## **Supporting Information**

# Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties by incorporating low content of graphene

Rui Wang<sup>a, b</sup>, Lixin Wu<sup>a,\*</sup>, Dongxian Zhuo<sup>c,\*</sup>, Jianhua Zhang<sup>d</sup> and Youdan Zheng<sup>a,b</sup> <sup>a</sup>Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350000, P. R. China.

<sup>b</sup>University of the Chinese Academy of Sciences, 100049, Beijing, P. R. China

<sup>c</sup>Quanzhou Normal University, 362000, Quanzhou, P. R. China.

<sup>d</sup>Fujian Special Equipment Inspection and Research Institute, 351100, Putian, P. R. China

\*E-mail: lxwu@fjirsm.ac.cn; dxzhuo@qztc.edu.cn.

### **CONTENTS**

 Table S1. Apparent density and specific surface area of graphene aerogel constructed

 in water and PA6 monomers filled 3D graphene network.

Table S2. Molecular weight of free polyamide 6.

 Table S3. Values of thermal conductivity and enhancement per wt.% of graphene-related polymeric composites.

**Figure S1.** Photograph of colloidal suspensions of exfoliated graphene oxide in water (a) and  $\varepsilon$ -caprolactam (b). The light beams were incident from the side to demonstrate the Tyndall effect. The content of graphene oxide were 8 mg/ml.

Figure S2. XPS spectra of GO, PA6 monomers filled 3D graphene network and GNPA6.

#### Table S1. Apparent density and specific surface area of

| Samples                                              | $ ho_{app}{}^{a}$ (mg/cm <sup>3</sup> ) | $S_{BET}^{b}$ (m <sup>2</sup> /g) |
|------------------------------------------------------|-----------------------------------------|-----------------------------------|
| Graphene aerogel constructed in<br>water             | 14.68                                   | 143                               |
| PA6 monomers filled 3D graphene network <sup>c</sup> | 12.13                                   | 367                               |

graphene aerogel constructed in water and PA6 monomers filled 3D graphene network

[a] Apparent density ( $\rho_{app}$ ) was calculated from the weight and volumes of the foam;

[b] Brunauer–Emmett–Teller specific surface area  $(S_{BET})$  were characterized by the nitrogen adsorption–desorption measurement

[c] The sample was prepared from the solution in which the concentration of GO was 0.15wt% and was removed free PA monomers.

| Samples   | [η <sup>a</sup> ] | $M\eta^b$            |
|-----------|-------------------|----------------------|
| PA6       | 0.81              | $2.16 \times 10^{4}$ |
| GN0.16PA6 | 0.69              | $1.80 \times 10^{4}$ |
| GN0.25PA6 | 0.63              | $1.58 \times 10^{4}$ |
| GN0.31PA6 | 0.54              | $1.30 \times 10^{4}$ |

Table S2. Molecular weight of free polyamide 6

[a] Intrinsic viscosity ( $\eta$ )of free nylon-6 of NG composites, which was measured at 25°C in 85% formic acid solution by a Ubbelohdeviscometer.

[b] The molecular weight (M $\eta$ ) of free PA6 thereof was calculated from Mark-Houwink equation, where K=2.26×10<sup>-4</sup> and  $\alpha$ =0.82 at 25°C

| Sample                 | filler                                  | Filler<br>content<br>(wt.%) | Thermal<br>conductivity<br>(W/(mK)) | Enhancement<br>per wt.% | Ref.         |
|------------------------|-----------------------------------------|-----------------------------|-------------------------------------|-------------------------|--------------|
| graphene/EP            | Py-PGMA<br>modified<br>graphene         | 0.33                        | 0.5                                 | 757                     | [1]          |
| graphene/PA6           | graphene<br>nanoribbon                  | 0.3                         | 0.38                                | 603                     | [2]          |
| graphene/PA            | TCA modified<br>rGO                     | 1                           | 1.15                                | 575                     | [3]          |
| GA/PDMS                | Garphene aerogel                        | 0.2                         | 0.5                                 | 550                     | [4]          |
| GP/SR                  | KH550 modified<br>graphene              | 0.36                        | 0.28                                | 390                     | [5]          |
| ApPOSS–graph<br>ene/EP | ApPOSS<br>modified<br>graphene          | 0.25                        | 0.304                               | 550                     | [6]          |
| RGO/TPU                | Reduced GO                              | 0.3                         | 0.5                                 | 870                     | [7]          |
| HGA/PEG                | Hybrid graphene<br>aerogel              | 0.5                         | 0.42                                | 270                     | [8]          |
| IL-G/PU                | Ionic liquid<br>modified<br>graphene/PU | 0.608                       | 0.3012                              | 220                     | [9]          |
| BE/graphene            | Polyester<br>modified<br>graphene       | 0.28                        | 0.325                               | 610                     | [10]         |
| CNTs/epoxy             | MWNT                                    | 0.5                         | 0.21                                | 350                     | [11]         |
| Epoxy/DWCNT            | DWCNT                                   | 0.3                         | 0.25                                | 345                     | [12]         |
| GN0.25PA6              | 3D graphene<br>network                  | 0.25                        | 0.69                                | 1152                    | This<br>work |
| GN0.31PA6              | 3D graphene<br>network                  | 0.31                        | 0.73                                | 981                     | This<br>work |

Table S3. Values of thermal conductivity and enhancement per wt.% of

graphene-related polymeric composites.

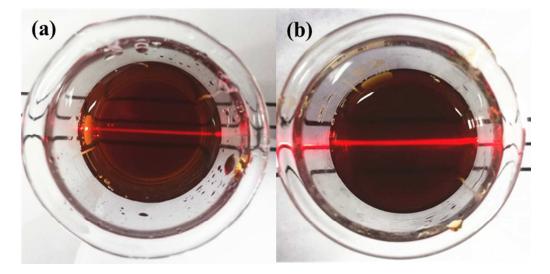



Figure S1. Photograph of colloidal suspensions of exfoliated graphene oxide in water
(a) and ε-caprolactam (b). The light beams were incident from the side to demonstrate the Tyndall effect. The content of graphene oxide were 8 mg/ml




Figure S2. XPS spectra of GO, PA6 monomers filled 3D graphene network and

GNPA6

#### References

 Teng, C.-C.; Ma, C.-C.; Lu, C.-H.; Yang, S.-Y.; Lee, S.-H.; Hsiao, M.-C.; Yen, M.-Y.; Chiou, K.-C.; Lee, T.-M. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. *Carbon* **2011**, 49, 5107.

[2] Ding, P.; Zhuang, N.; Cui, X.; Shi, L.; Song, N.; Tang, S.; Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons. *J. Mater. Chem. C* **2015**, *3*, 10990.

[3] Cho, E. C.; Huang, J.; Li, C.; Chang-Jian, C. W.; Lee, K. C.; Hsiao, Y. S.; Huang, J. Graphene-based thermoplastic composites and their application for LED thermal management. *Carbon* **2016**, 102, 66.

[4] Zhang, Q.; Xu, X.; Li, H.; Xiong, G.; Hu, H.; Fisher, T. S. Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. *Carbon* **2015**, 93, 659.

[5] Tian, L. M.; Wang, Y. J.; Li, Z. Y.; Mei, H. R.; Shang, Y. G.; The thermal conductivity-dependant drag reduction mechanism of water droplets controlled by graphene/silicone rubber composites. *Exp. Therm. Fluid Sci.* **2017**, 85, 363.

[6] Zong, P. S.; Fu, J. F.; Chen, L. Y.; Yin, J. T.; Dong, X.; Yuan, S.; Shi, L. Y.; Deng,
W. Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites. *RSC Adv.* 2016, 6, 10498.

[7] Li, A.; Zhang, C.; Zhang Y. F.; RGO/TPU composite with a segregated structure as thermal interface material. *Compos. Part A Appl. Sci. Manuf.* **2017**, 101, 108.

[8] Yang, J.; Qi, G. Q.; Liu, Y.; Bao, R. Y; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M.B. Hybrid graphene aerogels/phase change material composites:

Thermal conductivity, shape-stabilization and light-to-thermal energy

Storage. Carbon 2016, 100, 693.

[9] Ma, W. S.; Wu, L.; Yang, F.; Wang, S. F. Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. *J. Mater. Sci.* **2014**, 49, 562.

[10] Tang, Z. H.; Kang, H. L.; Shen, Z. L.; Guo, B. C.; Zhang, L. Q.; Jia, D. M. Grafting of Polyester onto Graphene for Electrically and Thermally Conductive Composites. *Macromolecules* 2012, 45, 3444.

[11] Song, Y. S.; Youn, J, R, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. *Carbon* **2005**, 43, 1378.

[12] Gojny, F, H.; Wichmann, M. H. G.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. *Polymer* **2006**, 47, 2036.