
		Concentration of SO ₄ (mg/L)			
		10	100	200	400
Concentration of NO ₃ ⁻ (mg/L)	10	97.818	97.08	97.96	96.37
	100	97.243	96.72	96.80	97.96
	200	96.99	96.81	96.59	96.65
	400	96.66	94.99	95.12	96.92