Supporting Information

Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries

Basanta Kumar Biswal^{1,2,3*}, Umesh U. Jadhav^{1,2}, Munusamy Madhaiyan⁴, Lianghui Ji⁴, En-Hua Yang², Bin Cao^{2,3}

¹Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553

²School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637551

³Singapore Centre for Environmental Life Sciences Engineering, Nanyang

Technological University, Singapore 639798

⁴Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, National University

of Singapore, 1 Research Link, Singapore 117604

*Corresponding Author and Present Address

Dr. Basanta Kumar Biswal, E-mail: bkbiswal@ust.hk; pupun.biswal@gmail.com.
Tel: (+852) 2358-8191
Department of Civil and Environmental Engineering
The Hong Kong University of Science and Technology (HKUST), Hong Kong

	Metal removal efficiency (%) ^a									
Metal	A. niger MM1			A. niger SG1		A. thiooxidans 80191			Chemical ^b	
	Abiotic	Type 1	Type 2	Type 1	Type 2	Abiotic	Type 1	Type 2	Citric acid	Sulfuric acid
Cobalt	8±3	67±3	82±3	67±2	80±3	1±0.2	3±0.1	23±0.1	67±2	18±3
Lithium	25±1	81±10	100±2	86±0.4	100±3	23±0.6	23±0.5	66±2	96±8	59±7

Table S1: Removal efficiency of Cobalt and Lithium from spent LIB in fungal, bacterial and chemical leaching methods

^aMetal removal efficiency was calculated by comparing with the values obtained from inorganic acid leaching: Cobalt (Co) = 159.6 mg/g spent LIB powder, and Lithium (Li) = 20.7 mg/g spent LIB powder. ^bChemical: Citric acid = 102.4 mM, and Sulfuric acid = 10.2 mM.