Supporting Information

Selective Long-Distance Isomerization of Terminal Alkenes via Nondissociative Chain Walking

Yuya Yamasaki, Takaaki Kumagai, Shota Kanno, Fumitoshi Kakiuchi, and Takuya Kochi*

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
kochi@chem.keio.ac.jp

Table of Contents

II. Determination of Enantiomeric Excess of $\mathbf{3 q}$ and $\mathbf{1 q} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. S3

I. Optimization of the Reaction Conditions

Table S1 Screening of Complexes

		 3b	
entry	complex [L]	GC yield (\%)	E / Z
1	$\mathbf{2 a}$ [1,10-phenanthroline]	77	34/66
2	$\mathbf{2 b}$ [3,4,7,8-tetramethylphenanthroline]	70	34/66
3	2c [2,2'-bipyridine]	63	35/65
4	2d [2,9-dimethylphenanthroline]	73	34/66

${ }^{a}$ Reaction conditions: 1b $(0.1 \mathrm{mmol}), \mathbf{2}(0.0025 \mathrm{mmol}), \mathrm{NaBAr}_{4}^{\mathrm{f}}(0.003 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(5 \mathrm{~mL})$, rt.

Table S2 Screening of the Reaction Conditions

Entry	$\mathbf{2 a}(\mathrm{mol} \%)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~mL})$	temp $\left({ }^{\circ} \mathrm{C}\right)$	GC yield $(\%)$	E / Z
1	2.5	5	rt	77	$34 / 66$
2	1.0	5	rt	71	$35 / 65$
3	5.0	5	rt	65	$33 / 67$
4	2.5	3	rt	69	$34 / 66$
5	2.5	10	rt	66	$35 / 65$
6	2.5	5	0	55	$36 / 64$
7	2.5	5	-5	80	$27 / 73$
8	2.5	5	-20	20	$20 / 80$
9	2.5	5	-20	60	$32 / 68$
10^{b}	2.5	5			$18 / 82$

${ }^{a}$ Reaction conditions: $\mathbf{1 b}$ (0.1 mmol). ${ }^{b} 24 \mathrm{~h}$

II. Determination of Enantiomeric Excess of $\mathbf{1 q}$ and $\mathbf{3 q}$

The enantiomeric excess for the substrate (S)-1q was determined by HPLC analysis of the derivative, dinitrobenzoate (S)-S1, which was derived in the following procedure from the esterification of the corresponding alcohol (S)-S5 before the silylative protection.

To a Schlenk flask charged with (S)-S5 (27.8 mg, 0.217 mmol$)$ were added EtOAc (2 mL) and platinum oxide $(9.1 \mathrm{mg}, 0.040 \mathrm{mmol})$ to form a suspension. A balloon filled with hydrogen gas was attached to the flask, which was then briefly evacuated and backfilled with hydrogen gas three times. The mixture was stirred at room temperature for 12 h . The resulting mixture was filtered through a pad of Celite and concentrated.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and DMAP ($1.2 \mathrm{mg}, 0.098 \mathrm{mmol}$), 3,5-dinitrobenzoyl chloride $(60.6 \mathrm{mg}, 0.260 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{~mL}, 4.2 \mathrm{mmol})$ were added to the solution at room temperature. After stirring for 1 h , the mixture was diluted with dichloromethane and washed twice with brine. The combined organic portions were dried over MgSO_{4}, filtered, and concentrated. Silica gel column chromatography (hexane $: \mathrm{EtOAc}=10: 1$) of the crude material afforded dinitrobenzoate S1 (23.3 $\mathrm{mg}, 33 \%$ yield, 97% ee) as a colorless oil.

The enantiomeric excess was determined by chiral HPLC analysis (Daicel Chiralpak AY-H column, column temperature: $25^{\circ} \mathrm{C}$, eluent; n-hexane: $\mathrm{EtOH}=98: 2$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; t_{\mathrm{R}}=15.1$ and 16.3 min).

Figure S1. HPLC Analysis of (rac)-S1

Figure S2. HPLC Analysis of (S)-S1 derived from (S)-S5

The enantiomeric excess for $\mathbf{3 q}$ was determined by HPLC analysis of the corresponding esterification product $\mathbf{S} 1$, which was obtained through the following procedure.

To a solution of $\mathbf{3 q}(16.2 \mathrm{mg}, 0.067 \mathrm{mmol})$ in THF (3 mL) was added 3 M hydrochloric acid (2 mL). After stirring for 12 h at room temperature, a saturated aqueous solution of NaHCO_{3} was added to the mixture, which was then extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Volatile materials was removed carefully by distillation at $60{ }^{\circ} \mathrm{C}$ under ambient pressure. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$, and $\mathrm{NaBH}_{4}(7.6 \mathrm{mg}, 0.201 \mathrm{mmol})$ was added to the solution at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 3 h . Water and diethyl ether were added to the mixture and the organic layer was collected. The aqueous layer was extracted three times with diethyl ether. The combined organic portions were dried over MgSO_{4}, filtered, and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and DMAP ($0.4 \mathrm{mg}, 0.003 \mathrm{mmol}$), 3,5dinitrobenzoyl chloride $(18.4 \mathrm{mg}, 0.080 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}, 1.3 \mathrm{mmol})$ were added to the solution at room temperature. After stirring for 1 h , the mixture was diluted with dichloromethane and washed twice with brine. The combined organic portions were dried over MgSO_{4}, filtered, and concentrated. Silica gel column chromatography (hexane $: \mathrm{EtOAc}=10: 1$) of the crude material afforded dinitrobenzoate $\mathbf{S 1}$ (6.0 $\mathrm{mg}, 0.018 \mathrm{mmol}, 28 \%$ yield) as a colorless oil: IR (neat): $3105 \mathrm{w}, 2960 \mathrm{~m}, 2930 \mathrm{~m}, 2872 \mathrm{w}, 2858 \mathrm{w}, 1740$ s, $1735 \mathrm{~m}, 1731 \mathrm{~m}, 1628 \mathrm{w}, 1550 \mathrm{~s}, 1545 \mathrm{~s}, 1544 \mathrm{~s}, 1542 \mathrm{~s}, 1541 \mathrm{~s}, 1462 \mathrm{w}, 1344 \mathrm{~s}, 1282 \mathrm{~s}, 1170 \mathrm{~m}, 1076$ w, $921 \mathrm{w}, 730 \mathrm{~m}, 721 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.54(\mathrm{~m}, 2 \mathrm{H}), 9.16(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $9.24(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,19.6,22.9,29.1,29.9,35.4,36.5,65.7$, $122.3,129.4,134.1,148.6,162.5$; HRMS (DART-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} 325.1400$; Found 325.1394.

The enantiomeric excess was determined by chiral HPLC analysis (Daicel Chiralpak AY-H column, column temperature: $25^{\circ} \mathrm{C}$, eluent: n-hexane: $\mathrm{EtOH}=98: 2$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; t_{\mathrm{R}}=15.0$ and 16.3 min).

Figure S3. HPLC Analysis of (S)-3q (reaction conditions: standard)

Figure S4. HPLC Analysis of (S)-3q (reaction conditions: standard except that the reaction time was 60 min)

$3 \mathrm{~mol} \% \mathrm{NaBAr}_{4}^{\mathrm{f}}$

Figure S5. HPLC Analysis of (S)-3q (reaction conditions: standard except that the reaction temperature was $40^{\circ} \mathrm{C}$)

Figure S6. HPLC Analysis of (S)-3q (reaction conditions: standard except that the concentration was 0.1 M)

\checkmark Hasil $_{8}$ 1 e

$\mathrm{H}_{3} \mathrm{OSiPr}_{3}$ $1 f$

$\approx \mathrm{HOSiPr}_{3}$ 1h

$* \underset{18}{\underset{18}{ } \mathrm{OSi}^{\prime} \mathrm{Pr}_{3}}$ 1 j

$*{\underset{20}{20} \mathrm{OSiPr}_{3}}^{(}$ 1k

11

-

1 m

1n

1n

10

 N N L

1p

1q

(
(E)-1r

1s

1t

1u

1u

$\mathrm{O}_{\mathrm{B}} \mathrm{O}^{n} \mathrm{Bu}$
(E)-3a

$\underset{\substack{\text { (E)-3b }}}{\mathrm{H}_{8}}$

$\mathrm{H}_{8} \mathrm{COSEH}_{3}$ (E)-3b

(E)-3d

(E)-3d

$\mathrm{OSi}^{\prime} \mathrm{BuMe} \mathrm{e}_{2}$
(Z)-3d

$\mathrm{H}^{+} / \mathrm{OSiPr}_{3}$
(E)-3e

(E)-3f

$$
\begin{gathered}
\mathrm{H}_{(\mathrm{H}}^{\mathrm{H}} / \mathrm{OSiPr}_{3} \\
(E)-3 \mathrm{f}
\end{gathered}
$$

(Z)-3f

$\mathrm{H}^{\mathrm{H}} \stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{OSiPr}_{3}$
(E)-3h

$$
\underset{(E)-3 \mathrm{~h}}{\mathrm{H}^{\mathrm{H}} \mathrm{OSF}_{3}}
$$

$\underset{(E)-3 i}{\mathrm{H}} \underset{\substack{\text { i4 }}}{\mathrm{OSiPr}_{3}}$

(E)-3i

(E)-3j

(Z)-3j

$\mathrm{H}_{20} \mathrm{MOSiPr}_{3}$
(E)-3k

$\mathrm{H}_{20}^{+\mathrm{X}} \mathrm{OSiPr}_{3}$ (E)-3k

(E)-3n

(Z)-3n

(Z)-3n

(E)-3p

(E)-3q

(E) - $3 q$

(Z)-3q

(Z)-3q

(E)-3s

(E)-3s

(Z)-3s

(E)-3t

(E)-3t

(Z)-3t

(Z)-3t

$3 u$

S1

