Electronic Supplementary Information

A series of Mn(II)/Mg(II)/Zn(II) coordination polymers with azo/alkene functionalized ligands

Asha P^a and Sukhendu Mandal^a*

^aSchool of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram,

Kerala-695551, India. E-mail: <u>sukhendu@iisertvm.ac.in</u>.

Contents

1. Experimental section

1.1. Magnetic Measurements	.4
1.2. Optical band gap measurements	5

2. Data

2.1. Tables

S1. The crystallographic data table	6
S2. Selected bond lengths of compound 1	8
S3. Selected bond lengths of compound 2	8
S4. Selected bond lengths of compound 3	9
S5. Selected bond lengths of compound 4	9
S6. Selected bond lengths of compound 5	10
S7. Selected bond lengths of compound 6	10
S8. Selected IR frequencies of the compounds 1-6	
S9. The band gap of compounds 1-6, Na ₂ L and H ₂ L	43

2.2. Topos

2.2.1 . Topos for compound 1	11
2.2.2. Topos for compound 2	12
2.2.3. Topos for compound 3	14
2.2.4. Topos for compound 6	16

3. Figures

Figure S1. Figures of Compound 118
Figure S2. Figures of Compound 219
Figure S3. Figures of Compound 320
Figure S4. Figures of Compound 621
Figure S5. Powder XRD plots of all the compounds
Figure S6. IR spectrum of all the compounds
Figure S7. Thermogravimetric analysis plot of all the compounds
Figure S8. Absorbance and Photoluminescence spectra of all the compounds33
Figure S9. Luminescence spectra comparison between ligands and the compounds39
Figure S10. Tauc plot of all the compounds40
4. References

1. Experimental section

1.1. Magnetic Measurements

Magnetic susceptibility $\chi(T)$ as a function of temperature was measured at an applied field of H = 1 T. Zero-field-cooled (ZFC), and field cooled (FC) susceptibilities were measured at a low field of H = 100 Oe. For both the measurements, a vibrating sample magnetometer (VSM) attachment to the PPMS was used.

The equation used for magnetic fitting:

The $\chi(T)$ data were fitted using one-dimensional (1D) chain model

 $\chi(T) = \chi_0 + \chi_{spin}$ (T),(1)

Where χ_{spin} is the spin susceptibility of the S = 5/2 one-dimensional (1D) chain model. The high-temperature series expansion (HTSE) of χ_{spin} for the S = 5/2 Heisenberg 1D chain is given by Dingle et al.¹

$$\chi_{spin}(T) = \frac{N_A g^2 \,\mu_B^2}{3K_B T} S(S+1) \frac{1+u(K)}{1-u(K)}....(2)$$

Where, $u(K) = cothK - \frac{1}{K}$ and $K = \frac{-2JS(S+1)}{K_B T}.$

Our $\chi(T)$ data were fitted well by the Eq. (1), indicating the 1D nature of these compounds.

1.2. Optical band gap measurements

We have measured the optical band gaps of all these materials using diffuse reflectance spectroscopy and the Kubelka–Munk model.BaSO₄ was used as the reference material for the spectral measurements. The intersection point between the energy axis and the line extrapolated from the linear portion of the absorption edge from a plot of Kubelka–Munk function *vs*. energy is taken and confirmed as the optical band gap energy. The two-flux model, which considers only diffuse light, is used to determine the absorption coefficient from a surface that both scatters and absorbs incident radiation. For a crystalline solid with a band gap (E_{bg}), the frequency (v) dependence of the absorption coefficient (κ) can be approximated as

$$\kappa(v) = \frac{B_T(hv - E_{Bg})}{hv}$$

Where, B_T is a constant derived from the square of the averaged dipolar momentum matrix element, and n is equal to 0.5 and 2 for direct and indirect band gap transitions, respectively.²⁻⁵ The absorption coefficient (κ) can be measured from the reflectance (R) and expressed as $\kappa = (1 - R)^2/(2R)$. The band gap of a material can be obtained by extrapolating to zero with the linear fit to a plot of (khv)^{1/n} vs. hv. By this method, we have measured the lowest electronic transition between valence and conduction bands via absorption, which reflects the optical band gap of the material. The absorption coefficient (κ) can be measured from the reflectance (R) and expressed as $\kappa = (1 - R)^2/(2R)$.

2. Tables

Table S1a.Crystallographic parameters for the compounds 1–3, respectively^[a]

Parameters	[Mn(ABDCA)(DPE) _{0.} 5 DMF].DMF, (1)	[Mn _{1.5} (ABDCA) _{1.5} (DMF) ₂].DMF, (2)	[Mg ₃ ABDCA ₃ (DMF) ₄]. 4DMF, (3)
Empirical formula	C ₂₆ H ₂₇ N ₅ O ₆ Mn	$C_{30}H_{33}Mn_{1.50}N_6O_9$	$C_{54}H_{54}Mg_3N_{10}O_{16}$
Formula weight	560.46	704.03	1172.00
Crystal System	Triclinic	Monoclinic	Monoclinic
Space Group	<i>P</i> (-1) (no. 2)	$P2_1/n$ (no. 14)	$P2_1/n$ (no. 14)
a(Å)	8.234(5)	14.772(3)	15.10(2)
b(Å)	11.911(5)	17.531(4)	17.634(5)
c(Å)	15.189(5)	16.603(3)	17.002(9)
?(?)	102.883(5)	90	90
?(?)	99.718(5)	114.524(7)	114.26(2)
?(?)	106.220(5)	90	90
Volume(Å3)	1351.2(11)	3911.7(13)	4128(3)
Z	2	2	2
Calculated density (g/cm ³)	1.378	1.195	0.943
? range (?)	1.419 to 28.427	2.676to 28.356	2.348 to 27.933
Absorption coefficient (mm ⁻¹)	0.537	0.543	0.090
Reflections collected	24518	34173	62305
Unique reflections	6712	9580	9623
Goodness -of -fit	0.933	1.022	0.986
Number of parameters	327	398	381
Final R indices	$R_1 = 0.0628, WR_2 =$	$R_1 = 0.0792$, $wR_2 = 0.2348$	$R_1 = 0.0880$, w $R_2 = 0.2462$
[I>2sigma(I)]	0.1768		
Largest diff. peak and hole e Å ⁻³	1.657 and -0.716	1.336and -0.632	0.542 and -0.407

Parameters	[Zn(ABDCA)(2,2'- BPY)]. H ₂ O, (4)	[Zn _{0.5} (SDCA) _{0.5} (2,2'-BPy) _{0.5}] (5)	[Zn _{0.5} (ABDCA) _{0.5} (4,4'- BPy) _{0.5}]. DMF _{0.5} , (6)
Empirical formula	$C_{12}H_8N_2O_3Zn_{0.5}$	$C_{12}H_8N_2O_2Zn_{0.50}$	$C_{13.50}H_8N_{2.50}O_{2.50}Zn_{0.50}$
Formula weight	260.89	244.89	277.91
CrystalSystem	Monoclinic	Monoclinic	Monoclinic
Space Group	<i>C</i> 2/ <i>c</i> (no.15)	<i>C</i> 2/ <i>c</i> (no. 15)	<i>C</i> 2/ <i>c</i> (no.15)
a(Å)	17.0178(10)	17.75(4)	29.082(3)
b(Å)	33.0702(19)	32.29(8)	6.0970(7)
c(Å)	7.3279(4)	7.651(18)	17.5730(18)
$\alpha(^{0})$	90	90	90
β(⁰)	94.744(3)	90.51(4)	104.874
$\gamma(^{0})$	90	90	90
Volume(Å ³)	4109.9(4)	4384(18)	3011.5(6)
Z	8	8	8
Calculated density	0.843	0.742	1.226
(g/cm^3)			
θ range (⁰)	3.008 to 28.396	3.455 to 28.360	2.463 to 25.998
Absorption coefficient	0.625	0.580	0.856
Reflections collected	18348	35153	13339
Unique reflections	5018	5327	3627
Goodness-of-fit	1.057	1.062	1.012
Number of parameters	159	150	196
Final R indices [I>2sigma(I)]	$R_1 = 0.0886, wR_2 = 0.2351$	$R_1 = 0.0811, wR_2 = 0.2014$	$R_1 = 0.0816, wR_2 = 0.2376$
Largest diff. peak and hole e Å ⁻³	1.166 and -0.647	1.331 and -0.627	1.182 and -0.771

Table S1b.Crystallographic parameters for the compounds 4 - 6 respectively^[a]

Compound 1	Bond Length(Å)
Mn(1) - O(1)	2.109(2)
Mn(1)-O(3)	2.234(2)
Mn(1)-O(4)	2.326(2)
Mn(1)-O(5)	2.165(2)
Mn(1)-N1	2.247(3)
Mn(1) -O(2)#1	2.106(2)

 Table S2. Selected bond lengths of compound 1.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z

Compound 2	Bond Length(Å)
Mn(1) - O(4)	2.269(2)
Mn(1)-O(3)	2.267(3)
Mn(1)-O(7)	2.103(3)
Mn(1)-O(6)	2.124(3)
Mn(1)-O(6)	2.123(4)
Mn(1)- O(1)	2.099(3)
Mn(2) -O(4)	2.193(2)
Mn(2) -O(2)	2.134(2)
Mn(2) -O(8)	2.141(3)
Mn(2)-O(2)#4	2.134(2)
Mn(2)-O(8)#4	2.142(3)

 Table S3. Selected bond lengths of compound 2.

Mn(2)-O(4)#4	2.193(2)

Symmetry transformations used to generate equivalent atoms: #4 -x,-y,-z

Table S4. Selected bond lengths of compound 3.	
--	--

Compound 3	Bond Length(Å)
Mg(1) - O(1)	2.224 (13)
Mg(1)-O(2)	2.198 (3)
Mg(1)-O(4)	2.068 (4)
Mg(1)-O(5)	2.163 (5)
Mg(1)-O(7)	2.041 (3)
Mg(1) - O(8)	2.084 (14)
Mg(2)-O(1)	2.120 (4)
Mg(2) - O(1)#1	2.120 (4)
Mg(2) - O(3)	2.105 (11)
Mg(2) - O(3) #1	2.105 (11)
Mg(2) - O(6)	2.072 (3)
Mg(2)-O(6)#1	2.072 (3)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z

Compound 4	Bond Length(Å)
Zn(1) - O(1)	2.294(15)
Zn(1)-O(2)	2.047(12)
Zn(1)-O(4)	2.395(12)

 Table S5.
 Selected bond lengths of compound 4.

Zn(1)-O(6)	2.003(9)
Zn(1)-N(3)	2.065(12)
Zn(1)-N(4)	2.074(17)

Table S6. Selected bond lengths of compound 5.

Compound 5	Bond Length(Å)
Zn (1) - O(1)	2.025(5)
Zn(1) - O(2)	2.445(5)
Zn(1)- N(1)	2.095(5)
Zn (1) - O(1) #1	2.025(5)
Zn (1) - O(2) #1	2.445 (5)
Zn (1) - N(1) #1	2.095 (5)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z

 Table S7.
 Selected bond lengths of compound 6.

Compound 6	Bond Length(Å)
Zn(1)-N(1)	2.062(3)
Zn(1)-N(1) #1	2.062(3)
Zn(1)-O(1)	1.943(3)
Zn(1)-O(1)#1	1.943(3)

Symmetry transformations used to generate equivalent atoms:#1-x+2,-y+1,-z+1

2.2. Topos

2.2.1. Topos for compound 1

Topology for Mn1

Atom Mn1 links by bridge ligands and has

Comm	on vertex	with		R(A	A-A) f		
Mn 1	0.9704	-0.3860	0.4169	(101)	13.674A	1	
Mn 1	0.9704	1.6140	1.4169	(122)	15.979A	1	
Mn 1	1.0296	1.3860	1.5831	(111)	16.208A	1	
Mn 1	-0.9704	-0.6140	-0.4169	(-1-1-1)	16.208A	1	
Mn 1	-0.0296	-0.3860	1.4169	(002)	17.225A	1	
Mn 1	-1.0296	-0.3860	-0.5831	(-1 0 0)	17.457A	1	
Comm	on edge v	with		R(A	A-A)		
Mn 1	-0.0296	0.6140	0.4169	(011)	4.167A	2	
Struct	Structural group analysis						
Struct	ural group	No 1					
Struct	ure consis	ts of 3D f	ramewor	k with Mr	$O_5N_4C_{23}H$	[₂₀	
There	are 3 inter	rpenetrati	ng nets				
FIV: F	Full interp	enetration	vectors				
[1,0,0] (8.23A)						
PIC: [3,0,0][1,1,1][1,-1,0] (PICVR=3)							
Zt=3; Zn=1							
Class	Class Ia Z=3						
Coord	Coordination sequences						

Mn1: 1 2 3 4 5 6 7 8 9 10
Num 7 22 47 82 127 182 247 322 407 502
Cum 8 30 77 159 286 468 715 1037 1444 1946
TD10=1946
Vertex symbols for selected sub lattice
Mn1 Point symbol: {3⁶.4⁸.5⁶.6}
Extended point symbol: [3.3.3.3.3.4.4.4.4.4.4.4.4.5.5.5.5.5(2).5(2).6(5)]
Point symbol for net: {3⁶.4⁸.5⁶.6};7-c net; uninodal net

2.2.2. Topos for compound 2

Topology for Mn1

Atom Mn1 links by bridge ligands and has

Comm	non vertex	with		R(A	A-A)	f	
Mn 2	0.5000	1.5000	-0.5000	(01-1)	16.393	A	1
Mn 2	0.0000	0.0000	0.0000	(000)	16.846	A	1
Mn 1	-0.2411	0.0599	-0.1669	(010)	16.934	A	1
Mn 1	0.7411	1.5599	-0.3331	(02-1)	17.101	A	1
Mn 1	-0.2589	1.5599	0.6669	(-1 2 0)	17.101	A	1
Mn 2	-0.5000	1.5000	0.5000	(-1 1 0)	17.235	A	1
Comm	non face w	vith		R(A	-A)		
Mn 2	0.0000	1.0000	0.0000	(010)	3.643 <i>A</i>	A	3
Topol	ogy for M	n2					
Atom	Mn2 links	s by bridg	ge ligands	and has			
Comm	non vertex	with		R(A	A-A)	f	
Mn 2	-0.5000	-0.5000	0.5000	(-1-1 0)	15.849	9A	1
Mn 2	0.5000	0.5000	-0.5000	(00-1)	15.849	A	1
Mn 2	-0.5000	0.5000	0.5000	(-1 0 0)	15.849	A	1

Mn 2 0.5	5000 -(0.5000	-0.5000	(0-1-1)	15.849A	1	
Mn 1 -0.2	2589 (0.5599	0.6669	(-1 1 0)	16.393A	1	
Mn 1 0.2	2589 -(0.5599	-0.6669	(0-2-1)	16.393A	1	
Mn 1 -0.2	2411 -	0.9401	-0.1669	(000)	16.846A	1	
Mn 1 0.2	2411 ().9401	0.1669	(000)	16.846A	1	
Mn 1 -0.7	7411 -	0.5599	0.3331	(-1-2 0)	17.235A	1	
Mn 1 0.7	7411 ().5599	-0.3331	(01-1)	17.235A	1	
Mn 2 0.0	0000 -	1.0000	0.0000	(0-10)	17.531A	1	
Mn 2 0.0)000 1	1.0000	0.0000	(010)	17.531A	1	
Common	face wit	h		R(A	-A)		
Mn 1 0.2	2411 -(0.0599	0.1669	(0-10)	3.643A	3	
Mn 1 -0.2	2411 (0.0599	-0.1669	(010)	3.643A	3	
Structural	group a	nalysis					
Structural	group N	No 1					
Structure of	consists	of layer	s (101)	with Mn3	3016N10C	54H56	
Coordinati	ion sequ	iences					
Mn1: 1 2 3 4 5 6 7 8 9 10							
Num 7 31 54 72 90 108 126 144 162 180							
Cum 8 39 93 165 255 363 489 633 795 975							
Mn2: 1 2	3 4	5 6 7	8 9 1	0			
Num 143	6 54 7	2 90 10	8 126 14	4 162 180)		
Cum 15 5	1 105 1	77 267 3	375 501 6	645 807 98	87		
TD10=979)						
Vertex symbols for selected sublattice							
Mn1 Point symbol: {3^9.4^12}							
Extended]	point sy	mbol:[3	.3.3.3.3.3	3.3.3.3.4.4	.4.4.4.4.4.4	.4.4(3).4(3).4	4(3)]
Mn2 Point symbol: {3^24.4^48.5^16.6^3}							

point

Extended 2).6(12).6(12).6(12)]

Point symbol for net: {3^24.4^48.5^16.6^3} {3^9.4^12}2

7,14-c net with stoichiometry (7-c)2(14-c); 2-nodal net

2.2.3. Topos for compound 3

Topology for Mg1

Atom Mg1 links by bridge ligands and has

Comm	Common vertex with				A-A) f	
Mg 1	0.7500	1.2500	0.0000	(120)	15.180A	1
Mg 1	-0.2500	0.2500	0.0000	(010)	15.180A	1
Mg 2	0.6712	1.2988	-0.2155	(120)	15.669A	1
Mg 2	-0.1712	0.2012	0.2155	(-1-1 0)	15.669A	1
Mg 2	0.1712	-0.2012	-0.2155	(000)	16.928A	1
Mg 2	0.3288	1.7012	0.2155	(010)	16.928A	1
Mg 2	0.8288	0.7988	-0.2845	(01-1)	16.955A	1
Mg 2	-0.3288	0.7012	0.2845	(000)	16.955A	1
Mg 1	0.2500	-0.2500	0.0000	(0-10)	17.423A	1
Mg 1	0.2500	1.7500	0.0000	(010)	17.423A	1
Mg 1	0.7500	0.7500	-0.5000	(10-1)	17.697A	1
Mg 1	-0.2500	0.7500	0.5000	(000)	17.697A	1
Comm	non face v	vith		R(A	A-A)	
Mg 2	0.1712	0.7988	-0.2155	(010)	3.554A	3
Mg 2	0.3288	0.7012	0.2155	(000)	3.554A	3
Topol	ogy for M	[g2				

Atom Mg2 links by bridge ligands and has

Comn	non verte	x with		R(A-A) f	
Mg 1	0.7500	1.2500	0.0000	(120)	15.669A	1
Mg 2	-0.3288	0.7012	0.2845	(000)	16.856A	1
Mg 2	0.6712	1.2988	-0.2155	(120)	16.907A	1
Mg 1	0.2500	-0.2500	0.0000	(0-10)	16.928A	1
Mg 1	-0.2500	0.7500	0.5000	(000)	16.955A	1
Mg 2	0.1712	-0.2012	-0.2155	(000)	17.170A	1
Comn	non face	with		R(A	A-A)	
Mg 1	0.2500	0.7500	0.0000	(000)	3.554A	3
Struct	ural grou	ıp analysi	S			
Struct	ural grou	ip No 1				
Struct	ure cons	ists of 3D	framewor	k with M	g3O16N10	C54H48
Coord	lination s	equences				
Mg1:	1 2 3	4 5 6	789	9 10		
Num	14 54 13	4 252 41	0 604 834	4 1100 14	02 1740	
Cum	15 69 20	3 455 86	5 1469 230	03 3403 4	805 6545	
Mg2:	1 2 3	4 5 6	789	9 10		
Num	7 37 10	9 221 374	561 787	/ 1045 134	43 1673	
Cum	8 45 154	4 375 749	1310 209	7 3142 44	85 6158	
TD10	=6287					

Vertex symbols for selected sublattice

Mg1 Point symbol: {3^18.4^36.5^22.6^14.7}

Mg2 Point symbol: {3^9.4^12}

Extended point symbol: [3.3.3.3.3.3.3.3.3.4.4.4.4.4.4.4.4.4.4(2).4(2).4(3)]

Point symbol for net: {3^18.4^36.5^22.6^14.7} {3^9.4^12}2

7,14-c net with stoichiometry (7-c)2(14-c); 2-nodal net

2.2.4. Topos for compound 6

Topology for Zn1

Atom Zn1 links by bridge ligands and has

Common vertex with			R(A-A) f			
Zn 1	0.0000	2.0712	-0.2500	(030)	11.213A	1
Zn 1	0.0000	2.0712	0.7500	(031)	11.213A	1
Zn 1	0.5000	-0.4288	0.7500	(000)	17.075A	1
Zn 1	-0.5000	-0.4288	-0.2500	(-1 0-1)	17.075A	1

Structural group analysis

Structural group No 1

Structure consists of 3D framework with ZnO4N4C24H16

There are 5 interpenetrating nets

FIV: Full interpenetration vectors

[0,1,0] (6.10A)

PIC: [5/2,5/2,0][0,0,1][1,0,0] (PICVR=5)

Zt=5; Zn=1

Class Ia Z=5

Coordination sequences

Zn1: 1 2 3 4 5 6 7 8 9 10

Num 4 12 24 42 64 92 124 162 204 252

Cum 5 17 41 83 147 239 363 525 729 981

TD10=981

Vertex symbols for selected sublattice

Zn1 Point symbol: {6^6}

Extended point symbol:[6(2).6(2).6(2).6(2).6(2).6(2)]

Point symbol for net: $\{6^{6}\}$

4-c net; uninodal net

Figure. S1. (a) The manganese dimer connectivity with the ABDCA ligands, (b) space-filling model of dimer's connectivity and (c) the parallel orientation of the N=N bond of ABDCA in compound **1**.

Figure. S2. Topological representation (metal and ligand connectivity) of compound 2.

Figure. S3. Topological representation (metal and ligand connectivity)in compound 3.

Figure. S4. Three -dimensional structure of compound 6.

Figure S5. Powder XRD plots of the compounds 1-6.

Figure S6. IR plots of the compounds 1-6.

SI. No.	Material	Stretching frequencies (cm ⁻¹)	Bonds
1	Compound 1	3385	-OH
		1669	-C=O
		1591	-N-H
		1540	-C=C-
		1308	-N=N-
		1206	-C-O
		1103	-C-N
		793	Aromatic
		785	-C-H
		699	-NH
2	Compound 2	3364	-OH
		1598	-C=C-
		1306	-N=N-
		1705	-C=O
		801	Aromatic
		629	-N-H
3	Compound 3	3394	-OH
		1597	-NH
		1555	-C=C-
		1399	-C-H
		1304	-N=N-
		805	Aromatic
		708	-CH
		631	-NH

Table S8. Selected IR frequencies of the compounds 1-6.

4	Compound 4	3394	-OH
		1607	-NH
		1555	-C=C-
		1313	-N=N-
		865	Aromatic
		768	-CH
		631	-NH
5	Compound 5	3390	-OH
		1672	-C=O
		1535	-C=C-
		1165	-C-O
6	Compound 6	3422	-OH
		1555	-C=C-
		1304	-N=N-
		795	Aromatic
		701	-CH
		631	-NH

Figure S7. TGA plots of the compounds 1-6.

Figure S8. (a)Absorbance and (b) photoluminescence spectra of the compounds 1-6.

Figure S9. Photoluminescence spectra of (a) all the ligands, (b) H₂L and Na₂L and (c) the compounds 1-6 compared with the H₂L and Na₂L.

Figure S10. Tauc plot of the compounds 1-6.

hა (eV)

Sl. No.	Name of the Compound	Band gap energy (eV)
1	Na ₂ ABDCA	1.89
2	Na ₂ SDCA	3.84
3	Compound 1	1.86
4	Compound 2	1.78
5	Compound 3	1.86
6	Compound 4	1.84
7	Compound 5	3.14
8	Compound 6	1.83

Table S9. The bandgaps of compounds and the acid ligands.

4. References

- (1) Dingle, R.; Lines, M. E.; Holt, S. L. Linear-Chain Antiferromagnetism in [(CH₃)₄N] [MnCl₃]. *Phys. Rev.* **1969**, *187*, 643.
- (2) Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. J. Opt. Soc. Am. 1948, 38, 448.
- (3) Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part II: Nonhomogeneous Layers. *J. Opt. Soc. Am.* **1954**, *44*, 330.
- (4) Murphy A. B. Modified Kubelka-Munk Model for Calculation of the Reflectance of Coatings with Optically-Rough Surfaces. *J. Phys. D:Appl. Phys.***2006**, *39*, 3571.
- (5) Laidani, N.; Bartali, R.; Gottardi, G.; Anderle, M. Optical Absorption Parameters of Amorphous Carbon Films fromForouhi–Bloomer andTauc–Lorentz Models: a comparative study. *J. Phys.: Condens. Matter.* **2008**, *20*, 15216.