Supporting Information

Reactions of an Isolable Dialkylstannylene with Propynoates and Benzyne

Jian Xu, Xu-Qiong Xiao, Chenting Yan, Zhifang Li,* Qiong Lu, Qian Yang, Guoqiao Lai* and Mitsuo Kira*

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China

zhifanglee@hznu.edu.cn, gqlai@hznu.edu.cn, mkira@m.tohoku.ac.jp

Contents

- 1. X-ray analysis and the molecular structures of 2-4
- 2. ¹H, ¹³C, ²⁹Si, and ¹¹⁹Sn NMR spectra of **2-4** (Figures S1-12)
- The reaction of a 1:1 mixture of 1 and methyl propynoate in C₆D₆ as monitored by ¹H NMR (Figure S13)
- 4. DFT Calculations
- 5. References

1. X-ray analysis of 2-4

Single crystals of **2-4** suitable for X-ray analysis were obtained by the recrystallization from *n*-pentane and hexane, respectively. The X-ray diffraction data were collected on a Bruker Smart Apex CCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) using the ω -2 θ scan mode. The structures were solved by direct methods and refined on *F2* by full-matrix least-squares methods using SHELX-2000.^{S1} Crystal and refinement data for **2-4** are shown in Table S1. Crystal and refinement data for **2**, **3**, and **4** are deposited with CCDC; CCDC Nos. 1817474, 1817475 and 1817473, respectively.

Parameters	2	3	4
Empirical formula	$C_{24}H_{48}O_4Si_4Sn$	$C_{26}H_{52}O_4Si_4Sn$	C ₂₂ H ₄₄ Si ₄ Sn
Formula weight	631.67	659.72	539.62
Crystal system,	Monoclinic,	Monoclinic,	Triclinic,
Space group	Pn	C2/c	P-1
<i>a</i> [Å]	21.645(3)	26.625 (15)	9.7303(8)
<i>b</i> [Å]	9.4247(15)	9.400(5)	12.2848(10)
<i>c</i> [Å]	33.426(5)	28.376(14)	12.3194(10)
α [deg]	90	90	85.9670(10)
β [deg]	106.772(2)	102.642(16)	84.2360(10)
γ [deg]	90	90	85.4800(10)
V[Å ⁻³]	6528.8(18)	6930(6)	1457.7(2)
$Z, D_{\text{calcd}}[\text{Mg/m}^{-3}]$	8, 1.285	8, 1.265	2, 1.229
μ [mm ⁻¹]	0.954	0.902	1.047
F (000)	2640	2768	564
Reflections	41561	26807	17732
collected			
Independent	20827	7722	6638
Reflections			
<i>R</i> (int)	0.0260	0.0705	0.0259
Data/restraints	20827/2/1245	7722/0/ 329	6638/0/ 255
/parameters			
final R indices	0.0299,	0.0643,	0.0338,
$[I > 2\sigma(I)] R_1, wR2$	0.0689	0.1431	0.0933
R indices (all data)	0.0348,	0.0905,	0.0460,
wR_2	0.0710	0.1541	0.1033

 Table S1.
 Crystal and Refinement Data for 2-4.

2. ¹H, ¹³C, ²⁹Si , and ¹¹⁹Sn NMR spectra of 2-4.

~4.91

180

 $< \frac{4.86}{3.70}$

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

Figure S10. ¹³C NMR spectrum of 4 in C₆D₆

Figure S13. ¹H NMR spectrum of a product mixture of the reaction of 1 with one equivalent of methyl propynoate in C₆D₆.

3. DFT-D Calculations

3.1 Calculation details

All calculations were performed using the Gaussian 09 package ^{S2} Geometry optimizations of all stationary points were performed by using the dispersion-corrected DFT method at the B3PW91^{S3}-GD3 level^{S4} using the basis sets of 6-31+G(d,p) for C, H, O, and Si atoms + SDD for Sn. All of the structures obtained herein were verified by examination of their Hessian matrix as minima (all frequencies real). To evaluate the solvent effects on the relative stability of the compounds, the calculations were performed in heptane and THF as well as in gas phase using the polarizable continuum model (PCM) model.^{S5}

3.2 Reaction of 1' + Methyl Propynoate

The DFT calculations were performed for the following compounds:

Scheme S1.

See an attached file named as "optcoord.xyz" for the Cartesian coordinates of the optimized structures of these compounds,

Compound	Solvent	Total Energy (au)	ZPE (au)	Sum of electronic and thermal Free Energies (au) at -298.15 K
(<i>E</i>)- 2 '(<i>s</i> -trans)	gas phase	-1933.485452	0.319799	-1933.233837
	heptane	-1933.490748	0.319636	-1933.238519
	THF	-1933.497617	0.319295	-1933.245453
(<i>E</i>)- 2' (<i>s</i> -cis)	gas phase	-1933.486526	0.320085	-1933.233711
	heptane	-1933.491681	0.319786	-1933.238922
	THF	-1933.498375	0.319314	-1933.246304
	gas phase	-1933.491466	0.320478	-1933.235729
(<i>Z</i>)-2'(<i>s</i> -trans)	heptane	-1933.495923	0.320195	-1933.240648
	THF	-1933.501754	0.320019	-1933.246061
	gas phase	-1933.481157	0.320389	-1933.225756
(Z)-2'(s-cis)	heptane	-1933.487157	0.320179	-1933.231781
	THF	-1933.495212	0.319819	-1933.240196
A'	gas phase ^b			
	heptane	-1628.295585	0.244128	-1628.105457
	THF	-1628.301322	0.244058	-1628.112104
B'	gas phase	-1628.288639	0.244313	-1628.099695
	heptane	-1628.292056	0.244018	-1628.103178
	THF	-1628.296446	0.243527	-1628.108261
C'	gas phase	-1628.304565	0.241048	-1628.120088
	heptane	-1628.308074	0.240689	-1628.123763
	THF	-1628.312794	0.240232	-1628.128743
1'	gas phase	-1323.190941	0.170176	-1323.064515
	heptane	-1323.192193	0.170096	-1323.066265
	THF	-1323.194129	0.169896	-1323.068004
H-==-CO ₂ Me	gas phase	-305.101201	0.07135	-305.059882
	heptane	-305.10406	0.071313	-305.062777
	THF	-305.107535	0.071243	-305.066343

Table S2. Total, Zero-point, and Gibbs Free Energies of Compounds Shown in Scheme S1.^a

a. Calculated at the B3PW91-GD3 level^{S3,S4} using the basis sets of 6-31+G(d,p) for C, H, O, and Si atoms and SDD for Sn. Solvation effects in heptane and THF were considered using the polarizable continuum model (PCM) model.^{S5}

b. No energy minimum geometry for the structure was located.

3.3 Reaction of Stannylene 1" with benzyne

The DFT calculations were performed for the following pathway:

Table S3. Total, Zero-point, and Gibbs Free Energies of Compounds Shown in Scheme S2.^a

Compound	Solvent	Total Energy (au)	ZPE (au)	Sum of electronic and
				(au) at -298.15 K
D,	gas phase	-1593.413034	0.27861	-1593.188036
	heptane	-1593.41478	0.278345	-1593.189971
	THF	-1593.417239	0.277928	-1593.192908
F'	gas phase	-1593.417742	0.278295	-1593.193514
	heptane	-1593.420011	0.278002	-1593.195932
	THF	-1593.423201	0.277644	-1593.19911
4'	gas phase	-1593.489667	0.280616	-1593.26067
	heptane	-1593.491358	0.280279	-1593.263034
	THF	-1593.493889	0.279903	-1593.266116
1"	gas phase	-1362.512202	0.199313	-1362.359907
	heptane	-1362.513504	0.199203	-1362.36102
	THF	-1362.515492	0.19914	-1362.362535
benzyne	gas phase	-230.836809	0.075278	-230.788918
	heptane	-230.837986	0.075226	-230.790159
	THF	-230.839554	0.075143	-230.791829

a. Calculated at the B3PW91-GD3 level^{S3,S4} using the basis sets of 6-31+G(d,p) for C, H, O, and Si atoms and SDD for Sn. Solvation effects in heptane and THF were considered using the polarizable continuum model (PCM) model.^{S5}

b. No energy minimum geometry for the structure E' was located.

4. References

- (S1) (a) Picou, C. L.; Stevens, E. D.; Shah, M.; Boyer, J. H. *Acta Crystallogr. Sect. C* 1990, 46, 1148. (b) SMART, SAINT, SADABS and SHELXTL, Bruker AXS Inc., Madison, 2000.
- (S2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision E.01;* Gaussian, Inc.: Wallingford, CT, 2009.
- (S3) Perdew, J. P.; Wang, Y. Phys. Rev. B: Condens. Matter, 1992, 45, 13244.(S4)
- (S4) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456.
- (S5) Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent *Chem. Rev.* **1994**, *94*, 2027-2094.