Ligand-Enabled $\boldsymbol{\beta}$-C(sp3)-H Olefination of Free Carboxylic Acids

Zhe Zhuang, ${ }^{\dagger, \perp}$ Chang-Bin Yu, ${ }^{\dagger, \perp}$ Gang Chen, ${ }^{\dagger}$ Qing-Feng Wu, ${ }^{\dagger}$ Yi Hsiao, ${ }^{\dagger}$ Candice L. Joe, ${ }^{\ddagger}$ Jennifer X. Qiao, ${ }^{\S}$ Michael. A. Poss, ${ }^{\S}$ and Jin-Quan Yu*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
${ }^{\ddagger}$ Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
${ }^{\S}$ Discovery Chemistry, Bristol-Myers Squibb Company, PO Box 4000, Princeton, New Jersey 08543, United States

Table of Contents

General Information S2
Experimental Section
Preparation of Acetyl-Protected Aminoethyl Phenyl Thioether and Related Ligands S3
Control Experiments for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Olefination S 4
Oxidant Investigation for β - $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Olefination $\quad \mathrm{S} 4$
Unactivated Olefin Scope for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Olefination $\quad \mathrm{S} 5$
Ligand Development for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Olefination of Propionic Acid S6
General Procedure for β - $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Olefination $\quad \mathrm{S} 7$
Substrate and Olefin Scope for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Olefination $\quad \mathrm{S} 8$
Gram-Scale Experiment and Synthetic Application S25
Kinetic Experiments S28
References S32
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S33

General Information: HFIP was obtained from Oakwood and other solvents were obtained from Sigma-Aldrich, Alfa-Aesar, and Acros and used directly without further purification. $\mathrm{Pd}(\mathrm{TFA})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ was obtained from $\mathrm{Strem} . \mathrm{Ag}_{2} \mathrm{CO}_{3}$ was purchased from SigmaAldrich. Carboxylic acids were obtained from the commercial sources or synthesized following literature procedures. Other reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel $60-\mathrm{F} 254$. Visualization was carried out with short-wave UV light or KMnO_{4} and heat as developing agents. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DRX-600, DRX-500, and AMX-400 instruments. Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for TMS. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Coupling constants, J, were reported in Hertz unit (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX-600 and DRX-500 and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of CDCl_{3}. Column chromatography was performed using E. Merck silica (60, particle size $0.043-0.063 \mathrm{~mm}$), and pTLC was performed on Merck silica plates (60F-254). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Experimental Section

Preparation of Acetyl-Protected Aminoethyl Phenyl Thioether and Related Ligands

TEA (1.2 eq) and $\mathrm{Ac}_{2} \mathrm{O}(1.2 \mathrm{eq})$ were added to the solution of the amine ${ }^{1,2}(5.0 \mathrm{mmol})$ in DCM (25 mL). The reaction was stirred at room temperature for 1 h . After completion, the reaction mixture was concentrated in vacuo, and the resulting mixture purified by column chromatography afforded the desired thioether ligand.

\boldsymbol{N}-(2-(Phenylthio)ethyl)acetamide (L14)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H})$, $5.83(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.11,134.94,129.76,129.12,126.57,38.63,33.65,23.22$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$: 196.0796; found: 196.0801.

(S)-N-(3-Methyl-1-(phenylthio)butan-2-yl)acetamide (L15)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H})$,
$5.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89$ $(\mathrm{s}, 3 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.89,136.31,129.61,129.05$, 126.34, 54.10, 36.84, 30.48, 23.30, 19.37, 18.32; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]^{+}: 238.1266$; found: 238.1274.

Table S1. Control Experiments for $\boldsymbol{\beta}$ - $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ Olefination ${ }^{\boldsymbol{a}, b}$

	$+\mathrm{CO}_{2} \mathrm{Bn} \xrightarrow[\substack{\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \\ \mathbf{2 a}}]{\substack{\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ag}_{2} \mathrm{CO}_{3} \\ \mathrm{HFIP}, 90^{\circ} \mathrm{C}, 12 \mathrm{~h}}}$	
entry	variation from standard conditions	yield (\%)
1	none	90
2	no $\mathrm{Pd}(\mathrm{OAc})_{2}$	0
3	no L14	16
4	no $\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	0
5	no $\mathrm{Ag}_{2} \mathrm{CO}_{3}$	0

${ }^{a}$ Conditions: 1b (0.1 mmol), 2a (2.0 eq), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, $\mathbf{L 1 4}$ ($10 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (1.0 eq), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}), \mathrm{HFIP}(1.0 \mathrm{~mL}), 90^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{\mathrm{b}}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S2. Oxidant Investigation for $\boldsymbol{\beta}$ - $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ Olefination ${ }^{\boldsymbol{a}, \boldsymbol{b}}$

		$\xrightarrow[\substack{\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, \text { oxidant } \\ \mathrm{HFIP}, 90^{\circ} \mathrm{C}, 12 \mathrm{~h}}]{\substack{\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \\ \mathrm{L} 44(10 \mathrm{~mol})}}$			
entry	oxidant	yield (\%)	entry	oxidant	yield (\%)
1	w/o oxidant	0	7	$\mathrm{BQ}+1 \mathrm{~atm} \mathrm{O}_{2}$	8
2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	90	8	$\mathrm{Cu}(\mathrm{OAc})_{2}$	24
3	AgOAc	36	9	$\mathrm{Cu}(\mathrm{TFA})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$	10
4	AgTFA	0	10	CuF_{2}	8
5	BQ	6	11	CuCl_{2}	0
6	1 atm O 2	8	12	CuCO_{3}	10

${ }^{a}$ Conditions: 1b $(0.1 \mathrm{mmol}), \mathbf{2 a}(2.0 \mathrm{eq}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathbf{L 1 4}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq})$, oxidant (1.0 eq), HFIP (1.0 mL), $90{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S3. Unactivated Olefin Scope for $\boldsymbol{\beta}$ - $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ Olefination ${ }^{a, b}$

${ }^{a}$ Conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), 2(2.0 \mathrm{eq}), \mathrm{Pd}(\mathrm{TFA})_{2}(10 \mathrm{~mol} \%), \mathbf{L 1 4}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq}), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1.0 eq), HFIP (1.0 mL), $120^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S4. Ligand Development for $\boldsymbol{\beta}$ - $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ Olefination of Propionic Acid ${ }^{a, b}$

side chain variation w/o ligand
0%

40%

12%

3%

8\%

19%

14%

0%
S-protection group variation

0\%

 $36 \% \quad 32 \%$
${ }^{a}$ Conditions: $11(0.1 \mathrm{mmol}), 2(2.0 \mathrm{eq}), \mathrm{Pd}(\mathrm{TFA})_{2}(10 \mathrm{~mol} \%)$, ligand ($10 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (1.0 eq), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}), \operatorname{HFIP}(1.0 \mathrm{~mL}), 120{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

General Procedure for $\boldsymbol{\beta}$ - $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ Olefination

General Procedure A: In the control tube, $\operatorname{Pd}(\mathrm{TFA})_{2}(10 \mathrm{~mol} \%)$, ligand $\mathbf{L 1 4}(10 \mathrm{~mol} \%)$, $\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq})$, and carboxylic acid $\mathbf{1}(0.1 \mathrm{mmol})$ in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL) and olefin 2 (2.0 eq) were added. The reaction mixture was stirred at rt for 10 min , and then heated to $120^{\circ} \mathrm{C}$ for $12 \mathrm{~h}(300 \mathrm{rpm})$. After being allowed to cool to room temperature, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the resulting mixture purified by column chromatography ($\mathbf{4 a} \mathbf{a} \mathbf{4 k}$) or pTLC ($\mathbf{3 a} \mathbf{a} \mathbf{3 x}$) using hexane/EA (2/1) as the eluent.

General Procedure B: In the control tube, $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{HPO}_{4}(2.0 \mathrm{eq}), \mathrm{AgOAc}$ (2.0 eq), and carboxylic acid $\mathbf{1}(0.1 \mathrm{mmol})$ in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL), L2 ($15 \mathrm{~mol} \%$), and olefin $2(2.0 \mathrm{eq})$ in order were added. The reaction mixture was stirred at room temperature for 10 min , and then heated to $100^{\circ} \mathrm{C}$ for $24 \mathrm{~h}(300 \mathrm{rpm})$. After being allowed to cool to room temperature, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the resulting mixture purified by pTLC using hexane/EA (2/1) as the eluent.

Substrate and Olefin Scope for $\boldsymbol{\beta}$ - $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ Olefination

Benzyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (3a)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $25 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.30(\mathrm{~m}, 5 \mathrm{H})$, $5.16(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{ddt}, J=9.9,6.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J$ $=16.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=12.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.14,169.42,135.35,128.63,128.46,128.36,72.56$, 66.83, 43.04, 40.31, 40.22, 24.93, 24.38; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 263.1278; found: 263.1277.

Benzyl 2-(4-ethyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3b)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $26.5 \mathrm{mg}, 96 \%, \mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.29(\mathrm{~m}, 10 \mathrm{H}), 5.16(\mathrm{~s}, 4 \mathrm{H}), 4.89-4.74(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.81(\mathrm{~m}$, 2 H), $2.71-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=12.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87(\mathrm{dd}, J=12.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=13.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.25$ $(\mathrm{s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 180.79,180.71,169.43,169.41,135.35,128.61,128.43,128.34,72.66,72.65$, $66.80,66.78,44.40,44.17,40.60,40.56,40.25,39.53,30.37,30.16,22.83,22.22,8.73,8.64$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 277.1434$; found: 277.1432.

Benzyl 2-(4-butyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3c)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $29.0 \mathrm{mg}, 95 \%, \mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.31(\mathrm{~m}, 10 \mathrm{H}), 5.16(\mathrm{~s}, 4 \mathrm{H}), 4.88-4.76(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.81(\mathrm{~m}$, $2 \mathrm{H}), 2.70-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=12.8,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87(\mathrm{dd}, J=12.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=13.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40-$ $1.28(\mathrm{~m}, 7 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.93,180.85,169.44,135.35,128.61,128.44,128.34,72.70,66.81$, $66.79,43.98,43.84,40.97,40.59,40.29,40.12,37.45,37.18,26.52,26.51,23.48,22.95$, 22.58, 13.92, 13.88; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 305.1747; found: 305.1748 .

Benzyl 2-(4-isopropyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3d)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $21.5 \mathrm{mg}, 74 \%, \mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.31(\mathrm{~m}, 10 \mathrm{H}), 5.20-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.86-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.80-$ $4.72(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{dd}, J=13.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ - $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.84(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 181.07, $180.51,169.44,169.42,135.35,135.34,128.60,128.43,128.34,128.33,72.91,72.55,66.80$, 66.76, 48.04, 47.57, 41.10, 40.28, 37.54, 36.02, 33.67, 32.82, 22.61, 21.68, 18.29, 18.22, 17.04, 16.90; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 291.1591; found: 291.1591.

Benzyl 2-(4-benzyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3e)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $31.0 \mathrm{mg}, 91 \%$, $\mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.22(\mathrm{~m}, 16 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 4 \mathrm{H}), 4.84-$ $4.74(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ - $2.70(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.47(\mathrm{~m}$, $2 \mathrm{H}), 2.31(\mathrm{dd}, J=16.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=12.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=12.9,9.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.72 (dd, $J=13.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 180.80,180.46,169.37,169.15,136.77,136.18,135.35,135.31,130.12,129.80$, $128.60,128.56,128.47,128.43,128.42,128.32,128.29,127.25,126.95,72.77,72.62,66.72$, 66.71, 45.74, 45.51, 44.03, 43.34, 40.41, 40.00, 39.62, 38.95, 24.96, 23.62; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 339.1591$; found: 339.1596 .

Benzyl 2-(4-methyl-5-oxo-4-phenethyltetrahydrofuran-2-yl)acetate (3f)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $33.5 \mathrm{mg}, 95 \%$, $\mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 6 \mathrm{H}), 5.16$ (s, $4 \mathrm{H}), 4.92-4.82(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.57(\mathrm{~m}, 5 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.20$ $(\mathrm{dd}, J=12.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.46,180.44,169.41,169.38,141.24,140.99,135.32,130.01,129.08$, $128.64,128.54,128.49,128.48$, $128.39,128.38$, 128.29 , 128.24, $126.17,126.08,125.88$, $72.80,72.76,66.88,66.87,44.06,43.93,41.20,40.54,40.20,40.17,39.57,39.31,30.79$, 30.78, 23.33, 22.60; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 353.1747$; found: 353.1746.

Benzyl 2-(4-(3-(2,5-dimethylphenoxy)propyl)-4-methyl-5-oxotetrahydrofuran-2-

yl)acetate ($\mathbf{3 g}$)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $33.0 \mathrm{mg}, 81 \%$, $\mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.60(\mathrm{~s}, 2 \mathrm{H}), 5.21-5.11(\mathrm{~m}, 4 \mathrm{H}), 4.91-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.89(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.84(\mathrm{~m}$, 2H), 2.71 - 2.63 (m, 2H), 2.43 (dd, $J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (s, 6H), 2.21 (dd, $J=12.8$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.64(\mathrm{~m}, 7 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, $3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.47,180.43,169.37,169.33,156.73,156.70,136.50$, $136.48,135.33,130.33,130.31,128.62,128.45,128.35,123.49,120.88,120.83,111.94$, $111.93,72.73,72.68,67.49,67.33,66.83,66.81,43.78,43.56,41.16,40.52,40.23,40.18$, $34.19,34.08,24.61,24.58,23.22,22.51,21.37,15.77,15.75$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 411.2166$; found: 411.2167 .

Benzyl 2-(4-methyl-5-oxo-4-(3-((triisopropylsilyl)oxy)propyl)tetrahydrofuran-2yl)acetate (3h)
Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $41.5 \mathrm{mg}, 90 \%, \mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.15(\mathrm{~s}, 4 \mathrm{H}), 4.91-4.76(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.63(\mathrm{~m}$, $4 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=16.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.17 (dd, $J=12.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=12.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=13.1,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$, $1.13-0.97(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.75,180.67,169.43,169.37,135.36$, $135.36,128.62,128.44,128.35,72.70,72.66,66.81,66.79,63.17,62.97,43.75,43.57,41.06$, $40.58,40.28,33.87,33.82,27.94,27.89,23.23,22.51,18.00,11.93,11.92$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 463.2874 ; found: 463.2870.

Benzyl 2-(4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3i)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $17.5 \mathrm{mg}, 71 \%, \mathrm{dr}=1.8 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.30(\mathrm{~m}, 14 \mathrm{H}), 5.16(\mathrm{~s}, 5.6 \mathrm{H}), 4.99-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.73$ (m, 1.8H), 2.88 (dd, $J=16.3,6.9 \mathrm{~Hz}, 1.8 \mathrm{H}$), 2.83 (dd, $J=16.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.57(\mathrm{~m}$, 7.4 H), $2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dt}, J=13.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1.8 \mathrm{H}), 1.29(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 5.4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.22,178.67$, $169.34,169.33,135.33,135.30,128.64,128.63,128.48,128.46,128.37,128.35,73.91,73.84$, $66.85,66.83,40.05,39.83,36.89,35.66,34.99,33.65,15.79,14.98$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 249.1127$; found: 249.1128 .

Benzyl 2-(4-ethyl-5-oxotetrahydrofuran-2-yl)acetate (3j)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $16.0 \mathrm{mg}, 62 \%, \mathrm{dr}=1.2 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.30(\mathrm{~m}, 11 \mathrm{H}), 5.16(\mathrm{~s}, 4.4 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.73$ (m, 1.2H), 2.89 (dd, $J=16.3,6.8 \mathrm{~Hz}, 1.2 \mathrm{H}$), 2.83 (dd, $J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61$ (m, $2.2 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 3.2 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 1.2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1.2 \mathrm{H}), 1.90-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 3.2 \mathrm{H}), 1.54-1.44$ (m, 1.2H), $1.04-0.94$ (m, 6.6H); ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.49,177.92,169.38,169.36,135.34,135.31,128.63,128.63,128.48$, $128.46,128.37,128.36,74.14,74.07,66.84,66.83,42.11,40.34,40.12,40.04,34.27,32.61$, 23.91, 23.21, 11.60, 11.56; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 263.1283$; found: 263.1286.

Benzyl 2-(5-oxo-4-propyltetrahydrofuran-2-yl)acetate (3k)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $12.0 \mathrm{mg}, 44 \%, \mathrm{dr}=1.8 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.30(\mathrm{~m}, 14 \mathrm{H}), 5.16(\mathrm{~s}, 5.6 \mathrm{H}), 4.96-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.72$ $(\mathrm{m}, 1.8 \mathrm{H}), 2.89(\mathrm{dd}, J=16.3,6.8 \mathrm{~Hz}, 1.8 \mathrm{H}), 2.83(\mathrm{dd}, J=16.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.53(\mathrm{~m}$, $7.4 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1.8 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1.8 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}$, $1.8 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 8.6 \mathrm{H}), 1.00-0.89(\mathrm{~m}, 8.4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.73$, 178.19, 169.39, 169.37, 135.34, 135.31, 128.64, 128.63, 128.48, 128.47, 128.37, 128.37, $74.15,74.12,66.85,66.83,40.51,40.11,40.01,38.73,34.86,33.08,32.82,32.28,20.50$, 20.47, 13.76, 13.73; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 277.1440$; found: 277.1445.

Benzyl 2-(5-oxotetrahydrofuran-2-yl)acetate (31)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $9.0 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.30(\mathrm{~m}, 5 \mathrm{H})$, $5.16(\mathrm{~s}, 2 \mathrm{H}), 4.96-4.87(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=16.3,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.33,169.27,135.31,128.65,128.50,128.38,76.13,66.87,40.00,28.44,27.60$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 235.0970$; found: 235.0972.

Benzyl 2-(5-oxo-4-phenethyltetrahydrofuran-2-yl)acetate (3m)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $17.5 \mathrm{mg}, 52 \%, \mathrm{dr}=2.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.34(\mathrm{~m}, 15 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 9 \mathrm{H}), 5.18$ ($\mathrm{s}, 4 \mathrm{H}$), $5.18(\mathrm{~s}, 2 \mathrm{H}), 4.99-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.72(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=16.3,6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.87-2.55(\mathrm{~m}, 16 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.33,177.90$, $169.32,169.29,140.58,140.54,135.32,135.29,129.90,128.64,128.63,128.53,128.52$, $128.48,128.42,128.39,128.38,128.37,126.25,126.24,74.09,66.85,66.84,40.03,39.95$, 39.83, 38.07, 34.95, 33.24, 33.21, 33.17, 32.46, 31.82, 28.29; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 339.1596$; found: 339.1598.

Benzyl 2-(4-(2,6-difluorophenyl)-5-oxotetrahydrofuran-2-yl)acetate (3n)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $16.5 \mathrm{mg}, 48 \%, \mathrm{dr}=2.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.31(\mathrm{~m}, 15 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.86(\mathrm{~m}, 6 \mathrm{H}), 5.15-$ $5.10(\mathrm{~m}, 7 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=16.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ (dd, $J=16.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 5 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.24-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.26,174.46,169.15,161.09$ (dd, $J=$ $249.0,7.2 \mathrm{~Hz}$), 160.96 (dd, $J=248.9,7.6 \mathrm{~Hz}$), 135.27, 135.22, 129.77 (t, $J=10.8 \mathrm{~Hz}$), 129.66 $(\mathrm{t}, J=10.7 \mathrm{~Hz}), 128.64,128.62,128.49,128.45,128.37,128.34,113.90(\mathrm{t}, J=18.3 \mathrm{~Hz})$, $113.03(\mathrm{t}, J=18.0 \mathrm{~Hz}), 111.74(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 111.57(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 74.56,74.36,66.91$, 66.89, 40.14, 39.66, 36.41, 35.43, 34.15, 33.71; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 347.1095$; found: 347.1092.

Benzyl 2-(4-cyclohexyl-5-oxotetrahydrofuran-2-yl)acetate (30)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $14.0 \mathrm{mg}, 44 \%, \mathrm{dr}=1.0 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.29(\mathrm{~m}, 10 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.89-4.81(\mathrm{~m}, 1 \mathrm{H})$, $4.77-4.69(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=16.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-$ $2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 8 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.33$ $-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.12-0.98(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.01,177.24,169.43$, $169.40,135.36,135.35,128.64,128.63,128.47,128.46,128.37,74.45,73.89,66.82,66.81$, $46.13,44.76,40.30,40.11,38.66,37.27,31.21,30.90,30.85,29.91,28.90,28.49,26.22$, 26.17, 26.11, 26.01, 25.99; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 317.1753$; found: 317.1754.

Benzyl 2-(4-(1,3-dioxoisoindolin-2-yl)-5-oxotetrahydrofuran-2-yl)acetate (3p)

Following General Procedure \mathbf{A} on 0.1 mmol scale with the following modification: $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathbf{L 1 2}(10 \mathrm{~mol} \%), \mathrm{CsOAc}(1.0 \mathrm{eq})$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq})$. Purification by pTLC afforded the title compound (colorless oil, $15.0 \mathrm{mg}, 40 \%, \mathrm{dr}=2.1 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.83$ (m, 6.2H), $7.83-7.71$ (m, $6.2 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 15.5 \mathrm{H}), 5.28-5.11(\mathrm{~m}, 10.3 \mathrm{H}), 4.99(\mathrm{dq}, J=10.0,6.4 \mathrm{~Hz}, 2.1 \mathrm{H}), 3.12$ (dd, $J=16.5,6.8 \mathrm{~Hz}, 2.1 \mathrm{H}), 2.97-2.71(\mathrm{~m}, 7.2 \mathrm{H}), 2.59-2.43(\mathrm{~m}, 3.1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.95,171.02,169.03,168.98,166.81,166.77,135.26,135.17,134.51$, $134.49,131.63,131.60,128.68,128.64,128.55,128.48,128.43,128.35,123.77,73.96,73.51$, 66.99, 66.96, 48.08, 46.58, 40.19, 39.43, 32.21, 31.12; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 380.1129$; found: 380.1131 .

Benzyl 2-(4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3q)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $13.0 \mathrm{mg}, 52 \%, \mathrm{dr}=1.6 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.32(\mathrm{~m}, 13 \mathrm{H}), 5.17$ (s, 3.2H), 5.17 (s, 2H), $5.08-4.98(\mathrm{~m}, 1 \mathrm{H})$, $4.74(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1.6 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 2.6 \mathrm{H}), 2.73(\mathrm{dd}, J=16.2,6.9 \mathrm{~Hz}, 1.6 \mathrm{H}), 2.64(\mathrm{dd}$, $J=16.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2.6 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1.6 \mathrm{H}), 1.34$ $-1.23(\mathrm{~m}, 1.6 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 1.6 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.19,175.15,169.35,169.02,135.29,135.27,128.64,128.63,128.49$, $128.43,128.34,76.54,74.87,66.89,66.86,40.41,37.27,22.18,20.86,18.47,17.61,12.55$, 9.02; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 247.0970 ; found: 247.0972 .

Benzyl 2-(5-methyl-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3r)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $12.5 \mathrm{mg}, 48 \%, \mathrm{dr}=1.3 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ - $7.31(\mathrm{~m}, 11.5 \mathrm{H}), 5.16(\mathrm{~s}, 4.6 \mathrm{H}), 4.97(\mathrm{td}, J=6.9,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2.3 \mathrm{H}), 2.72(\mathrm{dd}, J=16.2,6.5 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.59(\mathrm{dd}$, $J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=7.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=7.6,4.2 \mathrm{~Hz}, 1.3 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 3.9 \mathrm{H}), 1.10(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}, 1.3 \mathrm{H}), 1.00(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1.3 \mathrm{H}), 0.99-0.92$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.30,177.16,169.43,169.03,135.33,135.30$, 128.62, 128.61, 128.45, 128.37, 128.32, 75.42, 73.71, 66.82, 66.80, 40.49, 37.14, 27.90, 26.68, 24.61, 24.03, 19.30, 15.56, 14.31, 14.06; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 261.1127$; found: 261.1131.

Benzyl 2-(5-((benzyloxy)methyl)-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3s)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $23.0 \mathrm{mg}, 62 \%, \mathrm{dr}=1.3 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.29(\mathrm{~m}, 23 \mathrm{H}), 5.18(\mathrm{~s}, 4.6 \mathrm{H}), 5.00(\mathrm{td}, J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1.3 \mathrm{H}), 4.61(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2.3 \mathrm{H}), 4.55(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2.3 \mathrm{H}), 4.13(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1.3 \mathrm{H}), 3.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, 1.3 H), $2.90-2.80(\mathrm{~m}, 2.3 \mathrm{H}), 2.75(\mathrm{dd}, J=16.3,6.8 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.63(\mathrm{dd}, J=16.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43$ (dt, $J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=7.8,4.5 \mathrm{~Hz}, 1.3 \mathrm{H}), 1.38(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}$, $1.3 \mathrm{H}), 1.23(\mathrm{dd}, J=7.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1.3 \mathrm{H}), 1.01(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.24,175.19,169.27,169.09,137.85,137.78,135.33,135.29$, 128.63, 128.61, 128.48, 128.44, 128.42, 128.39, 128.35, 128.33, 127.77, 127.69, 127.64, $127.54,75.47,73.94,73.24,73.17,66.95,66.87,66.85,66.83,40.45,37.23,29.93,29.25$, 26.21, 25.04, 16.40, 12.90; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 367.1545$; found: 367.1543.

Benzyl 2-(5-(5-chloropentyl)-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3t)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $16.5 \mathrm{mg}, 47 \%, \mathrm{dr}=1.2 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.30(\mathrm{~m}, 11 \mathrm{H}), 5.26-5.09(\mathrm{~m}, 4.4 \mathrm{H}), 4.95(\mathrm{td}, J=7.0,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1.2 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 4.4 \mathrm{H}), 2.80(\mathrm{dd}, J=15.9,6.4 \mathrm{~Hz}, 2.2 \mathrm{H}), 2.66$ (dd, $J=16.1,6.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.60(\mathrm{dd}, J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.90$ $(\mathrm{m}, 3.4 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 4.4 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 11 \mathrm{H}), 1.14(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1.2 \mathrm{H}), 1.03$ $-0.96(\mathrm{~m}, 2.2 \mathrm{H}), 0.94(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.68,176.51$, $169.45,169.00,135.31,135.28,128.63,128.49,128.48,128.37,128.34,75.35,73.81,66.89$, 66.83, 44.89, 44.87, 40.71, 37.17, 32.25, 32.24, 29.19, 28.53, 28.41, 28.36, 26.88, 26.67, 26.55, 26.42, 26.31, 25.62, 18.11, 14.35; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 351.1363; found: 351.1359 .

Benzyl 2-(6-methyl-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3u)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $11.0 \mathrm{mg}, 42 \%, \mathrm{dr}=1.4 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ - $7.31(\mathrm{~m}, 12 \mathrm{H}), 5.16(\mathrm{~s}, 4.8 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.73$ (t, $J=$ $6.5 \mathrm{~Hz}, 1.4 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 2.4 \mathrm{H}), 2.68(\mathrm{dd}, J=16.1,7.0 \mathrm{~Hz}, 1.4 \mathrm{H}), 2.63(\mathrm{dd}, J=16.2$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=5.7,3.7 \mathrm{~Hz}, 1.4 \mathrm{H}), 1.87(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}$, 1 H), 1.82 (ddd, $J=5.7,2.8,1.0 \mathrm{~Hz}, 1.4 \mathrm{H}), 1.33-1.22$ (m, 2.4H), 1.14 (d, $J=6.0 \mathrm{~Hz}, 4.2 \mathrm{H}$), $1.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.73,174.68,169.37,169.07$, $135.33,135.30,128.64,128.62,128.48,128.42,128.35,76.48,75.16,66.85,66.82,40.29$, 37.30, 29.69, 28.33, 26.06, 25.22, 21.26, 17.52, 15.98, 15.92; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 261.1127$; found: 261.1132.

Benzyl 2-(6,6-dimethyl-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3v)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $26.0 \mathrm{mg}, 95 \%$, dr > 20.0/1.0). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ $-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, 1.14 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.61,169.15,135.32,128.62,128.47,128.40$, 73.73, 66.84, 40.06, 34.63, 30.82, 25.24, 23.88, 14.85; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4}$ [M+H] ${ }^{+}$: 275.1278; found: 275.1277.

Benzyl 2-(5-ethyl-4-oxo-3-oxabicyclo[3.2.0]heptan-2-yl)acetate (3w)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $15.0 \mathrm{mg}, 52 \%, \mathrm{dr}=1.1 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.30(\mathrm{~m}, 10.5 \mathrm{H}), 5.15(\mathrm{~s}, 4.2 \mathrm{H}), 4.86-4.79(\mathrm{~m}, 1.1 \mathrm{H}), 4.78$ (td, $J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 1.1 \mathrm{H}), 2.93(\mathrm{dd}, J=16.3,7.2 \mathrm{~Hz}, 1.1 \mathrm{H}), 2.77(\mathrm{dd}, J=$ $16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.63(\mathrm{dd}, J=16.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=16.0$, $7.3 \mathrm{~Hz}, 1.1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2.1 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 2.1 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 4.2 \mathrm{H}), 1.86-$ 1.74 (m, 2.1H), $1.76-1.64(\mathrm{~m}, 2.1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3.3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.43,180.92,169.57,169.24,135.37,135.34,128.63$, $128.46,128.34,128.32,80.75,76.34,66.81,51.42,49.20,41.44,41.41,40.68,35.36,28.16$, 27.72, 27.55, 27.18, 22.05, 15.74, 9.33, 9.22; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 289.1440; found: 289.1442 .

Benzyl 2-(4-oxo-5-(2-phenoxyethyl)-3-oxabicyclo[3.2.0]heptan-2-yl)acetate (3x)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, $16.0 \mathrm{mg}, 43 \%, \mathrm{dr}=1.6 / 1.0$). Data for inseparable isomers: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.29(\mathrm{~m}, 13 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 5.2 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 2.6 \mathrm{H})$, $6.88-6.81(\mathrm{~m}, 5.2 \mathrm{H}), 5.17-5.05(\mathrm{~m}, 5.2 \mathrm{H}), 4.90-4.83$ (m, 1.6H), $4.83-4.77$ (m, 1H), $4.09(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 1.6 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 1.6 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1.6 \mathrm{H})$, $2.95-2.86(\mathrm{~m}, 2.6 \mathrm{H}), 2.74(\mathrm{dd}, J=16.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.3,7.4 \mathrm{~Hz}, 1.6 \mathrm{H}), 2.54$ (dd, $J=16.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 2.6 \mathrm{H}), 2.32-2.13(\mathrm{~m}, 7.8 \mathrm{H}), 2.11-1.92$ (m, $5.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.15,180.69,169.37,169.36,158.19,158.09$, $135.37,135.36,129.53,129.51,128.60,128.58$, $128.42,128.38,128.27,128.25,121.06$, $121.01,114.26,114.23,81.41,76.34,66.73,66.66,64.26,64.21,49.01,46.92,42.05,42.02$, 40.16, 35.12, 33.92, 33.42, 29.29, 28.93, 22.42, 16.14; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 381.1702$; found: 381.1707.

Methyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (4a)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $17.0 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.84(\mathrm{ddt}, J=9.9,6.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{dd}, J=16.2,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{dd}, J=16.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=12.8,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.14,170.01,72.60$, 52.00, 43.09, 40.33, 40.04, 24.95, 24.39; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 187.0965; found: 187.0962.

Ethyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (4b)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $18.0 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.84(\mathrm{dq}, J=9.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=16.2,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=12.8$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.21,169.57,72.68$, 60.99, 43.07, 40.31, 40.28, 24.94, 24.39, 14.13; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}$ [M+H] ${ }^{+}$: 201.1121; found: 201.1120.

Butyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (4c)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $21.0 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (600
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.83(\mathrm{dq}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{tt}, J=7.0,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $16.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}$, $J=12.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.20,169.66,72.68,64.90,43.09$, 40.31, 40.26, 30.52, 24.95, 24.38, 19.06, 13.65; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4}$ [M+H] ${ }^{+}$: 229.1434; found: 229.1438.

2-(4,4-Dimethyl-5-oxotetrahydrofuran-2-yl)-N,N-dimethylacetamide (4d)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $19.0 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.92(\mathrm{ddt}, J=10.0,7.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.52$ (dd, $J=15.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=12.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=12.9,9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.53,168.89,74.02,43.90,40.28$, 39.15, 37.30, 35.25, 24.96, 24.33; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 200.1287; found: 200.1292.

3,3-Dimethyl-5-(2-oxobutyl)dihydrofuran-2(3H)-one (4e)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $17.0 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.92-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=16.9,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.49(\mathrm{qd}, J=7.3,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=12.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=12.8$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.67$, 181.34, 72.64, 47.60, 43.53, 40.24, 36.89, 24.95, 24.30, 7.46; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$185.1172; found: 185.1176 .

2-(4,4-Dimethyl-5-oxotetrahydrofuran-2-yl)acetonitrile (4f)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $12.0 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.72-4.60(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dd}, J=12.9,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{dd}, J=12.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.07, 115.20, 70.83, 42.24, 40.47, 24.80, 24.45, 23.99; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 154.0863$; found: 154.0863.

3,3-Dimethyl-5-((phenylsulfonyl)methyl)dihydrofuran-2(3H)-one (4g)
Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $24.0 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{dq}, J=$ $10.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{dd}, J=14.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=14.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}$, $J=13.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=13.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 180.16,139.24,134.28,129.45,128.05,70.36,60.82,43.25,39.78,24.73,24.11$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 269.0842$; found: 269.0842.

Diethyl ((4,4-dimethyl-5-oxotetrahydrofuran-2-yl)methyl)phosphonate (4h)

Following General Procedure \mathbf{A} on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, $23.0 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.81-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.07(\mathrm{~m}, 4 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=13.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{~s}$,
$3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.05,71.89,62.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 61.95$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}), 44.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 40.44,32.59(\mathrm{~d}, J=139.8 \mathrm{~Hz}), 24.88,24.19,16.40(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}$), $16.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}) ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 265.1199$; found: 265.1197.

3,3-Dimethyl-7-phenyl-1-oxa-7-azaspiro[4.4]nonane-2,6,8-trione (4i)

Following General Procedure \mathbf{A} on 0.1 mmol scale with the following modification: $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ without $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. Purification by column chromatography afforded the title compound (colorless oil, $27.0 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, 1.41 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.80,174.16,171.27,131.04,129.31,129.15$, 126.14, 78.69, 44.86, 42.87, 40.40, 27.01, 25.78; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 274.1074$; found: 274.1071.

7-Dodecyl-3,3-dimethyl-1-oxa-7-azaspiro[4.4]nonane-2,6,8-trione (4j)
Following General Procedure \mathbf{A} on 0.1 mmol scale with the following modification: $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ without $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. Purification by column chromatography afforded the title compound (colorless oil, $26.0 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.60-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.35-$ $1.20(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.89,175.06$, 172.27, 78.64, 44.74, 42.77, 40.33, 39.50, 31.88, 29.58, 29.50, 29.39, 29.31, 29.03, 27.48,
26.85, 26.68, 25.72, 22.65, 14.09; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 366.2644; found: 366.2647.

Methyl
(6-(3,3-dimethyl-2,6,8-trioxo-1-oxa-7-azaspiro[4.4]nonan-7-
yl)hexanoyl)phenylalaninate (4 k)
Following General Procedure \mathbf{A} on 0.1 mmol scale with the following modification: $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ without $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. Purification by column chromatography afforded the title compound (colorless oil, $25.0 \mathrm{mg}, 53 \%, \mathrm{dr}=1.0 / 1.0$). ${ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91-4.84(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{td}, J=7.1,6.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19-3.11(\mathrm{~m}$, 2H), $3.10-3.04$ (m, 1H), 2.90 (dd, $J=18.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-$ $2.10(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.88,175.05,172.30,172.26,172.09,172.08,172.06,172.04,135.82$, 129.72, 129.18, 129.10, 128.56, 127.11, 126.54, 78.66, 52.91, 52.90, 52.30, 44.66, 44.65, $42.74,42.73,40.30,39.13,37.86,37.84,36.00,27.09,26.84,26.08,26.05,25.71,24.76$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 473.2288; found: 473.2289.

Gram-Scale Experiment and Synthetic Application

In the sealed tube, $\operatorname{Pd}(\mathrm{TFA})_{2}(10 \mathrm{~mol} \%, 0.40 \mathrm{~g})$, ligand $\mathbf{L 1 4}(10 \mathrm{~mol} \%, 0.23 \mathrm{~g})$, $\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq}, 3.22 \mathrm{~g}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}, 3.30 \mathrm{~g})$, and pivalic acid $\mathbf{1 a}(12.0 \mathrm{mmol}$, 1.22 g) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (24.0 mL) and benzyl acrylate $\mathbf{2 a}(2.0 \mathrm{eq}, 3.60 \mathrm{~mL}$) was added. The reaction mixture was stirred at rt for 10 min , and then heated to $120^{\circ} \mathrm{C}$ for $12 \mathrm{~h}(300 \mathrm{rpm})$. After being allowed to cool to room temperature, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the resulting mixture purified by column chromatography to afford $\mathbf{3 a}(2.92 \mathrm{~g}, 93 \%)$.

To a solution of $6 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ was added $\mathbf{3 a}(0.2 \mathrm{mmol})$ then the mixture was heated to 80 ${ }^{\circ} \mathrm{C}$ until TLC showed that the 3a was fully consumed. The reaction mixture was cooled down to room temperature, then extracted with DCM. The organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by column chromatography to afford $\mathbf{5 a}$ ($31.6 \mathrm{mg}, \mathbf{9 2 \%}$).

2-(4,4-Dimethyl-5-oxotetrahydrofuran-2-yl)acetic acid (5a)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{ddt}, J=10.0,7.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (ddd, $J=16.6,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{dd}, J=12.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
181.39, 175.00, 72.41, 42.87, 40.33, 39.88, 24.84, 24.32; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 173.0808$; found: 173.0807.

To a solution of $\mathbf{3 a}(1.0 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5.0 / 5.0 \mathrm{~mL})$ was added $\mathrm{NaOH}(4.0 \mathrm{eq})$, then the mixture was heated to reflux until TLC showed that the 3a was fully consumed. The reaction mixture was cooled down to room temperature, and 1 M HCl was added until the pH value to about 3 , followed by filtration through a pad of celite, and the solvent was removed under vacuum. The residue was purified by column chromatography to afford $\mathbf{5 b}$ (135 mg , $78 \%)$.

(E)-5,5-Dimethylhex-2-enedioic acid (5b)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{dt}, J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (dd, $J=7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.39,171.57$, 147.38, 123.70, 42.51, 42.24, 25.07; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 173.0808; found: 173.0807.

To a solution of $\mathbf{3 a}(0.2 \mathrm{mmol})$ in THF (2.0 mL) was added 0.4 mL of LAH solution (1.0 M in THF), then the mixture was stirred at room temperature until TLC showed that the 3a was fully consumed (around 1 h). The reaction mixture was added $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg})$ followed by water (2 mL), then extracted with DCM. The organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The residue was purified by column chromatography to afford $\mathbf{5 c}(27.0 \mathrm{mg}, 83 \%)$.

5,5-Dimethylhexane-1,3,6-triol (5c)

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H})$, $3.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.31(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 71.54, 69.03, 62.12, 48.93, 39.28, 35.08, 28.19, 22.90; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 163.1329$; found: 163.1333.

Kinetic Experiments

Kinetic data with L14

General Procedure: In the control tube, $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, ligand $\mathbf{L 1 4}(10 \mathrm{~mol} \%)$, $\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq})$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq})$ in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL), $\mathbf{1 b}(0.1 \mathrm{mmol})$, and $\mathbf{2 a}(2.0 \mathrm{eq})$ were added. The reaction mixture was stirred at rt for 10 min , and then heated to $90^{\circ} \mathrm{C}$ for the appropriate time (300 rpm). After being allowed to cool in a dry ice bath, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. The obtained average yields for three trials were plotted as concentration [3b] vs. time t (Figure S 1). Kinetic data under the standard conditions are shown below:

$$
\mathbf{3 b}\left(10^{-3} \mathbf{M}\right)
$$

entry	$\mathrm{t}(\mathrm{min})$	trial 1	trial 2	trial 3	average	std. dev.
1	0	0.0	0.0	0.0	0.0	0.0
2	10	16.0	20.6	21.0	19.2	2.8
3	20	20.2	22.4	25.0	22.5	2.4
4	30	31.8	37.4	39.4	36.2	3.9
5	40	39.4	38.4	42.6	40.1	2.2
6	50	42.4	42.4	44.2	43.0	1.0
7	60	44.6	44.4	47.0	45.3	1.4

Figure S1. Representative initial data for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ olefination of $\mathbf{1 b}$ with $\mathbf{L 1 4}$

Kinetic data in the absence of L14

General Procedure: In the control tube, $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq})$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq})$ in order were weighed in air and placed with a magnetic stir bar. Then HFIP $(1.0 \mathrm{~mL}), \mathbf{1 b}(0.1 \mathrm{mmol})$, and $\mathbf{2 a}(2.0 \mathrm{eq})$ were added. The reaction mixture was stirred at rt for 10 min , and then heated to $90^{\circ} \mathrm{C}$ for the appropriate time (300 rpm). After being allowed to cool in a dry ice bath, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. The obtained average yields for three trials were plotted as concentration [3b] vs. time t (Figure S2). Kinetic data under the standard conditions are shown below:
$\mathbf{3 b}\left(10^{-3} \mathrm{M}\right)$

entry	$\mathrm{t}(\mathrm{min})$	trial 1	trial 2	trial 3	average	std. dev.
1	0	0.0	0.0	0.0	0.0	0.0
2	60	9.8	8.8	8.4	9.0	0.7
3	120	10.4	10.2	9.6	10.1	0.4
4	180	11.0	10.8	11.4	11.1	0.3
5	240	11.4	11.4	12.0	11.6	0.3
6	300	13.2	13.8	16.8	14.6	1.9
7	360	19.6	15.8	18.4	17.9	1.9

Figure S2. Representative data for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ olefination of $\mathbf{1 b}$ in the absence of $\mathbf{L} \mathbf{1 4}$

Figure S3. Representative data for $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ olefination of $\mathbf{1 b}$

Reference:

1. Katritzky, A. R.; Xu, Y. J.; He, H. Y.; Mehta, S. J. Org. Chem. 2001, 66, 5590.
2. Adams, H.; Anderson, J. C.; Cubbon, R.; James, D. S.; Mathias, J. P. J. Org. Chem. 1999, 64, 8256.

			1		150	1	1	1	1	10	1	1	10	1	,		1		
00	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10

						1		1		1		1		1					
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

(2)


```
*)
```


	1	1	1	1		1	1	1	1	1								1	1
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Co

COCO2Bn

 J, J,

Concen

$\underbrace{4}$

C-CO2

