Supplementary Materials

Supporting Figures

Supplementry Materials

Synthesis and Characterization of Compounds

KX-02-063

Compound 2

1-Butyl-4-(2-(2-fluoroethoxy)phenyl)piperazine (Compound 2)

Compound 2 was obtained ($112 \mathrm{mg}, 0.5 \mathrm{mmol}$) from KX-02-063via General Procedure A as a colorless oil ($85 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~m}$, 2H), 1.54 (m, 2H), 2.43 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68 (s, 4H), 3.16 (s, 4H), 4.25 (dt, $J=29.0,4.0 \mathrm{~Hz}$, 2 H), 4.77 (dt, $J=47.5,4.0 \mathrm{~Hz}$), $6.85(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.97(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.99,20.75,28.61,50.33,53.46,58.52,67.48,67.64,81.29,82.56,113.76,118.43,122.14$, 122.61, 141.99, 150.93. HRMS m/z (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$281.2024, found 281.2019.

N-Butyl-4-(thiophen-3-yl)benzamide (Compound 3)

Using General Procedure B, Compound 3 was obtained from n-butylamine ($146 \mathrm{mg}, 2$ mmol) as colorless solid ($120 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, 1.38-1.48 (m, 2H), 1.58-1.66 (m, 2H), 3.44-3.50 (m, 2H), 6.20 (br s, 1H), 7.40 (s, 1H), 7.41 (s, $1 \mathrm{H}), 7.52$ (t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (90 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.77,20.16,31.76,39.83,121.42,126.14,126.37,126.59,127.45,133.22$, 138.61, 141.22, 167.12. HRMS m/z (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 260.1104$, found 260.1120 .

tert-Butyl 8-(2-(2-fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octane-3-carboxylate (KX-05-069)

KX-05-069 was generated via general procedure C with 3,8-diazabicyclo[3,2,1]octane-3carboxylic acid tert-butyl ester ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$) as slightly brown oil ($145 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 1.46$ (s, 9H), 1.75 (m, 2H), 1.92 (m, 2H), 3.26 (dd, $J=35.6,12.1 \mathrm{~Hz}$, 2 H), 3.79 (dd, $J=69.0,12.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.13 (m, 2H), 4.23 (dt, $J=27.9,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.76 (dt, $J=$ 47.6, $4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.81-6.91 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.41,26.54,28.4349 .25$, $50.43,57.21,57.27,67.57\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=20.3 \mathrm{~Hz}\right), 79.44,81.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=171.1 \mathrm{~Hz}\right), 113.84,117.03$, 121.33, 121.98, 139.14, 149.93, 156.08. ESI-MS (m/z): 351.22 [M+H].

8-(2-(2-Fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octane (KX-05-071)

KX-05-069 ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) was carried on with general procedure F , yielding KX-05-071 as slightly yellow oil ($150 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.11-2.14(\mathrm{~m}, 2 \mathrm{H})$, 2.26-2.29 (m, 2H), 3.23 (dd, $J=12.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.40-3.43 (m, 3H), 4.15-4.23 (m, 4H), 4.74 (dt, $J=47.6,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.74 (dd, $J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 (dd, $J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86-$ $6.91(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 25.99,48.48,55.92,67.61\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=18.9 \mathrm{~Hz}\right)$, 81.79 (d, $J_{\mathrm{F}-\mathrm{C}}=172.8 \mathrm{~Hz}$), 113.66, 116.54, 121.97, 122.26, 137.49, 149.75. ESI-MS (m/z): $251.20[\mathrm{M}+\mathrm{H}]$.

2-(4-(8-(2-(2-Fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octan-3-yl)butyl)isoindoline-1,3dione (KX-05-076)

KX-05-076 was obtained from KX-05-071 ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$) via general procedure D as colorless oil (110, 61\%). ESI-MS (m/z): $452.24[\mathrm{M}+\mathrm{H}]$.

4-(8-(2-(2-Fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octan-3-yl)butan-1-amine (KX-05077)

KX-05-077 was obtained ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) from KX-05-076 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) with general procedure E as colorless oil ($30 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48-1.50(\mathrm{~m}, 4 \mathrm{H})$, $1.86-1.91$ (m, 4H), 2.26 (br s, 2H), 2.33 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45 (d, $J=10.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.69-2.72 (m, 4H), 4.10 (s, 2H), 4.21 (dt, $J=28.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.76$ (dt, $J=47.5,4.1 \mathrm{~Hz}$), 6.81-6.87 (m, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.15,27.39,31.08,41.85,57.35,57.89,58.51,67.42\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-}\right.$ c $=20.6 \mathrm{~Hz}), 82.04\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=171.0 \mathrm{~Hz}\right), 113.81,117.09,120.65,121.91,139.42,149.75$. ESIMS (m/z): $322.22[\mathrm{M}+\mathrm{H}]$.

N-(4-(8-(2-(2-Fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octan-3-yl)butyl)-4-(thiophen-3yl)benzamide (Compound 5).

Compound 5 was obtained from KX-05-077 ($25 \mathrm{mg}, 0.078 \mathrm{mmol}$) via general procedure B as colorless solid ($20 \mathrm{mg}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.69$ (m, 2H), 1.84-1.90 (m, 4H), 2.39 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.48 (d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.73$ (dd, $J=$ $10.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.50(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{dt}, J=28.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{dt}, J=$ $47.6,4.1 \mathrm{~Hz}), 6.80-6.90(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.10,27.33,38.53,39.87$, $56.99,57.82,58.45,67.43\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=20.0 \mathrm{~Hz}\right), 82.03\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=170.4 \mathrm{~Hz}\right), 113.82,117.06,120.72$, 121.35, 121.91, 126.09, 126.28, 126.54, 127.47, 133.20, 138.51, 139.33, 141.16, 149.74, 167.14. HRMS m/z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$508.2429, found 508.2435.

3-Butyl-8-(2-(2-fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octane (KX-06-112)

Compound 9 was obtained from KX-05-071 ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) via general procedure A as colorless oil ($25 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.31-1.36 (m, 2H), 1.41-1.46 (m, 2H), 1.84-1.87 (m, 2H), 1.90-1.93 (m, 2H), 2.31 (t, J = 7.3 Hz, 2H), 2.45
(d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.71 (d, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{dt}, J=28.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.77$ (dt, $J=47.4,4.2 \mathrm{~Hz}$), 6.82-6.88 (m, 4H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.02,20.54,27.43$, 29.03, 57.39, 58.00, 58.57, $67.41\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=20.2 \mathrm{~Hz}\right), 82.09\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=170.1 \mathrm{~Hz}\right), 113.91,117.16$, 120.29, 121.96, 139.62, 149.80. HRMS m/z (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 307.2180$, found 307.2179.

tert-Butyl 8-(4-(1,3-dioxoisoindolin-2-yl)butyl)-3,8-diazabicyclo[3.2.1]octane-3-carboxylate (KX-05-094)

The title compound was obtained from 3,8-diazabicyclo[3,2,1]octane-3-carboxylic acid tert-butyl-ester ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$) via gernal procedure D as colorless oil ($190 \mathrm{mg}, 92 \%$). 1 H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=43.8,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $29.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.60 (dd, $J=65.6,12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.68 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67-7.69 (m, 2H), 7.78$7.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.92,25.07,25.74,26.38,28.35,37.72,49.24$, 50.41, 52.10, 58.52, 58.62, 79.23, 123.08, 132.05, 133.80, 155.93, 168.34. ESI-MS (m/z): 414.24 $[\mathrm{M}+\mathrm{H}]$.
tert-Butyl 8-(4-aminobutyl)-3,8-diazabicyclo[3.2.1]octane-3-carboxylate (KX-05-099)
KX-05-099 was obtained from KX-05-094 ($190 \mathrm{mg}, 0.46 \mathrm{mmol}$) via general procedure E as colorless oil ($105 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.47(\mathrm{~m}, 2 \mathrm{H})$,
$1.52-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97$ (dd, $J=12.4,41.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=32.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=12.4,64.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 20.73,25.87,28.32,31.39,41.89,52.41,58.44,79.32,155.98$. ESI-MS $(\mathrm{m} / \mathrm{z}): 284.24[\mathrm{M}+\mathrm{H}]$.

tert-Butyl 8-(4-(4-(thiophen-3-yl)benzamido)butyl)-3,8-diazabicyclo[3.2.1]octane-3carboxylate (KX-05-104)

KX-05-104 was yielded from KX-05-099 ($90 \mathrm{mg}, 0.32 \mathrm{mmol}$) via general procedure B as colorless solid (88 mg, 59\%). ESI-MS (m/z): $470.28[\mathrm{M}+\mathrm{H}]$.

N-(4-(3,8-Diazabicyclo[3.2.1]octan-8-yl)butyl)-4-(thiophen-3-yl)benzamide (KX-05-168)

KX-05-168 was yielded from KX-05-104 ($88 \mathrm{mg}, 0.19 \mathrm{mmol}$) via general procedure F as slightly yellow solid ($65 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.84$ (m, 2H), 1.95-1.98 (m, 2H), 2.47 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=2.1,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.24(\mathrm{~s}, 2 \mathrm{H}), 3.44-3.48(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.39$ $(\mathrm{m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 24.59,24.70,27.00,39.40,50.31,52.13,59.94,121.35,126.08,126.24$, 126.55, 127.58, 133.08, 138.50, 141.16, 167.30. ESI-MS (m/z): $370.20[\mathrm{M}+\mathrm{H}]$.

N-(4-(3-(2-(2-Fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octan-8-yl)butyl)-4-(thiophen-3yl)benzamide (compound 6)

Compound 6 was obtained from KX-05-168 ($50 \mathrm{mg}, 0.13 \mathrm{mmol}$) via general procedure C as colorless solid ($25 \mathrm{mg}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.74-1.78(\mathrm{~m}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.00-2.04 (m, 2H), 2.13 (br s, 2H), 2.39 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.02 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.32-3.35$ (m, 2H), 3.56-3.60 (m, 2H), 3.65-3.69 (m, 2H), 3.85 (s, 1H), 4.23 (dt, $J=28.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77$ (dt, $J=47.4,4.0 \mathrm{~Hz}), 6.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.41$ (m, 2H), 7.49 (dd, $J=2.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (br s, 1H), 8.04 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H})$. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}(\mathrm{ESI}):$ calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$508.2429, found 508.2435.
tert-Butyl 8-butyl-3,8-diazabicyclo[3.2.1]octane-3-carboxylate (KX-06-119)
The title compound was obtained from 3,8-diazabicyclo[3,2,1]octane-3-carboxylic acid tert-butyl-ester ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$) via general procedure A as slightly brown solid (90 mg , 67%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26-1.34 (m, 2H), 1.39-1.45 (m, $11 \mathrm{H}), 1.53-1.59$ (m, 2H), 1.80-1.87 (m, 2H), 2.27 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.99 (dd, $J=12.1,40.8 \mathrm{~Hz}$, 2 H), 3.12 (d, $J=34.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{dd}, J=12.1,68.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 13.97, 20.61, 24.99, 25.17, 28.38, 30.73, 49.17, 50.33, 52.36, 58.45, 79.22, 155.99. ESI-MS (m/z): $268.24[\mathrm{M}+\mathrm{H}]$.

8-Butyl-3,8-diazabicyclo[3.2.1]octane (KX-06-122)

The title compound was obtained from KX-06-119 via general procedure F. The solid formed was used for next step without purification. ESI-MS (m/z): $169.19[\mathrm{M}+\mathrm{H}]$.

8-Butyl-3-(2-(2-fluoroethoxy)phenyl)-3,8-diazabicyclo[3.2.1]octane (KX-06-123)

Compound 10 was yielded from $\mathbf{K X} \mathbf{- 0 6 - 1 2 2}(70 \mathrm{mg}, 0.42 \mathrm{mmol})$ via general procedure C as colorless oil ($50 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.33-1.39 (m, 2H), 1.68-1.73 (m, 2H), 1.99-2.03 (m, 2H), 2.17 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64$ (dd, $J=8.0,8.6$ Hz, 2H), 3.27 (dd, $J=2.8,12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.40 (d, $J=11.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.57 (s, 2H), 4.21 (dt, $J=$ 28.3, $4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dt}, J=47.5,4.1 \mathrm{~Hz}), 6.81(\mathrm{~d}, J=\mathrm{Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.95(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.49,20.47,24.94,28.43,51.91,53.92,60.50,67.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=\right.$ $19.7 \mathrm{~Hz}), 82.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=171.3 \mathrm{~Hz}\right), 112.78,119.40,121.92,122.71,140.57,151.02 . \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$307.2180, found 307.2189.

3-Benzyl-9-(2-(2-fluoroethoxy)phenyl)-3,9-diazabicyclo[3.3.1]nonane (KX-06-014)
The title compound was obtained from 3-benzyl-3,9-diazabicyclo[3.3.1]nonane dihydrochloride ($290 \mathrm{mg}, 1.0 \mathrm{mmol}$) via general procedure C as a slightly brown solid (200 mg , 56\%). ESI-MS (m/z): 169.19 [M+H]. ESI-MS (m/z): 355.21 [M+H].

9-(2-(2-Fluoroethoxy)phenyl)-3,9-diazabicyclo[3.3.1]nonane (KX-06-018)

KX-06-014 (200 mg, 0.56 mmmol) was dissolved in methanol (3 ml), 4N HCl (1 ml) was added followed by the addition of $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$. The mixture was kept stirring under a H_{2} atmosphere overnight. Then the resulted reaction mixture was neutralized with 7 N methanolic ammonia and condensed. The residue was applied to FC (dichloromethane/7N methanolic ammonia 0-15\%) yielding KX-060-018 as slightly brown oil ($80 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.78-1.84(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.49(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.49 (dd, $J=4.0,12.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.97 (s, 2H), 4.17 (dt, $J=28.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.73 (dt, $J=47.4$, $4.0 \mathrm{~Hz}), 6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.91(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.52$, 26.57, 45.73, 48.06, $67.49\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=19.9 \mathrm{~Hz}\right), 81.82\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=170.9 \mathrm{~Hz}\right), 113.43,118.07$, 121.51, 122.00, 138.50, 149.97. ESI-MS (m/z): 265.18 [M+H].

2-(4-(9-(2-(2-Fluoroethoxy)phenyl)-3,9-diazabicyclo[3.3.1]nonan-3-yl)butyl)isoindoline-1,3dione (KX-06-022)

KX-06-022 was obtained from KX-06-018 ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) via general procedure D as slightly yellow oil ($40 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.67$
(m, 2H), 1.72-1.79 (m, 2H), 2.01-2.08 (m, 2H), $2.23(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, 2H), 2.70-2.77(m, 1H), 2.80 (d, $J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (s, 2H), 4.18 (dt, $J=28.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{dt}, J=47.5,4.1 \mathrm{~Hz}), 6.75-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.68-$ $7.72(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 20.51,23.97,26.32,28.89$, 37.92, 51.38, 57.31, 58.13, $67.57\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=20.2 \mathrm{~Hz}\right), 82.10\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=171.0 \mathrm{~Hz}\right), 114.31,118.17$, 119.47, 122.08, 123.12, 132.11, 133.81, 140.39, 149.73, 168.43. ESI-MS (m/z): $466.14[\mathrm{M}+\mathrm{H}]$.

4-(9-(2-(2-Fluoroethoxy)phenyl)-3,9-diazabicyclo[3.3.1]nonan-3-yl)butan-1-amine (KX-06023)

KX-06-023 was yielded from KX-06-022 ($40 \mathrm{mg}, 0.08 \mathrm{mmol}$) via general procedure E as colorless oil ($22 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50-1.54(\mathrm{~m}, 5 \mathrm{H}$), 1.65-1.71 (m, 2H), $1.98(\mathrm{~s}, 2 \mathrm{H}), 2.00-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.84(\mathrm{~m}, 5 \mathrm{H})$, 3.86 (s, 2H), 4.19 (dt, $J=28.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{dt}, J=47.5,4.1 \mathrm{~Hz}), 6.77-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.88-$ $6.92(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.54,24.14,28.99,31.21,42.01,51.46,57.40$, 57.40, $58.71,67.71\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=19.8 \mathrm{~Hz}\right), 82.13\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=171.1 \mathrm{~Hz}\right), 114.53,118.22,119.50$, 122.16, 140.53, 149.80. ESI-MS (m/z): 336.25 [M+H].

N-(4-(9-(2-(2-Fluoroethoxy)phenyl)-3,9-diazabicyclo[3.3.1]nonan-3-yl)butyl)-4-(thiophen-3yl)benzamide (KX-06-026)

Compound 7 was obtained from KX-06-023 ($22 \mathrm{mg}, 0.06 \mathrm{mmol}$) via general procedure B as slightly brown solid ($18 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.65-$ $1.71(\mathrm{~m}, 4 \mathrm{H}), 2.02-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.52$ (m, 2H), 3.88 (s, 2H), 4.19 (dt, $J=28.4,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{dt}, J=47.5,4.1 \mathrm{~Hz}), 6.39(\mathrm{~s}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.95(\mathrm{~m}, 2 \mathrm{H}) 7.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 20.35,23.91$, 27.21, 28.65, 39.86, 51.13, 57.25, 58.44, $67.58\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=20.2 \mathrm{~Hz}\right), 82.10\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=170.6 \mathrm{~Hz}\right)$, $118.20,119.78,121.41,122.08,126.10,126.32,126.59,127.46,127.82,139.79,133.05,138.56$, 141.13, 149.75, 167.23. HRMS m/z (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 522.2585$, found 522.2580 .

Compound 11 was obtained from KX-06-018 ($20 \mathrm{mg}, 0.07 \mathrm{mmol}$) via general procedure A as a slightly brown oil ($15 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.34-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.69$ (dd, $J=5.7,13.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.022.10 ($\mathrm{m}, 2 \mathrm{H}$), $2.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$, 4.20 (dt, $J=28.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.74(\mathrm{dt}, J=47.5,4.1 \mathrm{~Hz}$), 6.76-6.82 (m, 2H), 6.89-6.96 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.05,20.53,29.03,51.51,57.42,58.70,67.68\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=20.1\right.$ Hz), $82.16\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=170.8 \mathrm{~Hz}\right.$), 114.50, 118.25, 119.48, 122.16, 140.56, 149.79. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}$ (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$321.2337, found 321.2341.

tert-Butyl 4-(2-(2-fluoroethoxy)phenyl)-1,4-diazepane-1-carboxylate (KX-06-110)
The title compound was achieved using 1-boc-hexahydro-1,4-diaepine ($100 \mathrm{mg}, 0.5$ mmol) via general procedure C as slightly yellow oil ($110 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (mixture of rotamers) $\delta 1.45,1.47(2 \mathrm{~s}, 9 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.65(\mathrm{~m}, 2 \mathrm{H}), 4.22$ (dt, $J=28.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.78 (dt, $J=47.7,4.0 \mathrm{~Hz}$), 6.81-6.83 (m, 1H), 6.89-6.91 (m, 2H), 6.94-6.96 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 28.44,28.58,44.86$, $45.94,47.90,48.18,53.15,53.34,53.91,67.58\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=20.2 \mathrm{~Hz}\right), 79.18,81.85\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=171.2\right.$ $\mathrm{Hz})$, 113.26, 118.95, 119.05, 121.52, 121.58, 121.74, 142.81, 142.90, 150.58, 155.45, 155.51. ESI-MS (m/z): $339.20[\mathrm{M}+\mathrm{H}]$.

tert-Butyl 4-(2-(2-fluoroethoxy)phenyl)-1,4-diazepane-1-carboxylate (KX-06-113)

Compound KX-06-113 HCl salt was obtained from KX-06-110 (110 mg 0.32 mmol) via general procedure F as a slightly brown solid ($75 \mathrm{mg}, 97 \%$). ESI-MS (m/z): $239.18[\mathrm{M}+\mathrm{H}]$.

1-Butyl-4-(2-(2-fluoroethoxy)phenyl)-1,4-diazepane (KX-06-116) Compound 8.

Compound 8 was yielded from KX-06-113 ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) via general procedure A as a slight brown oil ($16 \mathrm{mg}, 33 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 0.96(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 2 \mathrm{H}), 2.97-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}$
$=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{dt}$, $J=28.8,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{dt}, J=47.7,4.0 \mathrm{~Hz}), 6.82-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.95(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 13.54,20.25,24.21,26.01,48.89,49.15,52.26$, $56.64,57.61,67.23\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=19.1 \mathrm{~Hz}\right), 81.77\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=171.2 \mathrm{~Hz}\right), 112.31,118.05,121.76$, 121.91, 141.61, 150.08. HRMS m/z (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 295.2180$, found 295.2176.

Supporting Figures

SUPPORTING FIGURE 1.

Figure 1. The crystallographic vs. docked poses of 3-chloro-5-ethyl-N-\{[(2S)-1-ethylpyrrolidin-2-yl]methyl\}-6-hydroxy-2-methoxybenzamide (ETQ) on according to the crystal structure 3PBL and our docking result with Autodock vina.

SUPPORTING FIGURE 2.

Supporting Figure 2. The histograms of normalized populations of sampled reaction coordinates at umbrella sampling windows. Each plot represents a window starting from $2.8 \AA$ and ending to $6.0 \AA$. The plot shows that the neighboring windows sample overlapped regions of the reaction coordinate, which is a crucial criterion for validity of PMF calculations based on umbrella sampling simulations.

