Ligand-Enabled β -C(sp3)–H Olefination of Free Carboxylic Acids

Zhe Zhuang, $^{\dagger,\perp}$ Chang-Bin Yu, $^{\dagger,\perp}$ Gang Chen, † Qing-Feng Wu, † Yi Hsiao, ‡ Candice L. Joe, ‡ Jennifer X. Qiao, $^{\$}$ Michael. A. Poss, $^{\$}$ and Jin-Quan Yu*, †

†Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey
Pines Road, La Jolla, California 92037, United States

‡Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb
Drive, New Brunswick, New Jersey 08903, United States

§Discovery Chemistry, Bristol-Myers Squibb Company, PO Box 4000, Princeton, New Jersey 08543, United States

Table of Contents

General Information	S 2
Experimental Section	
Preparation of Acetyl-Protected Aminoethyl Phenyl Thioether and Related Ligands	S 3
Control Experiments for β -C(sp ³)–H Olefination	S 4
Oxidant Investigation for β -C(sp ³)–H Olefination	S4
Unactivated Olefin Scope for β -C(sp ³)–H Olefination	S5
Ligand Development for β -C(sp ³)–H Olefination of Propionic Acid	S 6
General Procedure for β -C(sp ³)–H Olefination	S 7
Substrate and Olefin Scope for β -C(sp ³)–H Olefination	S 8
Gram-Scale Experiment and Synthetic Application	S25
Kinetic Experiments	S28
References	S32
¹ H and ¹³ C NMR Spectra	S33

General Information: HFIP was obtained from Oakwood and other solvents were obtained from Sigma-Aldrich, Alfa-Aesar, and Acros and used directly without further purification. Pd(TFA)₂ and Pd(OAc)₂ was obtained from Strem. Ag₂CO₃ was purchased from Sigma-Aldrich. Carboxylic acids were obtained from the commercial sources or synthesized following literature procedures. Other reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with short-wave UV light or KMnO₄ and heat as developing agents. ¹H NMR spectra were recorded on Bruker DRX-600, DRX-500, and AMX-400 instruments. Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for TMS. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-600 and DRX-500 and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of CDCl₃. Column chromatography was performed using E. Merck silica (60, particle size 0.043–0.063 mm), and pTLC was performed on Merck silica plates (60F-254). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Experimental Section

Preparation of Acetyl-Protected Aminoethyl Phenyl Thioether and Related Ligands

R = H or
$$i$$
-Pr L14 or L15

TEA (1.2 eq) and Ac₂O (1.2 eq) were added to the solution of the amine^{1, 2} (5.0 mmol) in DCM (25 mL). The reaction was stirred at room temperature for 1 h. After completion, the reaction mixture was concentrated *in vacuo*, and the resulting mixture purified by column chromatography afforded the desired thioether ligand.

N-(2-(Phenylthio)ethyl)acetamide (L14)

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.35 (m, 2H), 7.35 – 7.25 (m, 2H), 7.25 – 7.17 (m, 1H), 5.83 (s, 1H), 3.47 (q, J = 6.1 Hz, 2H), 3.12 – 3.03 (m, 2H), 1.94 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.11, 134.94, 129.76, 129.12, 126.57, 38.63, 33.65, 23.22; HRMS (ESI-TOF) Calcd for C₁₀H₁₄NOS [M+H]⁺: 196.0796; found: 196.0801.

(S)-N-(3-Methyl-1-(phenylthio)butan-2-yl)acetamide (L15)

 1 H NMR (600 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.32 – 7.26 (m, 2H), 7.22 – 7.15 (m, 1H), 5.41 (d, J = 9.1 Hz, 1H), 4.05 – 3.95 (m, 1H), 3.19 – 3.04 (m, 2H), 2.01 – 1.90 (m, 1H), 1.89 (s, 3H), 0.99 – 0.85 (m, 6H); 13 C NMR (150 MHz, CDCl₃) δ 169.89, 136.31, 129.61, 129.05, 126.34, 54.10, 36.84, 30.48, 23.30, 19.37, 18.32; HRMS (ESI-TOF) Calcd for C₁₃H₂₀NOS [M+H]⁺: 238.1266; found: 238.1274.

Table S1. Control Experiments for β -C(sp³)–H Olefination^{a,b}

1	none	90
2	no Pd(OAc) ₂	0
3	no L14	16
4	no Na ₂ HPO _{4.} 7H ₂ O	0
5	no ${\sf Ag_2CO_3}$	0

^aConditions: **1b** (0.1 mmol), **2a** (2.0 eq), Pd(OAc)₂ (10 mol%), **L14** (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), Ag₂CO₃ (1.0 eq), HFIP (1.0 mL), 90 °C, 12 h. ^bThe yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S2. Oxidant Investigation for β -C(sp³)–H Olefination^{a,b}

entry	oxidant	yield (%)	entry	oxidant	yield (%)
1	w/o oxidant	0	7	BQ + 1 atm O ₂	8
2	Ag_2CO_3	90	8	Cu(OAc) ₂	24
3	AgOAc	36	9	Cu(TFA) ₂ .xH ₂ O	10
4	AgTFA	0	10	CuF ₂	8
5	BQ	6	11	CuCl ₂	0
6	1 atm O2	8	12	CuCO ₃	10

^aConditions: **1b** (0.1 mmol), **2a** (2.0 eq), Pd(OAc)₂ (10 mol%), **L14** (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), oxidant (1.0 eq), HFIP (1.0 mL), 90 °C, 12 h. ^bThe yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S3. Unactivated Olefin Scope for β -C(sp³)–H Olefination^{a,b}

^aConditions: **1a** (0.1 mmol), **2** (2.0 eq), Pd(TFA)₂ (10 mol%), **L14** (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), Ag₂CO₃ (1.0 eq), HFIP (1.0 mL), 120 °C, 12 h. ^bThe yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S4. Ligand Development for β -C(sp³)–H Olefination of Propionic Acid^{a,b}

^aConditions: **11** (0.1 mmol), **2** (2.0 eq), Pd(TFA)₂ (10 mol%), ligand (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), Ag₂CO₃ (1.0 eq), HFIP (1.0 mL), 120 $^{\circ}$ C, 12 h. ^bThe yields were determined by 1 H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

General Procedure for β -C(sp³)–H Olefination

General Procedure A: In the control tube, Pd(TFA)₂ (10 mol%), ligand L14 (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), Ag₂CO₃ (1.0 eq), and carboxylic acid 1 (0.1 mmol) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL) and olefin 2 (2.0 eq) were added. The reaction mixture was stirred at rt for 10 min, and then heated to 120 °C for 12 h (300 rpm). After being allowed to cool to room temperature, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated *in vacuo*, and the resulting mixture purified by column chromatography (4a-4k) or pTLC (3a-3x) using hexane/EA (2/1) as the eluent.

General Procedure B: In the control tube, Pd(OAc)₂ (10 mol%), K₂HPO₄ (2.0 eq), AgOAc (2.0 eq), and carboxylic acid **1** (0.1 mmol) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL), **L2** (15 mol%), and olefin **2** (2.0 eq) in order were added. The reaction mixture was stirred at room temperature for 10 min, and then heated to 100 °C for 24 h (300 rpm). After being allowed to cool to room temperature, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated *in vacuo*, and the resulting mixture purified by pTLC using hexane/EA (2/1) as the eluent.

Substrate and Olefin Scope for β -C(sp³)–H Olefination

Benzyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (3a)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 25 mg, 95%). 1 H NMR (600 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 5.16 (s, 2H), 4.85 (ddt, J = 9.9, 6.9, 6.1 Hz, 1H), 2.87 (dd, J = 16.3, 6.9 Hz, 1H), 2.66 (dd, J = 16.3, 6.1 Hz, 1H), 2.28 (dd, J = 12.8, 6.0 Hz, 1H), 1.82 (dd, J = 12.8, 9.9 Hz, 1H), 1.27 (s, 6H); 13 C NMR (150 MHz, CDCl₃) δ 181.14, 169.42, 135.35, 128.63, 128.46, 128.36, 72.56, 66.83, 43.04, 40.31, 40.22, 24.93, 24.38; HRMS (ESI-TOF) Calcd for C₁₅H₁₉O₄ [M+H]⁺: 263.1278; found: 263.1277.

Benzyl 2-(4-ethyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3b)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 26.5 mg, 96%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.44 – 7.29 (m, 10H), 5.16 (s, 4H), 4.89 – 4.74 (m, 2H), 2.92 – 2.81 (m, 2H), 2.71 – 2.57 (m, 2H), 2.39 (dd, J = 13.1, 6.6 Hz, 1H), 2.13 (dd, J = 12.8, 6.2 Hz, 1H), 1.87 (dd, J = 12.9, 10.0 Hz, 1H), 1.76 (dd, J = 13.1, 9.5 Hz, 1H), 1.70 – 1.53 (m, 4H), 1.25 (s, 3H), 1.23 (s, 3H), 0.96 (t, J = 7.5 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H); 13 C NMR (150 MHz, CDCl₃) δ 180.79, 180.71, 169.43, 169.41, 135.35, 128.61, 128.43, 128.34, 72.66, 72.65, 66.80, 66.78, 44.40, 44.17, 40.60, 40.56, 40.25, 39.53, 30.37, 30.16, 22.83, 22.22, 8.73, 8.64; HRMS (ESI-TOF) Calcd for $C_{16}H_{21}O_{4}$ [M+H] $^{+}$: 277.1434; found: 277.1432.

Benzyl 2-(4-butyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3c)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 29.0 mg, 95%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.49 – 7.31 (m, 10H), 5.16 (s, 4H), 4.88 – 4.76 (m, 2H), 2.91 – 2.81 (m, 2H), 2.70 – 2.59 (m, 2H), 2.39 (dd, J = 13.1, 6.6 Hz, 1H), 2.15 (dd, J = 12.8, 6.1 Hz, 1H), 1.87 (dd, J = 12.8, 10.0 Hz, 1H), 1.76 (dd, J = 13.1, 9.5 Hz, 1H), 1.64 – 1.50 (m, 4H), 1.40 – 1.28 (m, 7H), 1.25 (s, 3H), 1.24 (s, 3H), 1.19 – 1.10 (m, 1H), 0.95 – 0.85 (m, 6H); 13 C NMR (150 MHz, CDCl₃) δ 180.93, 180.85, 169.44, 135.35, 128.61, 128.44, 128.34, 72.70, 66.81, 66.79, 43.98, 43.84, 40.97, 40.59, 40.29, 40.12, 37.45, 37.18, 26.52, 26.51, 23.48, 22.95, 22.58, 13.92, 13.88; HRMS (ESI-TOF) Calcd for $C_{18}H_{25}O_4$ [M+H]⁺: 305.1747; found: 305.1748.

Benzyl 2-(4-isopropyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3d)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 21.5 mg, 74%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.42 – 7.31 (m, 10H), 5.20 – 5.08 (m, 4H), 4.86 – 4.82 (m, 1H), 4.80 – 4.72 (m, 1H), 2.91 – 2.82 (m, 2H), 2.69 – 2.61 (m, 2H), 2.49 (dd, J = 13.6, 7.4 Hz, 1H), 2.02 – 1.95 (m, 2H), 1.95 – 1.91 (m, 1H), 1.91 – 1.83 (m, 1H), 1.64 (dd, J = 13.5, 8.5 Hz, 1H), 1.27 (s, 3H), 1.22 (s, 3H), 0.99 – 0.84 (m, 12H); 13 C NMR (150 MHz, CDCl₃) δ 181.07, 180.51, 169.44, 169.42, 135.35, 135.34, 128.60, 128.43, 128.34, 128.33, 72.91, 72.55, 66.80, 66.76, 48.04, 47.57, 41.10, 40.28, 37.54, 36.02, 33.67, 32.82, 22.61, 21.68, 18.29, 18.22, 17.04, 16.90; HRMS (ESI-TOF) Calcd for $C_{17}H_{23}O_{4}$ [M+H] $^{+}$: 291.1591; found: 291.1591.

Benzyl 2-(4-benzyl-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3e)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 31.0 mg, 91%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.41 – 7.22 (m, 16H), 7.21 – 7.10 (m, 4H), 5.14 – 5.06 (m, 4H), 4.84 – 4.74 (m, 1H), 4.05 – 3.96 (m, 1H), 3.08 (d, J = 13.7 Hz, 1H), 3.00 (d, J = 13.4 Hz, 1H), 2.79 – 2.70 (m, 2H), 2.68 (d, J = 13.3 Hz, 1H), 2.59 (dd, J = 16.3, 6.9 Hz, 1H), 2.56 – 2.47 (m, 2H), 2.31 (dd, J = 16.3, 6.3 Hz, 1H), 2.05 (dd, J = 12.9, 6.4 Hz, 1H), 1.93 (dd, J = 12.9, 9.5 Hz, 1H), 1.72 (dd, J = 13.3, 9.5 Hz, 1H), 1.32 (s, 3H), 1.31 (s, 3H); 13 C NMR (150 MHz, CDCl₃) δ 180.80, 180.46, 169.37, 169.15, 136.77, 136.18, 135.35, 135.31, 130.12, 129.80, 128.60, 128.56, 128.47, 128.43, 128.42, 128.32, 128.29, 127.25, 126.95, 72.77, 72.62, 66.72, 66.71, 45.74, 45.51, 44.03, 43.34, 40.41, 40.00, 39.62, 38.95, 24.96, 23.62; HRMS (ESI-TOF) Calcd for $C_{21}H_{23}O_4$ [M+H] $^+$: 339.1591; found: 339.1596.

Benzyl 2-(4-methyl-5-oxo-4-phenethyltetrahydrofuran-2-yl)acetate (3f)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 33.5 mg, 95%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.41 – 7.31 (m, 9H), 7.31 – 7.23 (m, 5H), 7.22 – 7.11 (m, 6H), 5.16 (s, 4H), 4.92 – 4.82 (m, 2H), 2.95 – 2.83 (m, 2H), 2.80 – 2.57 (m, 5H), 2.55 – 2.41 (m, 2H), 2.20 (dd, J = 12.8, 6.1 Hz, 1H), 2.01 – 1.77 (m, 6H), 1.33 (s, 3H), 1.32 (s, 3H); 13 C NMR (150 MHz, CDCl₃) δ 180.46, 180.44, 169.41, 169.38, 141.24, 140.99, 135.32, 130.01, 129.08, 128.64, 128.54, 128.49, 128.48, 128.39, 128.38, 128.29, 128.24, 126.17, 126.08, 125.88, 72.80, 72.76, 66.88, 66.87, 44.06, 43.93, 41.20, 40.54, 40.20, 40.17, 39.57, 39.31, 30.79, 30.78, 23.33, 22.60; HRMS (ESI-TOF) Calcd for $C_{22}H_{25}O_4$ [M+H]⁺: 353.1747; found: 353.1746.

Benzyl 2-(4-(3-(2,5-dimethylphenoxy)propyl)-4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3g)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 33.0 mg, 81%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.43 – 7.30 (m, 10H), 7.00 (d, J = 7.5 Hz, 2H), 6.66 (d, J = 7.5 Hz, 2H), 6.60 (s, 2H), 5.21 – 5.11 (m, 4H), 4.91 – 4.80 (m, 2H), 4.00 – 3.89 (m, 4H), 2.92 – 2.84 (m, 2H), 2.71 – 2.63 (m, 2H), 2.43 (dd, J = 13.1, 6.6 Hz, 1H), 2.30 (s, 6H), 2.21 (dd, J = 12.8, 6.1 Hz, 1H), 2.16 (s, 6H), 1.97 – 1.86 (m, 3H), 1.86 – 1.64 (m, 7H), 1.31 (s, 3H), 1.30 (s, 3H); 13 C NMR (150 MHz, CDCl₃) δ 180.47, 180.43, 169.37, 169.33, 156.73, 156.70, 136.50, 136.48, 135.33, 130.33, 130.31, 128.62, 128.45, 128.35, 123.49, 120.88, 120.83, 111.94, 111.93, 72.73, 72.68, 67.49, 67.33, 66.83, 66.81, 43.78, 43.56, 41.16, 40.52, 40.23, 40.18, 34.19, 34.08, 24.61, 24.58, 23.22, 22.51, 21.37, 15.77, 15.75; HRMS (ESI-TOF) Calcd for $C_{25}H_{31}O_{5}$ [M+H] $^{+}$: 411.2166; found: 411.2167.

Benzyl 2-(4-methyl-5-oxo-4-(3-((triisopropylsilyl)oxy)propyl)tetrahydrofuran-2-yl)acetate (3h)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 41.5 mg, 90%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.43 – 7.30 (m, 10H), 5.15 (s, 4H), 4.91 – 4.76 (m, 2H), 3.73 – 3.63 (m, 4H), 2.92 – 2.81 (m, 2H), 2.65 (dd, J = 16.3, 6.1 Hz, 2H), 2.40 (dd, J = 13.1, 6.5 Hz, 1H), 2.17 (dd, J = 12.8, 6.1 Hz, 1H), 1.88 (dd, J = 12.9, 10.0 Hz, 1H), 1.78 (dd, J = 13.1, 9.5 Hz, 1H), 1.74 – 1.57 (m, 6H), 1.57 – 1.48 (m, 1H), 1.48 – 1.39 (m, 1H), 1.27 (s, 3H), 1.25 (s, 3H), 1.13 – 0.97 (m, 21H); 13 C NMR (150 MHz, CDCl₃) δ 180.75, 180.67, 169.43, 169.37, 135.36, 135.36, 128.62, 128.44, 128.35, 72.70, 72.66, 66.81, 66.79, 63.17, 62.97, 43.75, 43.57, 41.06, 40.58, 40.28, 33.87, 33.82, 27.94, 27.89, 23.23, 22.51, 18.00, 11.93, 11.92; HRMS (ESI-TOF) Calcd for $C_{26}H_{43}O_5Si$ [M+H]*: 463.2874; found: 463.2870.

Benzyl 2-(4-methyl-5-oxotetrahydrofuran-2-yl)acetate (3i)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 17.5 mg, 71%, dr = 1.8/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.44 - 7.30 (m, 14H), 5.16 (s, 5.6H), 4.99 - 4.90 (m, 1H), 4.82 - 4.73 (m, 1.8H), 2.88 (dd, J = 16.3, 6.9 Hz, 1.8H), 2.83 (dd, J = 16.1, 6.7 Hz, 1H), 2.76 - 2.57 (m, 7.4H), 2.25 - 2.17 (m, 1H), 2.11 (dt, J = 13.1, 7.7 Hz, 1H), 1.64 - 1.57 (m, 1.8H), 1.29 (d, J = 7.3 Hz, 3H), 1.27 (d, J = 7.0 Hz, 5.4H); 13 C NMR (150 MHz, CDCl₃) δ 179.22, 178.67, 169.34, 169.33, 135.33, 135.30, 128.64, 128.63, 128.48, 128.46, 128.37, 128.35, 73.91, 73.84, 66.85, 66.83, 40.05, 39.83, 36.89, 35.66, 34.99, 33.65, 15.79, 14.98; HRMS (ESI-TOF) Calcd for $C_{14}H_{17}O_{4}$ [M+H] $^{+}$: 249.1127; found: 249.1128.

Benzyl 2-(4-ethyl-5-oxotetrahydrofuran-2-yl)acetate (3j)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.0 mg, 62%, dr = 1.2/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.45 – 7.30 (m, 11H), 5.16 (s, 4.4H), 4.95 – 4.86 (m, 1H), 4.81 – 4.73 (m, 1.2H), 2.89 (dd, J = 16.3, 6.8 Hz, 1.2H), 2.83 (dd, J = 16.1, 6.6 Hz, 1H), 2.72 – 2.61 (m, 2.2H), 2.62 – 2.53 (m, 3.2H), 2.21 – 2.10 (m, 1.2H), 1.98 – 1.89 (m, 1.2H), 1.90 – 1.81 (m, 1H), 1.65 – 1.53 (m, 3.2H), 1.54 – 1.44 (m, 1.2H), 1.04 – 0.94 (m, 6.6H); 13 C NMR (150 MHz, CDCl₃) δ 178.49, 177.92, 169.38, 169.36, 135.34, 135.31, 128.63, 128.63, 128.48, 128.46, 128.37, 128.36, 74.14, 74.07, 66.84, 66.83, 42.11, 40.34, 40.12, 40.04, 34.27, 32.61, 23.91, 23.21, 11.60, 11.56; HRMS (ESI-TOF) Calcd for $C_{15}H_{19}O_4$ [M+H]+: 263.1283; found: 263.1286.

Benzyl 2-(5-oxo-4-propyltetrahydrofuran-2-yl)acetate (3k)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 12.0 mg, 44%, dr = 1.8/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.46 – 7.30 (m, 14H), 5.16 (s, 5.6H), 4.96 – 4.88 (m, 1H), 4.81 – 4.72 (m, 1.8H), 2.89 (dd, J = 16.3, 6.8 Hz, 1.8H), 2.83 (dd, J = 16.1, 6.5 Hz, 1H), 2.70 – 2.53 (m, 7.4H), 2.18 – 2.10 (m, 1.8H), 1.93 – 1.84 (m, 1.8H), 1.84 – 1.77 (m, 1H), 1.65 – 1.57 (m, 1.8H), 1.51 – 1.34 (m, 8.6H), 1.00 – 0.89 (m, 8.4H); 13 C NMR (150 MHz, CDCl₃) δ 178.73, 178.19, 169.39, 169.37, 135.34, 135.31, 128.64, 128.63, 128.48, 128.47, 128.37, 128.37, 74.15, 74.12, 66.85, 66.83, 40.51, 40.11, 40.01, 38.73, 34.86, 33.08, 32.82, 32.28, 20.50, 20.47, 13.76, 13.73; HRMS (ESI-TOF) Calcd for $C_{16}H_{21}O_4$ [M+H]+: 277.1440; found: 277.1445.

Benzyl 2-(5-oxotetrahydrofuran-2-yl)acetate (3l)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 9.0 mg, 40%). 1 H NMR (600 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 5.16 (s, 2H), 4.96 – 4.87 (m, 1H), 2.87 (dd, J = 16.3, 6.5 Hz, 1H), 2.69 (dd, J = 16.3, 6.4 Hz, 1H), 2.60 – 2.52 (m, 2H), 2.50 – 2.41 (m, 1H), 2.02 – 1.91 (m, 1H); 13 C NMR (150 MHz, CDCl₃) δ 176.33, 169.27, 135.31, 128.65, 128.50, 128.38, 76.13, 66.87, 40.00, 28.44, 27.60; HRMS (ESI-TOF) Calcd for $C_{13}H_{15}O_{4}$ [M+H] $^{+}$: 235.0970; found: 235.0972.

Benzyl 2-(5-oxo-4-phenethyltetrahydrofuran-2-yl)acetate (3m)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 17.5 mg, 52%, dr = 2.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.45 – 7.34 (m, 15H), 7.34 – 7.29 (m, 6H), 7.27 – 7.15 (m, 9H), 5.18 (s, 4H), 5.18 (s, 2H), 4.99 – 4.93 (m, 1H), 4.79 – 4.72 (m, 2H), 2.91 (dd, J = 16.3, 6.7 Hz, 2H), 2.87 – 2.55 (m, 16H), 2.34 – 2.24 (m, 2H), 2.24 – 2.14 (m, 3H), 1.86 – 1.79 (m, 1H), 1.79 – 1.71 (m, 2H), 1.68 – 1.61 (m, 1H); 13 C NMR (150 MHz, CDCl₃) δ 178.33, 177.90, 169.32, 169.29, 140.58, 140.54, 135.32, 135.29, 129.90, 128.64, 128.63, 128.53, 128.52, 128.48, 128.42, 128.39, 128.38, 128.37, 126.25, 126.24, 74.09, 66.85, 66.84, 40.03, 39.95, 39.83, 38.07, 34.95, 33.24, 33.21, 33.17, 32.46, 31.82, 28.29; HRMS (ESI-TOF) Calcd for $C_{21}H_{23}O_{4}$ [M+H]⁺: 339.1596; found: 339.1598.

Benzyl 2-(4-(2,6-difluorophenyl)-5-oxotetrahydrofuran-2-yl)acetate (3n)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.5 mg, 48%, dr = 2.0/1.0). Data for inseparable isomers: 1 H NMR (500 MHz, CDCl₃) δ 7.43 – 7.31 (m, 15H), 7.31 – 7.20 (m, 3H), 6.97 – 6.86 (m, 6H), 5.15 – 5.10 (m, 7H), 5.04 – 4.92 (m, 2H), 4.36 – 4.20 (m, 3H), 3.02 (dd, J = 16.4, 6.9 Hz, 2H), 2.91 (dd, J = 16.3, 6.1 Hz, 1H), 2.87 – 2.73 (m, 5H), 2.65 – 2.55 (m, 1H), 2.55 – 2.45 (m, 1H), 2.24 – 2.11 (m, 2H); 13 C NMR (125 MHz, CDCl₃) δ 175.26, 174.46, 169.15, 161.09 (dd, J = 249.0, 7.2 Hz), 160.96 (dd, J = 248.9, 7.6 Hz), 135.27, 135.22, 129.77 (t, J = 10.8 Hz), 129.66 (t, J = 10.7 Hz), 128.64, 128.62, 128.49, 128.45, 128.37, 128.34, 113.90 (t, J = 18.3 Hz), 113.03 (t, J = 18.0 Hz), 111.74 (d, J = 3.3 Hz), 111.57 (d, J = 3.3 Hz), 74.56, 74.36, 66.91, 66.89, 40.14, 39.66, 36.41, 35.43, 34.15, 33.71; HRMS (ESI-TOF) Calcd for C₁₉H₁₇F₂O₄ [M+H] $^{+}$: 347.1095; found: 347.1092.

Benzyl 2-(4-cyclohexyl-5-oxotetrahydrofuran-2-yl)acetate (30)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 14.0 mg, 44%, dr = 1.0/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.44 - 7.29 (m, 10H), 5.15 (s, 2H), 5.15 (s, 2H), 4.89 - 4.81 (m, 1H), 4.77 - 4.69 (m, 1H), 2.88 (dd, J = 16.2, 6.7 Hz, 1H), 2.82 (dd, J = 16.1, 6.5 Hz, 1H), 2.69 - 2.60 (m, 2H), 2.60 - 2.51 (m, 2H), 2.42 - 2.34 (m, 1H), 2.32 - 2.26 (m, 1H), 2.04 - 1.96 (m, 1H), 1.92 - 1.85 (m, 1H), 1.82 - 1.71 (m, 8H), 1.71 - 1.63 (m, 3H), 1.63 - 1.51 (m, 3H), 1.33 - 1.23 (m, 4H), 1.12 - 0.98 (m, 4H); 13 C NMR (150 MHz, CDCl₃) δ 178.01, 177.24, 169.43, 169.40, 135.36, 135.35, 128.64, 128.63, 128.47, 128.46, 128.37, 74.45, 73.89, 66.82, 66.81, 46.13, 44.76, 40.30, 40.11, 38.66, 37.27, 31.21, 30.90, 30.85, 29.91, 28.90, 28.49, 26.22, 26.17, 26.11, 26.01, 25.99; HRMS (ESI-TOF) Calcd for C₁₉H₂₅O₄ [M+H]⁺: 317.1753; found: 317.1754.

Benzyl 2-(4-(1,3-dioxoisoindolin-2-yl)-5-oxotetrahydrofuran-2-yl)acetate (3p)

Following **General Procedure A** on 0.1 mmol scale with the following modification: Pd(OAc)₂ (10 mol%), **L12** (10 mol%), CsOAc (1.0 eq), and Ag₂CO₃ (1.0 eq). Purification by pTLC afforded the title compound (colorless oil, 15.0 mg, 40%, dr = 2.1/1.0). Data for inseparable isomers: 1 H NMR (400 MHz, CDCl₃) δ 7.93 – 7.83 (m, 6.2H), 7.83 – 7.71 (m, 6.2H), 7.44 – 7.29 (m, 15.5H), 5.28 – 5.11 (m, 10.3H), 4.99 (dq, J = 10.0, 6.4 Hz, 2.1H), 3.12 (dd, J = 16.5, 6.8 Hz, 2.1H), 2.97 – 2.71 (m, 7.2H), 2.59 – 2.43 (m, 3.1H); 13 C NMR (125 MHz, CDCl₃) δ 171.95, 171.02, 169.03, 168.98, 166.81, 166.77, 135.26, 135.17, 134.51, 134.49, 131.63, 131.60, 128.68, 128.64, 128.55, 128.48, 128.43, 128.35, 123.77, 73.96, 73.51, 66.99, 66.96, 48.08, 46.58, 40.19, 39.43, 32.21, 31.12; HRMS (ESI-TOF) Calcd for $C_{21}H_{18}NO_{6}$ [M+H] $^{+}$: 380.1129; found: 380.1131.

Benzyl 2-(4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3q)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 13.0 mg, 52%, dr = 1.6/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.43 – 7.32 (m, 13H), 5.17 (s, 3.2H), 5.17 (s, 2H), 5.08 – 4.98 (m, 1H), 4.74 (t, J = 6.5 Hz, 1.6H), 2.90 – 2.80 (m, 2.6H), 2.73 (dd, J = 16.2, 6.9 Hz, 1.6H), 2.64 (dd, J = 16.4, 7.5 Hz, 1H), 2.40 – 2.32 (m, 1H), 2.20 – 2.10 (m, 2.6H), 2.12 – 2.04 (m, 1.6H), 1.34 – 1.23 (m, 1.6H), 1.19 – 1.11 (m, 1H), 0.98 – 0.91 (m, 1.6H), 0.93 – 0.86 (m, 1H); 13 C NMR (150 MHz, CDCl₃) δ 175.19, 175.15, 169.35, 169.02, 135.29, 135.27, 128.64, 128.63, 128.49, 128.43, 128.34, 76.54, 74.87, 66.89, 66.86, 40.41, 37.27, 22.18, 20.86, 18.47, 17.61, 12.55, 9.02; HRMS (ESI-TOF) Calcd for $C_{14}H_{15}O_{4}$ [M+H] $^{+}$: 247.0970; found: 247.0972.

Benzyl 2-(5-methyl-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3r)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 12.5 mg, 48%, dr = 1.3/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.42 – 7.31 (m, 11.5H), 5.16 (s, 4.6H), 4.97 (td, J = 6.9, 4.3 Hz, 1H), 4.62 (t, J = 6.2 Hz, 1.3H), 2.85 – 2.75 (m, 2.3H), 2.72 (dd, J = 16.2, 6.5 Hz, 1.3H), 2.59 (dd, J = 16.4, 7.4 Hz, 1H), 2.17 (dt, J = 7.4, 4.5 Hz, 1H), 1.97 (dd, J = 7.6, 4.2 Hz, 1.3H), 1.41 (s, 3H), 1.40 (s, 3.9H), 1.10 (dd, J = 7.6, 4.9 Hz, 1.3H), 1.00 (t, J = 4.5 Hz, 1.3H), 0.99 – 0.92 (m, 2H); 13 C NMR (150 MHz, CDCl₃) δ 177.30, 177.16, 169.43, 169.03, 135.33, 135.30, 128.62, 128.61, 128.45, 128.37, 128.32, 75.42, 73.71, 66.82, 66.80, 40.49, 37.14, 27.90, 26.68, 24.61, 24.03, 19.30, 15.56, 14.31, 14.06; HRMS (ESI-TOF) Calcd for $C_{15}H_{17}O_4$ [M+H] $^+$: 261.1127; found: 261.1131.

Benzyl 2-(5-((benzyloxy)methyl)-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3s)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 23.0 mg, 62%, dr = 1.3/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.45 – 7.29 (m, 23H), 5.18 (s, 4.6H), 5.00 (td, J = 7.0, 4.5 Hz, 1H), 4.73 (t, J = 6.5 Hz, 1.3H), 4.61 (d, J = 12.1 Hz, 2.3H), 4.55 (d, J = 12.1 Hz, 2.3H), 4.13 (d, J = 10.8 Hz, 1H), 4.11 (d, J = 10.6 Hz, 1.3H), 3.48 (d, J = 10.8 Hz, 1H), 3.45 (d, J = 10.7 Hz, 1.3H), 2.90 – 2.80 (m, 2.3H), 2.75 (dd, J = 16.3, 6.8 Hz, 1.3H), 2.63 (dd, J = 16.4, 7.4 Hz, 1H), 2.43 (dt, J = 8.4, 4.5 Hz, 1H), 2.21 (dd, J = 7.8, 4.5 Hz, 1.3H), 1.38 (dd, J = 7.8, 5.0 Hz, 1.3H), 1.23 (dd, J = 7.7, 5.2 Hz, 1H), 1.06 (t, J = 4.8 Hz, 1.3H), 1.01 (t, J = 4.9 Hz, 1H); 13 C NMR (150 MHz, CDCl₃) δ 175.24, 175.19, 169.27, 169.09, 137.85, 137.78, 135.33, 135.29, 128.63, 128.61, 128.48, 128.44, 128.42, 128.39, 128.35, 128.33, 127.77, 127.69, 127.64, 127.54, 75.47, 73.94, 73.24, 73.17, 66.95, 66.87, 66.85, 66.83, 40.45, 37.23, 29.93, 29.25, 26.21, 25.04, 16.40, 12.90; HRMS (ESI-TOF) Calcd for C₂₂H₂₃O₅ [M+H]⁺: 367.1545; found: 367.1543.

Benzyl 2-(5-(5-chloropentyl)-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3t)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.5 mg, 47%, dr = 1.2/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.46 – 7.30 (m, 11H), 5.26 – 5.09 (m, 4.4H), 4.95 (td, J = 7.0, 4.3 Hz, 1H), 4.65 (t, J = 6.6 Hz, 1.2H), 3.56 – 3.50 (m, 4.4H), 2.80 (dd, J = 15.9, 6.4 Hz, 2.2H), 2.66 (dd, J = 16.1, 6.8 Hz, 1.2H), 2.60 (dd, J = 16.4, 7.4 Hz, 1H), 2.22 – 2.16 (m, 1H), 2.01 – 1.90 (m, 3.4H), 1.82 – 1.73 (m, 4.4H), 1.52 – 1.37 (m, 11H), 1.14 (dd, J = 7.7, 5.0 Hz, 1.2H), 1.03 – 0.96 (m, 2.2H), 0.94 (t, J = 4.7 Hz, 1H); 13 C NMR (150 MHz, CDCl₃) δ 176.68, 176.51, 169.45, 169.00, 135.31, 135.28, 128.63, 128.49, 128.48, 128.37, 128.34, 75.35, 73.81, 66.89, 66.83, 44.89, 44.87, 40.71, 37.17, 32.25, 32.24, 29.19, 28.53, 28.41, 28.36, 26.88, 26.67, 26.55, 26.42, 26.31, 25.62, 18.11, 14.35; HRMS (ESI-TOF) Calcd for $C_{19}H_{24}ClO_4$ [M+H] $^+$: 351.1363; found: 351.1359.

Benzyl 2-(6-methyl-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3u)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 11.0 mg, 42%, dr = 1.4/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.44 – 7.31 (m, 12H), 5.16 (s, 4.8H), 4.99 – 4.92 (m, 1H), 4.73 (t, J = 6.5 Hz, 1.4H), 2.89 – 2.78 (m, 2.4H), 2.68 (dd, J = 16.1, 7.0 Hz, 1.4H), 2.63 (dd, J = 16.2, 7.5 Hz, 1H), 2.14 – 2.07 (m, 1H), 1.91 (dd, J = 5.7, 3.7 Hz, 1.4H), 1.87 (dd, J = 5.8, 2.7 Hz, 1H), 1.82 (ddd, J = 5.7, 2.8, 1.0 Hz, 1.4H), 1.33 – 1.22 (m, 2.4H), 1.14 (d, J = 6.0 Hz, 4.2H), 1.12 (d, J = 6.0 Hz, 3H); 13 C NMR (150 MHz, CDCl₃) δ 174.73, 174.68, 169.37, 169.07, 135.33, 135.30, 128.64, 128.62, 128.48, 128.42, 128.35, 76.48, 75.16, 66.85, 66.82, 40.29, 37.30, 29.69, 28.33, 26.06, 25.22, 21.26, 17.52, 15.98, 15.92; HRMS (ESI-TOF) Calcd for $C_{15}H_{17}O_{4}$ [M+H]*: 261.1127; found: 261.1132.

Benzyl 2-(6,6-dimethyl-4-oxo-3-oxabicyclo[3.1.0]hexan-2-yl)acetate (3v)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 26.0 mg, 95%, dr > 20.0/1.0). 1 H NMR (600 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 5.17 (s, 2H), 4.64 (t, J = 6.5 Hz, 1H), 2.85 (dd, J = 16.0, 6.1 Hz, 1H), 2.72 (dd, J = 16.0, 6.9 Hz, 1H), 1.95 (d, J = 6.0 Hz, 1H), 1.90 (d, J = 6.1 Hz, 1H), 1.21 (s, 3H), 1.14 (s, 3H); 13 C NMR (150 MHz, CDCl₃) δ 173.61, 169.15, 135.32, 128.62, 128.47, 128.40, 73.73, 66.84, 40.06, 34.63, 30.82, 25.24, 23.88, 14.85; HRMS (ESI-TOF) Calcd for C₁₆H₁₉O₄ [M+H]⁺: 275.1278; found: 275.1277.

Benzyl 2-(5-ethyl-4-oxo-3-oxabicyclo[3.2.0]heptan-2-yl)acetate (3w)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 15.0 mg, 52%, dr = 1.1/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.41 – 7.30 (m, 10.5H), 5.15 (s, 4.2H), 4.86 – 4.79 (m, 1.1H), 4.78 (td, J = 7.1, 1.9 Hz, 1H), 3.01 – 2.94 (m, 1.1H), 2.93 (dd, J = 16.3, 7.2 Hz, 1.1H), 2.77 (dd, J = 16.0, 6.8 Hz, 1H), 2.63 (dd, J = 16.3, 6.9 Hz, 1H), 2.59 – 2.54 (m, 1H), 2.53 (dd, J = 16.0, 7.3 Hz, 1.1H), 2.36 – 2.24 (m, 2.1H), 2.19 – 2.05 (m, 2.1H), 2.05 – 1.86 (m, 4.2H), 1.86 – 1.74 (m, 2.1H), 1.76 – 1.64 (m, 2.1H), 0.95 (t, J = 7.3 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3.3H); 13 C NMR (150 MHz, CDCl₃) δ 181.43, 180.92, 169.57, 169.24, 135.37, 135.34, 128.63, 128.46, 128.34, 128.32, 80.75, 76.34, 66.81, 51.42, 49.20, 41.44, 41.41, 40.68, 35.36, 28.16, 27.72, 27.55, 27.18, 22.05, 15.74, 9.33, 9.22; HRMS (ESI-TOF) Calcd for $C_{17}H_{21}O_4$ [M+H] $^+$: 289.1440; found: 289.1442.

Benzyl 2-(4-oxo-5-(2-phenoxyethyl)-3-oxabicyclo[3.2.0]heptan-2-yl)acetate (3x)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.0 mg, 43%, dr = 1.6/1.0). Data for inseparable isomers: 1 H NMR (600 MHz, CDCl₃) δ 7.41 - 7.29 (m, 13H), 7.28 - 7.21 (m, 5.2H), 6.98 - 6.89 (m, 2.6H), 6.88 - 6.81 (m, 5.2H), 5.17 - 5.05 (m, 5.2H), 4.90 - 4.83 (m, 1.6H), 4.83 - 4.77 (m, 1H), 4.09 (t, J = 5.9 Hz, 2H), 4.09 - 4.02 (m, 1.6H), 4.02 - 3.95 (m, 1.6H), 3.26 - 3.19 (m, 1.6H), 2.95 - 2.86 (m, 2.6H), 2.74 (dd, J = 16.2, 6.5 Hz, 1H), 2.63 (dd, J = 16.3, 7.4 Hz, 1.6H), 2.54 (dd, J = 16.2, 7.5 Hz, 1H), 2.47 - 2.32 (m, 2.6H), 2.32 - 2.13 (m, 7.8H), 2.11 - 1.92 (m, 5.2H); 13 C NMR (150 MHz, CDCl₃) δ 181.15, 180.69, 169.37, 169.36, 158.19, 158.09, 135.37, 135.36, 129.53, 129.51, 128.60, 128.58, 128.42, 128.38, 128.27, 128.25, 121.06, 121.01, 114.26, 114.23, 81.41, 76.34, 66.73, 66.66, 64.26, 64.21, 49.01, 46.92, 42.05, 42.02, 40.16, 35.12, 33.92, 33.42, 29.29, 28.93, 22.42, 16.14; HRMS (ESI-TOF) Calcd for C₂₃H₂₅O₅ [M+H] $^{+}$: 381.1702; found: 381.1707.

Methyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (4a)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 17.0 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 4.84 (ddt, J = 9.9, 6.9, 6.1 Hz, 1H), 3.72 (s, 3H), 2.83 (dd, J = 16.2, 7.0 Hz, 1H), 2.62 (dd, J = 16.2, 6.2 Hz, 1H), 2.30 (dd, J = 12.8, 6.0 Hz, 1H), 1.83 (dd, J = 12.8, 9.9 Hz, 1H), 1.29 (s, 3H), 1.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 181.14, 170.01, 72.60, 52.00, 43.09, 40.33, 40.04, 24.95, 24.39; HRMS (ESI-TOF) Calcd for C₉H₁₅O₄ [M+H]⁺: 187.0965; found: 187.0962.

Ethyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (4b)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 18.0 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 4.84 (dq, J = 9.9, 6.4 Hz, 1H), 4.24 – 4.10 (m, 2H), 2.82 (dd, J = 16.2, 6.9 Hz, 1H), 2.60 (dd, J = 16.2, 6.2 Hz, 1H), 2.30 (dd, J = 12.8, 6.0 Hz, 1H), 1.83 (dd, J = 12.8, 9.9 Hz, 1H), 1.35 – 1.21 (m, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 181.21, 169.57, 72.68, 60.99, 43.07, 40.31, 40.28, 24.94, 24.39, 14.13; HRMS (ESI-TOF) Calcd for C₁₀H₁₇O₄ [M+H]⁺: 201.1121; found: 201.1120.

Butyl 2-(4,4-dimethyl-5-oxotetrahydrofuran-2-yl)acetate (4c)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 21.0 mg, 91%). ¹H NMR (600

MHz, CDCl₃) δ 4.83 (dq, J = 9.9, 6.3 Hz, 1H), 4.12 (tt, J = 7.0, 3.5 Hz, 2H), 2.82 (dd, J = 16.2, 6.9 Hz, 1H), 2.60 (dd, J = 16.1, 6.3 Hz, 1H), 2.30 (dd, J = 12.8, 6.0 Hz, 1H), 1.83 (dd, J = 12.8, 9.9 Hz, 1H), 1.67 – 1.58 (m, 2H), 1.43 – 1.35 (m, 2H), 1.29 (s, 3H), 1.29 (s, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 181.20, 169.66, 72.68, 64.90, 43.09, 40.31, 40.26, 30.52, 24.95, 24.38, 19.06, 13.65; HRMS (ESI-TOF) Calcd for C₁₂H₂₁O₄ [M+H]⁺: 229.1434; found: 229.1438.

2-(4,4-Dimethyl-5-oxotetrahydrofuran-2-yl)-N,N-dimethylacetamide (4d)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 19.0 mg, 95%). ¹H NMR (600 MHz, CDCl₃) δ 4.92 (ddt, J = 10.0, 7.1, 5.8 Hz, 1H), 3.03 (s, 3H), 3.00 – 2.93 (m, 4H), 2.52 (dd, J = 15.8, 7.1 Hz, 1H), 2.44 (dd, J = 12.9, 5.9 Hz, 1H), 1.80 (dd, J = 12.9, 9.9 Hz, 1H), 1.28 (s, 3H), 1.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 181.53, 168.89, 74.02, 43.90, 40.28, 39.15, 37.30, 35.25, 24.96, 24.33; HRMS (ESI-TOF) Calcd for C₁₀H₁₈NO₃ [M+H]⁺: 200.1287; found: 200.1292.

3,3-Dimethyl-5-(2-oxobutyl)dihydrofuran-2(3H)-one (4e)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 17.0 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 4.92 – 4.80 (m, 1H), 2.98 (dd, J = 16.9, 6.6 Hz, 1H), 2.64 (dd, J = 16.9, 6.1 Hz, 1H), 2.49 (qd, J = 7.3, 4.5 Hz, 2H), 2.32 (dd, J = 12.8, 5.9 Hz, 1H), 1.74 (dd, J = 12.8, 10.1 Hz, 1H), 1.28 (s, 6H), 1.07 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.67, 181.34, 72.64, 47.60, 43.53, 40.24, 36.89, 24.95, 24.30, 7.46; HRMS (ESI-TOF) Calcd for $C_{10}H_{17}O_3$ [M+H]⁺: 185.1172; found: 185.1176.

2-(4,4-Dimethyl-5-oxotetrahydrofuran-2-yl)acetonitrile (4f)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.0 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 4.72 – 4.60 (m, 1H), 2.87 – 2.75 (m, 2H), 2.34 (dd, J = 12.9, 6.1 Hz, 1H), 1.98 (dd, J = 12.9, 9.8 Hz, 1H), 1.34 (s, 3H), 1.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 180.07, 115.20, 70.83, 42.24, 40.47, 24.80, 24.45, 23.99; HRMS (ESI-TOF) Calcd for $C_8H_{12}NO_2$ [M+H]⁺: 154.0863; found: 154.0863.

3,3-Dimethyl-5-((phenylsulfonyl)methyl)dihydrofuran-2(3H)-one (4g)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 24.0 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.76 – 7.65 (m, 1H), 7.65 – 7.54 (m, 2H), 4.89 (dq, J = 10.0, 6.1 Hz, 1H), 3.62 (dd, J = 14.3, 6.1 Hz, 1H), 3.34 (dd, J = 14.4, 6.2 Hz, 1H), 2.40 (dd, J = 13.0, 6.1 Hz, 1H), 1.94 (dd, J = 13.0, 10.0 Hz, 1H), 1.26 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 180.16, 139.24, 134.28, 129.45, 128.05, 70.36, 60.82, 43.25, 39.78, 24.73, 24.11; HRMS (ESI-TOF) Calcd for C₁₃H₁₇O₄S [M+H]⁺: 269.0842; found: 269.0842.

Diethyl ((4,4-dimethyl-5-oxotetrahydrofuran-2-yl)methyl)phosphonate (4h)

Following **General Procedure A** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 23.0 mg, 88%). 1 H NMR (600 MHz, CDCl₃) δ 4.81 – 4.67 (m, 1H), 4.21 – 4.07 (m, 4H), 2.44 – 2.39 (m, 1H), 2.39 – 2.32 (m, 1H), 2.12 – 2.00 (m, 1H), 1.90 (dd, J = 13.0, 10.0 Hz, 1H), 1.39 – 1.31 (m, 6H), 1.29 (s,

3H), 1.27 (s, 3H); 13 C NMR (150 MHz, CDCl₃) δ 181.05, 71.89, 62.18 (d, J = 6.5 Hz), 61.95 (d, J = 6.4 Hz), 44.39 (d, J = 5.8 Hz), 40.44, 32.59 (d, J = 139.8 Hz), 24.88, 24.19, 16.40 (d, J = 6.1 Hz), 16.39 (d, J = 6.1 Hz); HRMS (ESI-TOF) Calcd for $C_{11}H_{22}O_5P$ [M+H]⁺: 265.1199; found: 265.1197.

3,3-Dimethyl-7-phenyl-1-oxa-7-azaspiro[4.4]nonane-2,6,8-trione (4i)

Following **General Procedure A** on 0.1 mmol scale with the following modification: Pd(OAc)₂ (10 mol%) without Na₂HPO₄.7H₂O. Purification by column chromatography afforded the title compound (colorless oil, 27.0 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.48 (m, 2H), 7.47 – 7.41 (m, 1H), 7.35 – 7.29 (m, 2H), 3.33 (d, J = 18.4 Hz, 1H), 3.08 (d, J = 18.5 Hz, 1H), 2.79 (d, J = 13.5 Hz, 1H), 2.24 (d, J = 13.5 Hz, 1H), 1.51 (s, 3H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.80, 174.16, 171.27, 131.04, 129.31, 129.15, 126.14, 78.69, 44.86, 42.87, 40.40, 27.01, 25.78; HRMS (ESI-TOF) Calcd for C₁₅H₁₆NO₄ [M+H]⁺: 274.1074; found: 274.1071.

7-Dodecyl-3,3-dimethyl-1-oxa-7-azaspiro[4.4]nonane-2,6,8-trione (4j)

Following **General Procedure A** on 0.1 mmol scale with the following modification: $Pd(OAc)_2$ (10 mol%) without $Na_2HPO_4.7H_2O$. Purification by column chromatography afforded the title compound (colorless oil, 26.0 mg, 71%). ¹H NMR (600 MHz, CDCl₃) δ 3.60 – 3.48 (m, 2H), 3.14 (d, J = 18.3 Hz, 1H), 2.89 (d, J = 18.3 Hz, 1H), 2.66 (d, J = 13.4 Hz, 1H), 2.13 (d, J = 13.4 Hz, 1H), 1.64 – 1.53 (m, 2H), 1.48 (s, 3H), 1.37 (s, 3H), 1.35 – 1.20 (m, 18H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.89, 175.06, 172.27, 78.64, 44.74, 42.77, 40.33, 39.50, 31.88, 29.58, 29.50, 29.39, 29.31, 29.03, 27.48,

26.85, 26.68, 25.72, 22.65, 14.09; HRMS (ESI-TOF) Calcd for C₂₁H₃₆NO₄ [M+H]⁺: 366.2644; found: 366.2647.

Methyl (6-(3,3-dimethyl-2,6,8-trioxo-1-oxa-7-azaspiro[4.4]nonan-7-yl)hexanoyl)phenylalaninate (4k)

Following **General Procedure A** on 0.1 mmol scale with the following modification: Pd(OAc)₂ (10 mol%) without Na₂HPO₄.7H₂O. Purification by column chromatography afforded the title compound (colorless oil, 25.0 mg, 53%, dr = 1.0/1.0). ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.27 – 7.20 (m, 1H), 7.12 – 7.05 (m, 2H), 5.87 (d, J = 7.9 Hz, 1H), 4.91 – 4.84 (m, 1H), 3.73 (s, 3H), 3.53 (td, J = 7.1, 6.2, 3.3 Hz, 2H), 3.19 – 3.11 (m, 2H), 3.10 – 3.04 (m, 1H), 2.90 (dd, J = 18.3, 2.0 Hz, 1H), 2.66 (d, J = 13.4 Hz, 1H), 2.20 – 2.10 (m, 3H), 1.65 – 1.52 (m, 4H), 1.48 (s, 3H), 1.36 (s, 3H), 1.33 – 1.21 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 179.88, 175.05, 172.30, 172.26, 172.09, 172.08, 172.06, 172.04, 135.82, 129.72, 129.18, 129.10, 128.56, 127.11, 126.54, 78.66, 52.91, 52.90, 52.30, 44.66, 44.65, 42.74, 42.73, 40.30, 39.13, 37.86, 37.84, 36.00, 27.09, 26.84, 26.08, 26.05, 25.71, 24.76; HRMS (ESI-TOF) Calcd for C₂₅H₃₂N₂O₇ [M+H]⁺: 473.2288; found: 473.2289.

Gram-Scale Experiment and Synthetic Application

In the sealed tube, Pd(TFA)₂ (10 mol%, 0.40 g), ligand **L14** (10 mol%, 0.23 g), Na₂HPO₄.7H₂O (1.0 eq, 3.22 g), Ag₂CO₃ (1.0 eq, 3.30 g), and pivalic acid **1a** (12.0 mmol, 1.22 g) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (24.0 mL) and benzyl acrylate **2a** (2.0 eq, 3.60 mL) was added. The reaction mixture was stirred at rt for 10 min, and then heated to 120 °C for 12 h (300 rpm). After being allowed to cool to room temperature, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated *in vacuo*, and the resulting mixture purified by column chromatography to afford **3a** (2.92 g, 93%).

To a solution of 6M HCl (2 mL) was added **3a** (0.2 mmol) then the mixture was heated to 80 °C until TLC showed that the **3a** was fully consumed. The reaction mixture was cooled down to room temperature, then extracted with DCM. The organic phase was dried with anhydrous Na₂SO₄, and the solvent was removed under vacuum. The residue was purified by column chromatography to afford **5a** (31.6 mg, 92%).

2-(4,4-Dimethyl-5-oxotetrahydrofuran-2-yl)acetic acid (5a)

¹H NMR (600 MHz, CDCl₃) δ 8.67 (br s, 1H), 4.82 (ddt, J = 10.0, 7.2, 5.9 Hz, 1H), 2.84 (ddd, J = 16.6, 7.2, 1.4 Hz, 1H), 2.68 (dd, J = 16.6, 5.8 Hz, 1H), 2.31 (dd, J = 12.8, 6.0 Hz, 1H), 1.84 (dd, J = 12.8, 10.0 Hz, 1H), 1.28 (s, 3H), 1.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ

181.39, 175.00, 72.41, 42.87, 40.33, 39.88, 24.84, 24.32; HRMS (ESI-TOF) Calcd for $C_8H_{12}O_4$ [M+H]⁺: 173.0808; found: 173.0807.

To a solution of **3a** (1.0 mmol) in EtOH/H₂O (5.0/5.0 mL) was added NaOH (4.0 eq), then the mixture was heated to reflux until TLC showed that the **3a** was fully consumed. The reaction mixture was cooled down to room temperature, and 1M HCl was added until the pH value to about 3, followed by filtration through a pad of celite, and the solvent was removed under vacuum. The residue was purified by column chromatography to afford **5b** (135 mg, 78%).

(E)-5,5-Dimethylhex-2-enedioic acid (5b)

¹H NMR (500 MHz, CDCl₃) δ 7.04 (dt, J = 15.5, 7.7 Hz, 1H), 5.88 (dt, J = 15.5, 1.4 Hz, 1H), 2.48 (dd, J = 7.7, 1.4 Hz, 2H), 1.26 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 183.39, 171.57, 147.38, 123.70, 42.51, 42.24, 25.07; HRMS (ESI-TOF) Calcd for C₈H₁₂O₄ [M+H]⁺: 173.0808; found: 173.0807.

To a solution of **3a** (0.2 mmol) in THF (2.0 mL) was added 0.4 mL of LAH solution (1.0 M in THF), then the mixture was stirred at room temperature until TLC showed that the **3a** was fully consumed (around 1h). The reaction mixture was added Na₂SO₄·10H₂O (10 mg) followed by water (2 mL), then extracted with DCM. The organic phase was dried with anhydrous Na₂SO₄, and the solvent was removed under vacuum. The residue was purified by column chromatography to afford **5c** (27.0 mg, 83%).

5,5-Dimethylhexane-1,3,6-triol (5c)

¹H NMR (600 MHz, CDCl₃) δ 4.09 – 4.01 (m, 1H), 3.95 – 3.88 (m, 1H), 3.90 – 3.82 (m, 1H), 3.42 (d, J = 11.0 Hz, 1H), 3.37 (d, J = 11.0 Hz, 1H), 1.79 – 1.68 (m, 1H), 1.66 – 1.58 (m, 2H), 1.31 (d, J = 14.8 Hz, 1H), 0.97 (s, 3H), 0.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 71.54, 69.03, 62.12, 48.93, 39.28, 35.08, 28.19, 22.90; HRMS (ESI-TOF) Calcd for C₈H₁₈O₃ [M+H]⁺: 163.1329; found: 163.1333.

Kinetic Experiments

Kinetic data with L14

General Procedure: In the control tube, Pd(OAc)₂ (10 mol%), ligand **L14** (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), and Ag₂CO₃ (1.0 eq) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL), **1b** (0.1 mmol), and **2a** (2.0 eq) were added. The reaction mixture was stirred at rt for 10 min, and then heated to 90 °C for the appropriate time (300 rpm). After being allowed to cool in a dry ice bath, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated *in vacuo*, and the yield was determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. The obtained average yields for three trials were plotted as concentration [**3b**] vs. time t (Figure S1). Kinetic data under the standard conditions are shown below:

3b (10^{-3} M)

entry	t(min)	trial 1	trial 2	trial 3	average	std. dev.
1	0	0.0	0.0	0.0	0.0	0.0
2	10	16.0	20.6	21.0	19.2	2.8
3	20	20.2	22.4	25.0	22.5	2.4
4	30	31.8	37.4	39.4	36.2	3.9
5	40	39.4	38.4	42.6	40.1	2.2
6	50	42.4	42.4	44.2	43.0	1.0
7	60	44.6	44.4	47.0	45.3	1.4

Figure S1. Representative initial data for β -C(sp³)–H olefination of **1b** with **L14**

Kinetic data in the absence of **L14**

General Procedure: In the control tube, Pd(OAc)₂ (10 mol%), Na₂HPO₄.7H₂O (1.0 eq), and Ag₂CO₃ (1.0 eq) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL), **1b** (0.1 mmol), and **2a** (2.0 eq) were added. The reaction mixture was stirred at rt for 10 min, and then heated to 90 °C for the appropriate time (300 rpm). After being allowed to cool in a dry ice bath, the mixture was diluted with DCM, and filtered through a pad of celite. The filtrate was concentrated *in vacuo*, and the yield was determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. The obtained average yields for three trials were plotted as concentration [**3b**] vs. time t (Figure S2). Kinetic data under the standard conditions are shown below:

3b (10^{-3} M)

entry	t(min)	trial 1	trial 2	trial 3	average	std. dev.
1	0	0.0	0.0	0.0	0.0	0.0
2	60	9.8	8.8	8.4	9.0	0.7
3	120	10.4	10.2	9.6	10.1	0.4
4	180	11.0	10.8	11.4	11.1	0.3
5	240	11.4	11.4	12.0	11.6	0.3
6	300	13.2	13.8	16.8	14.6	1.9
7	360	19.6	15.8	18.4	17.9	1.9

Figure S2. Representative data for β -C(sp³)–H olefination of **1b** in the absence of **L14**

Figure S3. Representative data for β -C(sp³)–H olefination of **1b**

Reference:

- 1. Katritzky, A. R.; Xu, Y. J.; He, H. Y.; Mehta, S. J. Org. Chem. 2001, 66, 5590.
- 2. Adams, H.; Anderson, J. C.; Cubbon, R.; James, D. S.; Mathias, J. P. *J. Org. Chem.* **1999**, *64*, 8256.

4.0 3.5 f1 (ppm) $-\frac{135.31}{28.65}$ $\left\{\frac{128.65}{128.50}\right\}$ 28.44

$\frac{4}{4},\frac{4}{9},\frac{4}{8},\frac{4}{8},\frac{4}{8},\frac{4}{9},\frac{4}$

77.73 8 77.73

