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Table S1. Apparent density and specific surface area of  

graphene aerogel constructed in water and PA6 monomers filled 3D graphene network 

Samples 
ρapp

 a
 

(mg/cm
3
) 

SBET
b（（（（m

2
/g）））） 

Graphene aerogel constructed in 

water 
14.68 143 

PA6 monomers filled 3D graphene 

network
c
 

12.13 367 

[a] Apparent density (ρapp) was calculated from the weight and volumes of the foam; 

[b] Brunauer−Emmett−Teller specific surface area (SBET) were characterized by the nitrogen 

adsorption−desorption measurement 

[c] The sample was prepared from the solution in which the concentration of GO was 0.15wt% 

and was removed free PA monomers. 

 

Table S2. Molecular weight of free polyamide 6 

Samples [η
a
] Mη

b
 

PA6 0.81 2.16×10
4
 

GN0.16PA6 0.69  1.80×10
4
 

GN0.25PA6 0.63 1.58×10
4
 

GN0.31PA6 0.54 1.30×10
4
 

[a] Intrinsic viscosity (η)of free nylon-6 of NG composites, which was measured at 25℃ in 85% 

formic acid solution by a Ubbelohdeviscometer.  

[b] The molecular weight (Mη) of free PA6 thereof was calculated from Mark-Houwink equation, 

where K=2.26×10
-4

 and α=0.82 at 25
o
C 

 

 

 

 

 

 

 



Table S3. Values of thermal conductivity and enhancement per wt.% of 

graphene-related polymeric composites. 

Sample filler 

 Filler 

content 

(wt.%) 

Thermal 

conductivity 

(W/(mK)) 

Enhancement 

per wt.% 
Ref. 

graphene/EP 

Py-PGMA 

modified 

graphene 

0.33 0.5 757 [1] 

graphene/PA6 
graphene 

nanoribbon 
0.3 0.38 603 [2] 

graphene/PA 
TCA modified 

rGO 
1 1.15 575 [3] 

GA/PDMS Garphene aerogel 0.2 0.5 550 [4] 

GP/SR 
KH550 modified 

graphene 
0.36 0.28 390 [5] 

ApPOSS–graph

ene/EP 

ApPOSS 

modified 

graphene 

0.25 0.304 550 [6] 

RGO/TPU Reduced GO 0.3 0.5 870 [7] 

HGA/PEG 
Hybrid graphene 

aerogel 
0.5 0.42 270 [8] 

IL-G/PU 

Ionic liquid 

modified 

graphene/PU 

0.608 0.3012 220 [9] 

BE/graphene 

Polyester 

modified 

graphene 

0.28 0.325 610 [10] 

CNTs/epoxy MWNT 0.5 0.21 350 [11] 

Epoxy/DWCNT DWCNT 0.3 0.25 345 [12] 

GN0.25PA6 
3D graphene 

network 
0.25 0.69 1152 

This 

work 

GN0.31PA6 
3D graphene 

network 
0.31 0.73 981 

This 

work 

 

 

 

 

 

 



 

Figure S1. Photograph of colloidal suspensions of exfoliated graphene oxide in water 

(a) and ε-caprolactam (b). The light beams were incident from the side to demonstrate 

the Tyndall effect. The content of graphene oxide were 8 mg/ml 
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Figure S2. XPS spectra of GO, PA6 monomers filled 3D graphene network and 

GNPA6 
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