Supporting Information

Nickel-doped Excess Oxygen Defects **Titanium**

Dioxide for **Efficient Selective Photocatalytic**

Oxidation of Benzyl Alcohol under Visible Light

Irradiation

Houde She[†], Hua Zhou[†], Liangshan Li[†], Lei Wang[†], Jingwei Huang[†], Qizhao Wang^{†,‡} *

[†]College of Chemistry and Chemical Engineering, Northwest Normal University, 967

Anning East Rd., Lanzhou 730070, PR China.

* Key Laboratory of Eco-Environment Related Polymer Materials, Ministry of

Education of China, 967 Anning East Rd., Lanzhou 730070, PR China.

Contents of the Supporting Information

Total number of pages: 7

Total number of figures: 7

S1

Synthesis of Ni-OTiO₂(HF)

0.7 g TiO₂ precursor was added to 50 ml of ice water. After mixing, 30 ml of H₂O₂ was slowly added and stirred for 1 h to obtain peroxo titanate. Then 8 ml of HF was added and stirred for 1 h. 0.029 g of C₄H₆NiO₄ was added to the mixed solution and heated to 50°C 2 h. It was dried and calcined in a muffle furnace at 300°C for 3 hours to obtain Ni-OTiO₂(HF).

Synthesis of Ni(1%)– $OTiO_2(400T)$

0.029 g Ni(CH₃COO)₂.4H₂O was added to the peroxo titanate and heated to 50° C for 2 h . The resulting yellow uniform gel was aged for 24 h and dried overnight. Finally, the resulting yellow solid material was placed in a muffle furnace at 400°C, with a heating rate of 10°C/ min for 3 h to obtain Ni(1%)–OTiO₂(400T).

Synthesis of Ni(1%)–OTiO₂(500T)

0.029 g Ni(CH₃COO)₂.4H₂O was added to the peroxo titanate and heated to 50° C for 2 h . The resulting yellow uniform gel was aged for 24 h and dried overnight. Finally, the resulting yellow solid material was placed in a muffle furnace at 500°C, with a heating rate of 10°C/ min for 3 h to obtain Ni(1%)–OTiO₂(500T).

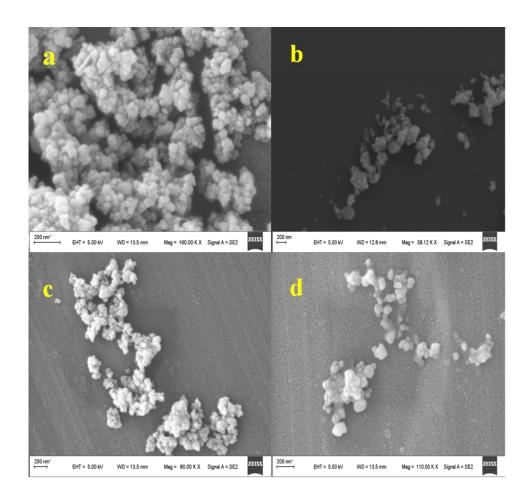


Fig. S1 (a) SEM image of TiO_2 ; (b) SEM image of O_2 - TiO_2 ; (c) SEM image of Ni(1%)- TiO_2 ; (d) SEM image of Ni(1%)- $OTiO_2$.

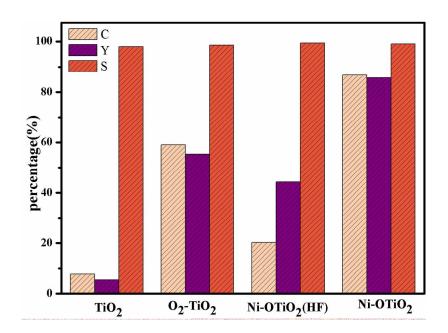


Fig.S2 Evaluation of photocatalytic (Ni-OTiO₂(HF)) activity

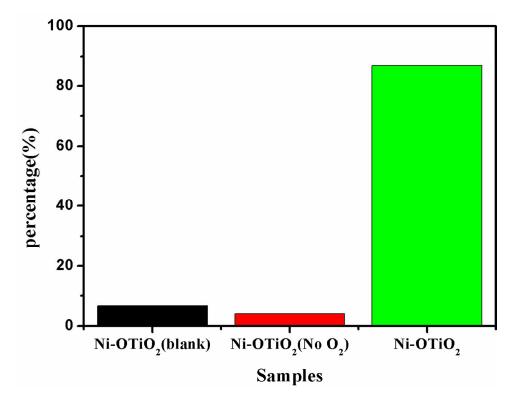


Fig.S3 Photocatalytic performance for selective oxidation of benzyl alcohol to benzaldehyde using the Ni(1%)-OTiO₂ samples under 300W Xenon lamp irradiation for 1 h with (1) NO Light; (2) NO O₂; (3) light and O₂.

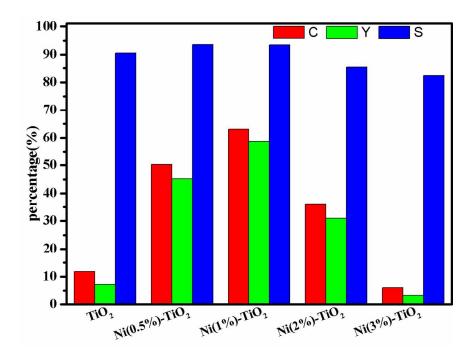


Fig.S4 Photocatalytic performance for selective oxidation of benzyl alcohol to benzaldehyde using (1) TiO_2 ; (2) $Ni(0.5\%)-TiO_2$; (3) $Ni(1\%)-OTiO_2$; (4) $Ni(2\%)-TiO_2$; (5) $Ni(3\%)-TiO_2$ samples as photocatalysts under 300W Xenon lamp irradiation for 1h;

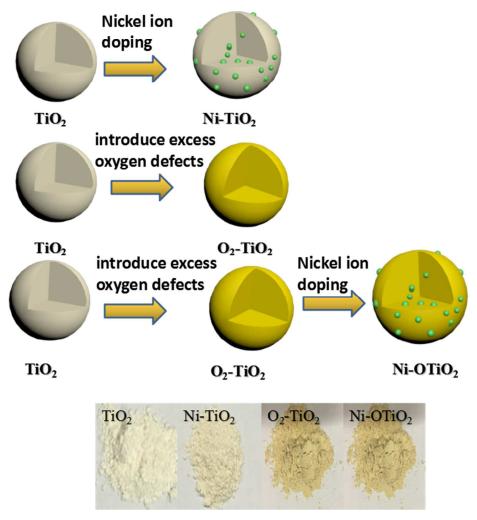


Fig.S5 photographs of the as-prepared solid samples.

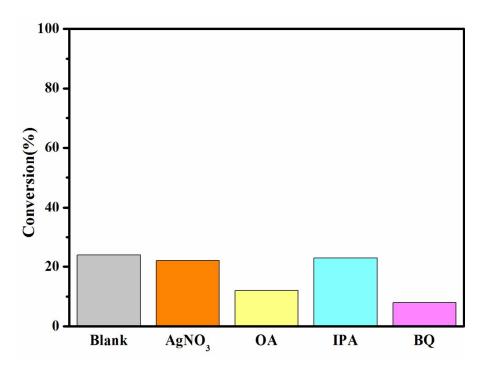


Fig.S6 Benzyl alcohol of conversion using Ni (1%)-OTiO₂ photocatalyst in the presence of different radical scavengers under irradiation for 1h.

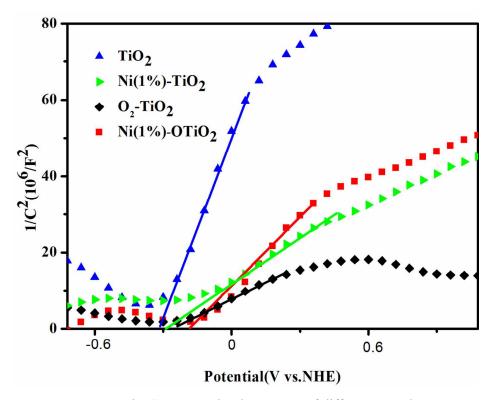


Fig. S7 Mott-schottky spectra of different samples.