Palladium-Catalyzed Site-Selective C-H Arylation of 2,2'-Bipyridine-6-carboxamides via a Rollover Cyclometalation Pathway

Table of Contents

1. General Information	S2
2. Experimental Section	S3-S28
2.1 Procedure for Synthesis of S ₁ -S ₃	S3
2.2 Procedure for Synthesis of 1a-1n	S3-S7
2.3 Procedure for Synthesis of 3a-3h, 3m	S7-S12
2.4 Procedure for Synthesis of 4a-4v	S12-S23
2.5 Procedure for Synthesis of I-1-I-2	S23-S26
2.6 1 mmol-Scale Experiment of 3a	S27
2.7 Reversibility and KIE Study	S27-S28
3. References	S28
4. ¹ H and ¹³ C NMR Spectra	S28-S71

1. General Information

All solvents and chemicals were from Sigma-Aldrich, Tansoole, Energy Chemical , Acros and Alfa Aesar and used directly without further purification. All reactions were performed under an inert atmosphere of nitrogen in oven-dried glassware, unless otherwise stated. Flash column chromatography was performed over silica gel (300-400 mesh). 1 H NMR spectra were recorded on a Bruker AVIII-500M spectrometers, Chemical shifts (in ppm) were referenced to CHCl₃ (δ =7.26 ppm) as an internal standard. 13 C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.0 ppm). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on an Agilent 1290 Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2.1 Procedure for Synthesis of S₁-S₃

 S_1 and S_2 were synthesized following a literature procedure¹. S_3 was synthesized following a literature procedure².

(a) TFA, 1.5 equiv H₂O₂, rt, 2.5 h; (b) 2.5 equiv TMSCN, 1 equiv Benzoyl chloride, DCM, 5 d; (c) 4 equiv NaOH, $C_2H_5OH/H_2O = 2:1$, reflux, 30 min; then HCl (1 M), pH = 3.8.

2.2 Procedure for Synthesis of 1a-1i

To a 50-mL oven-dried round-bottom flask were added S₃ (2,2'-bipyridine-6-carboxylic acid hydrochloride) (1 equiv, 4.24 mmol) in dichloromethane (25 mL). The solution was added appropriate amines (1.8 equiv, 7.63 mmol) and 2,4,6-collidine (1 equiv, 4.24 mmol), followed by addition of HATU (2 equiv, 8.48 mmol). The mixture was stirred at room temperature overnight. The crude mixture was quenched with aqueous NaHCO₃ and extracted with DCM (3 × 15 mL), dried over Mg₂SO₄, concentrated in vacuo. The crude amide product was purified by silica gel column chromatography to afford the pure product.

N-butyl-[2,2'-bipyridine]-6-carboxamide (1a)

The title compound 1a was prepared from S_3 (1 g, 4.24 mmol) and n-butylamine (0.56 g, 7.63 mmol) according to the general procedure. Purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (0.99 g, 92% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.74 – 8.68 (m, 1H), 8.55 (dd, J = 7.9, 0.5 Hz, 1H), 8.38 (d, J = 7.9 Hz, 1H), 8.24 (dd, J = 7.7, 0.5 Hz, 1H), 8.16 (s, 1H), 8.01 - 7.95 (m, 1H), 7.89 - 7.83 (m, 1H), 7.38 - 7.34 (m, 1H), 3.56 - 3.52 (m, 2H), 1.72 - 1.63 (m, 2H), 1.52 - 1.42 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 164.1, 155.1, 154.6, 149.4, 149.3, 138.3, 136.8, 124.0, 123.5, 122.2, 120.8, 39.2, 31.8, 20.2, 13.8; HRMS (ESI-TOF) calcd for $C_{15}H_{18}N_3O^+$ [M+H] $^+$: 256.1444, found: 256.1444.

N-methyl-[2,2'-bipyridine]-6-carboxamide (1b)

Synthesized from S_3 (1 g, 4.24 mmol) and methanamine hydrochloride (1.03 g, 7.63 mmol) following general procedure. Purification using preparative TLC (5:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a pale-yellow solid (0.79 g, 87% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.73 – 8.68 (m, 1H), 8.55 (dd, J = 7.9, 1.0 Hz, 1H), 8.40 (d, J = 7.9 Hz, 1H), 8.24 (dd, J = 7.6, 1.0 Hz, 1H), 8.14 (s, 1H), 8.00 – 7.94 (m, 1H), 7.87 – 7.82 (m, 1H), 7.37 – 7.32 (m, 1H), 3.10 (d, J = 5.0, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 155.1, 154.6, 149.3, 149.3, 138.3, 136.8, 124.1, 123.5, 122.1, 120.9, 26.2; HRMS (ESI-TOF) calcd for $C_{12}H_{11}N_3NaO^+$ [M+Na]⁺: 236.0794, found: 236.0793.

N-ethyl-[2,2'-bipyridine]-6-carboxamide (1c)

Synthesized from S_3 (1 g, 4.24 mmol) and ethylamine (0.34 g, 7.63 mmol) following general procedure. Purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (0.88 g, 92% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, J = 4.7 Hz, 1H), 8.55 (dd, J = 7.9, 0.9 Hz, 1H), 8.39 (d, J = 7.9 Hz, 1H), 8.24 (dd, J = 7.7, 0.9 Hz, 1H), 8.12 (s, 1H), 7.99 (t, J = 7.8 Hz, 1H), 7.82 – 7.90 (m, 1H), 7.39 – 7.33 (m, 1H), 3.63 – 3.52 (m, 2H), 1.33 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 155.1, 154.6, 149.4, 149.3, 138.3, 136.9, 124.1, 123.5, 122.2, 120.9, 34.3, 15.0; HRMS (ESI-TOF) calcd for $C_{13}H_{14}N_3O^+$ [M+H]⁺: 228.1131, found: 228.1131.

N-propyl-[2,2'-bipyridine]-6-carboxamide (1d)

Synthesized from S_3 (1 g, 4.24 mmol) and propan-1-amine (0.45 g, 7.63 mmol) following general procedure. Purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (0.92 g, 90% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, J = 4.3 Hz, 1H), 8.58 – 8.47 (m, 1H), 8.38 (d, J = 7.9 Hz, 1H), 8.27 – 8.21 (m, 1H), 8.18 (s, 1H), 8.01 – 7.90 (m, 1H), 7.89 – 7.77 (m, 1H), 7.39 – 7.28 (m, 1H), 3.54 – 3.43 (m, 2H), 1.77 – 1.62 (m, 2H), 1.06 – 0.95 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 155.0, 154.5, 149.4, 149.2, 138.2, 136.8, 124.0, 123.4, 122.1, 120.8, 41.1, 23.0, 11.5; HRMS (ESI-TOF) calcd for $C_{14}H_{15}N_3NaO^+$ [M+Na]⁺: 264.1107, found: 264.1110.

N-isopropyl-[2,2'-bipyridine]-6-carboxamide (1e)

Synthesized from S_3 (1 g, 4.24 mmol) and isopropylamine (0.45 g, 7.63 mmol) following general procedure. Purification using preparative TLC (4:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (0.91 g, 89% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.72 – 8.70 (m, 1H), 8.55 (d, J = 7.9 Hz, 1H), 8.38 (d, J = 7.9 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.38 – 7.35 (m, 1H), 4.37 – 4.31 (m, 1H), 1.35 (d, J = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 155.1, 154.6, 149.5, 149.3, 138.3, 136.9, 124.1, 123.5, 122.2, 120.9, 41.4, 22.8; HRMS (ESI-TOF) calcd for $C_{14}H_{15}N_3NaO^+$ [M+Na]⁺: 264.1107, found: 264.1110.

N-(tert-butyl)-[2,2'-bipyridine]-6-carboxamide (1f)

Synthesized from S_3 (1 g, 4.24 mmol) and tert-butylamine (0.56 g, 7.63 mmol) following general procedure. Purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et_3N) gave the

product as a off-white solid (1.06 g, 98% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.70 (d, J = 2.3 Hz, 1H), 8.56 – 8.53 (m, 1H), 8.34 (dd, J = 7.9, 2.3 Hz, 1H), 8.23 – 8.20 (m, 1H), 8.11 (s, 1H), 7.99 – 7.95 (m, 1H), 7.88 – 7.84 (m, 1H), 7.35 (dd, J = 5.5, 1.9 Hz, 1H), 1.55 (d, J = 1.8 Hz, 9H); 13 C NMR (126 MHz, CDCl₃) δ 163.3, 155.2, 154.4, 150.1, 149.3, 138.3, 136.9, 124.0, 123.3, 121.7, 120.7, 50.9, 28.8; HRMS (ESITOF) calcd for $C_{15}H_{17}N_3NaO^+$ [M+Na] $^+$: 278.1264, found: 278.1264.

N-cyclohexyl-[2,2'-bipyridine]-6-carboxamide (1g)

Synthesized from S_3 (1 g, .24 mmol) and cyclohexylamine (0.76 g, 7.63 mmol) following general procedure. Purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (1.17 g, 98% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.73 – 8.69 (m, 1H), 8.55 (dd, J = 7.9, 1.0 Hz, 1H), 8.37 (d, J = 7.9 Hz, 1H), 8.24 (dd, J = 7.7, 1.0 Hz, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.98 (t, J = 7.8 Hz, 1H), 7.84–7.90 (m, 1H), 7.34 – 7.40 (m, 1H), 3.97 – 4.08 (m, 1H), 2.07 (dd, J = 12.2, 3.2 Hz, 2H), 1.85 – 1.77 (m, 2H), 1.72 – 1.64 (m, 1H), 1.53 – 1.43 (m, 2H), 1.43 – 1.34 (m, 2H), 1.32 – 1.23 (m, 1H); 13 C NMR (126 MHz, CDCl₃) δ 163.2, 155.2, 154.6, 149.6, 149.3, 138.3, 136.9, 124.1, 123.4, 122.3, 120.8, 48.1, 33.1, 25.6, 24.9; HRMS (ESI-TOF) calcd for C_{17} H₁₉N₃NaO⁺ [M+Na]⁺: 304.1420, found: 304.1420.

N-phenyl-[2,2'-bipyridine]-6-carboxamide (1h)

Synthesized from S_3 (1 g, 4.24mmol) and aniline (0.71 g, 7.63 mmol) following general procedure. Purification using preparative TLC (2:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (0.99 g, 85% yield); ¹H NMR (500 MHz, CDCl₃) δ 10.07 (s, 1H), 8.76 – 8.70 (m, 1H), 8.61 (dd, J = 7.9, 0.8 Hz, 1H), 8.42 (dd, J = 7.9, 0.9 Hz, 1H), 8.33 (d, J = 7.7 Hz, 1H), 8.00 – 8.07 (m, 1H), 7.93 – 7.87 (m, 1H), 7.84 – 7.80 (m, 2H), 7.42 (t, J = 7.9 Hz, 2H), 7.40 – 7.36 (m, 1H), 7.17 (t, J = 7.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 154.8, 154.7, 149.4, 149.1, 138.7, 137.6, 137.0, 129.1, 124.4, 124.2, 124.0, 122.4, 120.9, 119.8; HRMS (ESI-TOF) calcd for $C_{17}H_{13}N_3NaO^+$ [M+Na]⁺: 298.0951, found: 298.0951.

N,N-dimethyl-[2,2'-bipyridine]-6-carboxamide (1i)

Synthesized from S_3 (1 g, 4.24 mmol) and dimethylamine (0.34 g, 7.63 mmol) following general procedure. Purification using preparative TLC (4:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a creamy white solid (0.84 g, 87% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, J = 1.7 Hz, 1H), 8.49 – 8.43 (m, 1H), 8.43 – 8.38 (m, 1H), 7.95 – 7.88 (m, 1H), 7.85 – 7.78 (m, 1H), 7.70 – 7.64 (m, 1H), 7.29 – 7.35 (m, 1H), 3.21 – 3.16 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 155.5, 154.5, 153.7, 149.1, 137.9, 136.9, 123.9, 123.6, 121.5, 121.2, 39.2, 35.9; HRMS (ESI-TOF) calcd for $C_{13}H_{14}N_3O^+$ [M+H]⁺: 228.1131, found: 228.1131.

N-butyl-6-phenylpicolinamide(1n)

Synthesized from 6-phenylpicolinic acid (0.3 g, 1.51 mmol) and *n*-butylamine (0.2 g, 2.71 mmol) following general procedure. Purification using preparative TLC (20:1 hexane: ethyl acetate) gave the product as a creamy white oil (0.245g, 64% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.21 (t, J = 6.1 Hz, 1H), 8.16 (m, J = 7.6, 1.1 Hz, 1H), 8.03 – 7.97 (m, 2H), 7.90 (t, J = 7.7 Hz, 1H), 7.84 (m, J = 7.9, 1.1 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.43 (m, 1H), 3.52 (m, J = 7.3, 6.1 Hz, 2H), 1.71 – 1.61 (m, 2H), 1.45 (m, J = 14.7, 7.4 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 164.3, 155.8, 149.8, 138.4, 138.1, 129.4, 128.8,126.9, 122.8, 120.5, 39.2, 31.8, 20.2, 13.8; HRMS (ESI-TOF) calcd for $C_{16}H_{18}N_2O^+$ [M+Na] $^+$: 277.1311, found: 277.1314.

2.3 Procedure for Synthesis of 3a-3h

To a dried 10 mL Schlenk tube equipped with a magnetic stir bar were added 2,2'-bipyridin-6-carboxamide (0.2 mmol), iodobenzene (0.6 mmol, 122.4 mg), Pd(OAc)₂ (0.02 mmol, 4.4 mg), Cs₂CO₃ (0.8 mmol, 260.6 mg), mesitylene (2 mL). Then the tube was evacuated and back filled with nitrogen (10 times). The mixtures were stirred at 16 °C under a blanket of nitrogen. After 24 hours, the reaction was cooled to room temperature; the crude reaction mixture was diluted with DCM, washed with H₂O and brine, dried over Mg₂SO₄. The organic phase was concentrated and purified, running through a silica flash column chromatography to give pure product.

N-butyl-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3a)

3a was prepared from **1a** (0.2 mmol, 51.0 mg) and iodobenzene (0.6 mmol, 122.4 mg) according to the general procedure. After 24 hours, and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (53.6 mg, 81% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.73 (dd, J = 4.7, 1.7 Hz, 1H), 8.16 (dd, J = 7.8, 1.0 Hz, 1H), 8.04 (dd, J = 7.7, 1.0 Hz, 1H), 7.91 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.7, 1.7 Hz, 1H), 7.43 (dd, J = 7.7, 4.7 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.22 – 7.16 (m, 2H), 6.80 (s, 1H), 3.20 – 3.13 (m, 2H), 1.44 – 1.37 (m, 2H), 1.33 –1.25 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 163.9, 155.9, 153.9, 148.4, 148.2, 141.0, 139.3, 137.9, 137.0, 128.7, 128.3, 126.8, 126.3, 123.3, 121.1, 38.7, 31.6, 20.0, 13.8; HRMS (ESI-TOF) calcd for C₂₁H₂₂N₃O⁺ [M+H]⁺: 332.1757, found: 332.1758.

N-methyl-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3b)

3b was prepared from **1b** (0.2 mmol, 42.6 mg) and iodobenzene (0.6 mmol, 122.4 mg) according to the general procedure. After 24 hours, and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (32.9 mg, 57% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.75 (dd, J = 4.7, 1.7 Hz, 1H), 8.21 – 8.19 (m, 1H), 8.03 (dd, J = 7.7, 1.0 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.7, 1.7 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.37 – 7.32 (m, 3H), 7.22 – 7.17 (m, 2H), 6.62 (s, 1H),

2.72 (d, J = 5.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 155.7, 153.5, 148.3, 148.2, 141.4, 139.4, 138.0, 137.1, 128.8, 128.3, 126.7, 126.2, 123.4, 121.0, 25.6; HRMS (ESI-TOF) calcd for C₁₈H₁₆N₃O [M+H]⁺: 290.1288, found: 290.1287.

N-ethyl-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3c)

3c was prepared from **1c** (0.2 mmol, 45.4 mg) and iodobenzene (0.6 mmol, 122.4 mg) according to the general procedure. After 24 hours, and purification using preparative TLC (2:1:20 acetone: DCM: hexanes) gave the product as a off-white solid (41.2 mg, 68% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.72 (dd, J = 4.7, 1.7 Hz, 1H), 8.16 (dd, J = 7.8, 1.0 Hz, 1H), 8.04 (dd, J = 7.7, 1.0 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.77 (dd, J = 7.7, 1.7 Hz, 1H), 7.42 (dd, J = 7.7, 4.7 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.20 – 7.18 (m, 2H), 6.80 (s, 1H), 3.25 – 3.17 (m, 2H), 1.07 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 155.9, 153.7, 148.3, 148.2, 141.0, 139.3, 137.9, 137.0, 128.7, 128.2, 126.8, 126.3, 123.3, 121.0, 33.8, 14.7; HRMS (ESI-TOF) calcd for C₁₉H₁₈N₃O⁺ [M+H]⁺: 304.1444, found: 304.1444.

3'-phenyl-N-propyl-[2,2'-bipyridine]-6-carboxamide (3d)

3d was prepared from **1d** (0.2 mmol, 48.2 mg) and iodobenzene (0.6 mmol, 122.4 mg) according to the general procedure. After 24 hours, and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a yellow solid (37.4 mg, 59% yield); 1H NMR (500 MHz, CDCl3) δ 8.72 (dd, J = 4.7, 1.6 Hz, 1H), 8.17 – 8.14 (m, 1H), 8.04 (d, J = 7.6 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.77 (dd, J = 7.7, 1.6 Hz, 1H), 7.42 (dd, J = 7.7, 4.7 Hz, 1H), 7.33 – 7.29 (m, 3H), 7.18 (dd, J = 7.6, 1.7 Hz, 2H), 6.84 (s, 1H), 3.15 – 3.11 (m, 2H), 1.47 – 1.42 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 155.9, 153.8, 148.4, 148.2, 140.9, 139.3, 137.9, 137.0, 128.7, 128.3, 126.8, 126.3, 123.3, 121.1, 40.7, 22.8, 11.4; HRMS (ESI-TOF) calcd for C₂₀H₁₉N₃NaO⁺ [M+Na]⁺: 340.1420, found: 340.1420.

N-isopropyl-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3e)

3e was prepared from **1e** (0.2 mmol, 48.2 mg) and iodobenzene (0.6 mmol, 122.4 mg) according to the general procedure. After 24 hours, and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a pale-yellow (38.2 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.72 (dd, J = 4.7, 1.7 Hz, 1H), 8.10 (dd, J = 7.8, 1.1 Hz, 1H), 8.06 (dd, J = 7.7, 1.1 Hz, 1H), 7.91 (t, J = 7.8 Hz, 1H), 7.79 (dd, J = 7.8, 1.7 Hz, 1H), 7.44 (dd, J = 7.8, 4.7 Hz, 1H), 7.33 – 7.28 (m, 3H), 7.18 – 7.15 (m, 2H), 6.83 (d, J = 8.0 Hz, 1H), 4.09 – 4.00 (m, 1H), 1.07 (d, J = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 156.2, 154.2, 148.5, 148.1, 140.6, 139.2, 137.9, 137.0, 128.8, 128.4, 127.2, 126.5, 123.4, 121.1, 41.0, 22.5; HRMS (ESI-TOF) calcd for C₂₀H₂₀N₃O⁺ [M+H]⁺: 318.1601, found: 318.1601.

N-(tert-butyl)-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3f)

3f was prepared from **1f** (0.2 mmol, 51.0 mg) and iodobenzene (0.2 mmol, 122.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (5:4:1 hexane : DCM : EA) gave the product as a white solid (29.8 mg, 45% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.72 (dd, J = 4.7, 1.7 Hz, 1H), 8.06 (dd, J = 7.7, 1.1 Hz, 1H), 8.02 (dd, J = 7.8, 1.1 Hz, 1H), 7.91 (t, J = 7.8 Hz, 1H), 7.81 (dd, J = 7.8, 1.7 Hz, 1H), 7.45 (dd, J = 7.8, 4.7 Hz, 1H), 7.30 – 7.27 (m, 3H), 7.17 – 7.10 (m, 3H), 1.29 (s, 9H); 13 C NMR (126 MHz, CDCl₃) δ 163.1, 156.2, 154.6, 149.2, 148.1, 140.2, 139.1, 138.0, 137.1, 128.9, 128.5, 127.0, 126.5, 123.4, 120.6, 50.6, 28.5; HRMS (ESI-TOF) calcd for $C_{21}H_{22}N_3O^+$ [M+H] $^+$: 332.1757, found: 332.1757.

N-cyclohexyl-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3g)

3g was prepared from **1g** (0.2 mmol, 56.2 mg) and iodobenzene (0.6 mmol, 122.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane : EA and 5-10% Et₃N) gave the product as a white solid (52.8 mg, 74% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.71 (dd, J = 4.7, 1.6 Hz, 1H), 8.08 (dd, J = 4.1, 1.0 Hz, 1H), 8.06 (d, J = 3.2 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.79 (dd, J = 7.8, 1.6 Hz, 1H), 7.43 (dd, J = 7.7, 4.7 Hz, 1H), 7.32 – 7.27 (m, 3H), 7.18 – 7.14 (m, 2H), 6.93 (d, J = 8.3 Hz, 1H), 3.78 – 3.67 (m, 1H), 1.83 – 1.74 (m, 2H), 1.74 – 1.67 (m, 2H), 1.66 – 1.59 (m, 1H), 1.38 – 1.29 (m, 2H), 1.21 – 1.14 (m, 1H), 1.07 – 1.01(m, 2H); 13 C NMR (126 MHz, CDCl₃) δ 163.0, 156.2, 154.2, 148.6, 148.0, 140.3, 139.1, 137.8, 136.9, 128.7, 128.4, 127.1, 126.5, 123.3, 121.1, 48.0, 32.6, 25.5, 24.8; HRMS (ESI-TOF) calcd for $C_{23}H_{24}N_3O^+$ [M+H] $^+$: 358.1914, found: 358.1914.

N,3'-diphenyl-[2,2'-bipyridine]-6-carboxamide (3h)

3h was prepared from **1h** (0.2 mmol, 55.0 mg) and iodobenzene (0.6 mmol, 22.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (28.8 mg, 41% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.90 (s, 1H), 8.75 (dd, J = 4.7, 1.6 Hz, 1H), 8.20 – 8.13 (m, 2H), 7.98 (dd, J = 9.7, 5.9 Hz, 1H), 7.84 (dd, J = 7.8, 1.7 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.46 (dd, J = 7.8, 4.7 Hz, 1H), 7.34 (dd, J = 10.8, 5.1 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.25 – 7.20 (m, 2H), 7.19 – 7.14 (m, 1H), 7.13 – 7.08 (m, 1H); 13 C NMR (126 MHz, CDCl₃) δ 161.7, 156.2, 153.9, 148.2, 148.1, 140.3, 139.2, 138.3, 137.4, 137.0, 128.7, 128.7, 128.5, 127.3, 127.0, 124.0, 123.5, 121.3, 120.0; HRMS (ESI-TOF) calcd for $C_{23}H_{17}N_3NaO^+$ [M+Na] $^+$: 374.1264, found: 374.1264.

2-(biphenyl-2-yl)pyridine (3m)

To a dried 10 mL Schlenk tube equipped with a magnetic stir bar were added 2-phenylpyridine (0.2 mmol, 31 mg), iodobenzene (0.6 mmol, 122.4 mg), Pd(OAc)₂ (0.02 mmol, 4.5 mg), Cs₂CO₃ (0.8 mmol, 260.6 mg), mesitylene (2 mL). Then the tube was evacuated and back filled with nitrogen (10 times). The mixtures were stirred at 160 °C under a blanket of nitrogen. After 24 hours, the reaction was cooled to room temperature; the crude reaction mixture was diluted with DCM, washed with H₂O and brine, dried

over Mg₂SO₄. The organic phase was concentrated and purification using preparative TLC (15:1 hexane: ethyl acetate) gave the product as a colorless solid (6 mg, 13% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.64-8.62 (m, 1H), 7.71 – 7.69 (m, 1H), 7.48 – 7.43 (m, 3H), 7.39-7.36 (m, 1H), 7.24 – 7.22 (m, 3H), 7.17 – 7.15 (m, 2H), 7.11-7.08 (m, 1H), 6.88 (dd, J = 7.9, 0.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 149.4, 141.3, 140.6, 139.4, 135.2, 130.5, 130.4, 129.7, 128.5, 128.0, 127.6, 126.7, 125.4, 121.3.

2.4 Procedure for Synthesis of 4a-4v

To a dried 10 mL Schlenk tube equipped with a magnetic stir bar were added N-butyl-[2,2'-bipyridine]-6-carboxamide (0.2 mmol, 51.0 mg), iodobenzene (0.6 mmol), $Pd(OAc)_2$ (0.02 mmol, 4.4 mg), Cs_2CO_3 (0.8 mmol, 260.6 mg), mesitylene (2 mL). Then the tube was evacuated and back filled with nitrogen (10 times). The mixtures were stirred at 160 °C under a blanket of nitrogen. After 24-48 hours, the reaction was cooled to room temperature. The crude reaction mixture was diluted with DCM, washed with H_2O and brine, dried over Mg_2SO_4 . The organic phase was concentrated and purified, running through a silica flash column chromatography (ethyl acetate / hexane and 5-10% Et_3N) to give pure product.

N-butyl-3'-(p-tolyl)-[2,2'-bipyridine]-6-carboxamide (4a)

4a was prepared from 1a (0.2 mmol, 51.0 mg) and 1-iodo-4-methylbenzene (0.6 mmol, 130.8 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane:ethyl acetate and 5-10% Et₃N) gave the product as a yellow oil (57.3 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.70 (dd, J = 4.7, 1.5 Hz, 1H), 8.16 – 8.11 (m, 1H), 8.04 (d, J = 7.1 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.76 (dd, J = 7.7, 1.6 Hz, 1H), 7.41 (dd, J = 7.7, 4.7 Hz, 1H), 7.12 (d, J = 7.9 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 5.2 Hz, 1H), 3.21 – 3.14 (m, 2H), 2.35 (s, 3H), 1.44 – 1.37 (m, 2H), 1.33 – 1.24 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.9, 156.0, 153. 8, 148.3, 147.9, 139.2, 137.9, 137.8, 136.9, 136.4, 128.9, 128.5, 126.2, 123.3, 120.9, 38.7, 31.6, 21.0, 20.0, 13.7; HRMS (ESITOF) calcd for C₂₂H₂₄N₃O⁺ [M+H]⁺: 346.1914. found: 346.1914.

N-butyl-3'-(4-(tert-butyl)phenyl)-[2,2'-bipyridine]-6-carboxamide (4b)

$$t_{\text{Bu}}$$

4b was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-(tert-butyl)-4-iodobenzene (0.6 mmol, 156.1 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane:ethyl acetate and 5-10% Et₃N) gave the product as a yellow oil (61.9 mg, 80% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.71 (dd, J = 4.7, 1.3 Hz, 1H), 8.05 (d, J = 3.3 Hz, 1H), 8.03 (d, J = 3.5 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.79 (dd, J = 7.7, 1.3 Hz, 1H), 7.42 (dd, J = 7.7, 4.8 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.3 Hz, 3H), 3.21 – 3.15 (m, 2H), 1.46 – 1.40 (m, 2H), 1.32 – 1.26 (m, 11H), 0.92 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 156.3, 154.4, 150.0, 148.4, 148.0, 139.2, 137.9, 137.6, 137.0, 128.4, 126.4, 125.2, 123.3, 120.9, 38.9, 34.5, 31.5, 31.3, 20.1, 13.8; HRMS (ESI-TOF) calcd for C₂₅H₃₀N₃O⁺ [M+H]⁺: 388.2383, found: 388.2387.

N-butyl-3'-(4-methoxyphenyl)-[2,2'-bipyridine]-6-carboxamide (4c)

4c was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-iodo-4-methoxybenzene (0.6 mmol, 140.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (4:1 hexane : ethyl acetate and 5-10% Et₃N) gave the product as a scream oil (39.7 mg, 55% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.70 (dd, J = 4.7, 1.7 Hz, 1H), 8.09 (dd, J = 7.8, 1.1 Hz, 1H), 8.05 (dd, J = 7.7, 1.1 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.76 (dd, J = 7.8, 1.7 Hz, 1H), 7.41 (dd, J = 7.8, 4.7 Hz, 1H), 7.11 – 7.07 (m, 2H), 7.01 (t, J = 5.5 Hz, 1H), 6.86 – 6.83 (m, 2H), 3.79 (s, 3H), 3.23 – 3.20 (m, 2H), 1.45 – 1.39 (m, 2H), 1.35 – 1.29 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 158.7, 156.2, 153.9, 148.5, 147.9, 139.2, 137.9, 136.7, 133.0, 130.0, 126.4, 123.3, 121.0, 113.7, 55.1, 38.8, 31.4, 20.1, 13.7; HRMS (ESI-TOF) calcd for C₂₂H₂₄N₃O₂⁺ [M+H]⁺: 362.1863, found: 362.1863.

3'-(4-bromophenyl)-N-butyl-[2,2'-bipyridine]-6-carboxamide (4d)

4d was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-bromo-4-iodobenzene (0.6 mmol, 169.7 mg) according to the general procedure. After 24 hours , purification using preparative TLC (10:1 hexane:ethyl acetate and 5-10% Et₃N) gave the product as a scream solid (69.7 mg, 85% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.79 –8.71 (m, 1H), 8.22 (t, J = 7.2 Hz, 1H), 8.15 – 8.03 (m, 1H), 8.00 – 7.88 (m, 1H), 7.80 – 7.68 (m, 1H), 7.52 – 7.40 (m, 3H), 7.08 (dd, J = 13.5, 5.1 Hz, 2H), 6.82 (s, 1H), 3.31 – 3.18 (m, 2H), 1.50 – 1.41 (m, 2H), 1.38 – 1.30 (m, 2H), 1.00 – 1.93 (m, 3H); 13 C NMR (126 MHz, CDCl₃) δ 163.7, 155.6, 153.5, 148.5, 148.3, 140.0, 139.1, 138.1, 135.7, 131.4, 130.3, 126.3, 123.4, 121.3, 121.1, 38.9, 31.7, 20.1, 13.8; HRMS (ESI-TOF) calcd for $C_{21}H_{20}BrN_3NaO^+$ [M+Na] $^+$: 432.0682, found: 432.0682.

N-butyl-3'-(4-iodophenyl)-[2,2'-bipyridine]-6-carboxamide (4e)

4e was prepared from **1a** (0.2 mmol, 51.0 mg) and 1,4-diiodobenzene (0.6 mmol, 197.9 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane:ethyl acetate and 5-10% Et₃N) gave the product as a scream solid (33.8 mg, 37% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.74 (dd, J = 4.7, 1.5 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 8.08 (d, J = 7.7 Hz, 1H), 7.93 (t, J = 7.8 Hz, 1H), 7.73 (dd, J = 7.7, 1.5 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.43 (dd, J = 7.7, 4.7 Hz, 1H), 6.94 (d, J = 8.3 Hz, 2H), 6.82 (s, 1H), 3.29 – 3.21 (m, 2H), 1.49 – 1.42 (m, 2H), 1.39 – 1.31 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 155.6, 153.6, 148.6, 148.4, 140.7, 139.2, 138.2, 137.5, 135.9, 130.6, 126.4, 123.5, 121.4, 92.6, 39.0, 31.9, 20.2, 13.9; HRMS (ESI-TOF) calcd for C₂₁H₂₀IN₃KO⁺ [M+K]⁺: 496.0283, found: 496.0283.

N-butyl-3'-(4-(trifluoromethoxy)phenyl)-[2,2'-bipyridine]-6-carboxamide (4f)

4f was prepared from 1a (0.2 mmol, 51.0 mg) and 1-iodo-4-(trifluoromethoxy)benzene (0.6 mmol, 172.8 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a scream solid (63.9 mg, 77% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.75 (dd, J = 4.7, 1.6 Hz, 1H), 8.14 (dd, J = 7.8, 1.0 Hz, 1H), 8.08 (dd, J = 7.7, 1.0 Hz, 1H), 7.93 (t, J = 7.8 Hz, 1H), 7.77 (dd, J = 7.8, 1.7 Hz, 1H), 7.45 (dd, J = 7.8, 4.7 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.17 (d, J = 8.6 Hz, 2H), 6.94 (t, J = 5.5 Hz, 1H), 3.22 – 3.18 (m, 2H), 1.45 – 1.38 (m, 2H), 1.33 – 1.28 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.7, 155.7, 154.0, 148.6, 148.5, 148.27 (q, J = 1.9 Hz), 139.4, 139.2, 138.121, 135.6, 130.1, 126.5, 123.4, 121.3, 120.6, 120.4 (q, J = 257.7 Hz), 38.8, 31.6, 20.1, 13.6; HRMS (ESI-TOF) calcd for $C_{22}H_{21}F_3N_3O_2^+$ [M+H]⁺: 416.1580 found: 416.1580.

ethyl 4-(6'-(butylcarbamoyl)-[2,2'-bipyridin]-3-yl)benzoate (4g)

4g was prepared from **1a** (0.2 mmol, 51.0 mg) and ethyl 4-iodobenzoate (0.6 mmol, 165.6 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (70.1 mg, 87% yield); 1 H NMR (500 MHz, CDCl₃) 8.76 (dd, J = 4.7, 1.6 Hz, 1H), 8.23 (dd, J = 7.8, 1.0 Hz, 1H), 8.06 (dd, J = 7.7, 1.0 Hz, 1H), 8.04 – 7.99 (m, 2H), 7.94 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.7, 1.6 Hz, 1H), 7.46 (dd, J = 7.7, 4.7 Hz, 1H), 7.29 – 7.26 (m, 2H), 6.71 (t, J = 5.5 Hz, 1H), 4.42 – 4.36 (m, 2H), 3.13 – 3.09 (m, 2H), 1.40 (t, J = 7.1 Hz, 3H), 1.37 – 1.32 (m, 2H), 1.30 – 1.24 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) 8 166.0, 163.7, 155.5, 153.8, 148.7, 148.3, 145.8, 139.1, 138.2, 136.1, 129.6, 129.0, 128.7, 126.3, 123.4, 121.4, 61.1, 38.7, 31.6, 20.0, 14.3, 13.7; HRMS (ESI-TOF) calcd for $C_{24}H_{26}N_3O_3^+$ [M+H] $^+$: 404.1969, found: 404.1969.

N-butyl-3'-(4-formylphenyl)-[2,2'-bipyridine]-6-carboxamide (4h)

4h was prepared from **1a** (0.2 mmol, 51.0 mg) and 4-iodobenzaldehyde (0.6 mmol, 139.2 mg)according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a yellow oil (65.3 mg, 91% yield); ¹H NMR (500 MHz, CDCl₃) δ 10.02 (s, 1H), 8.78 (dd, J = 4.7, 1.5 Hz, 1H), 8.23 (dd, J = 7.8, 0.9 Hz, 1H), 8.08 (d, J = 7.7 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H), 7.86 (d, J = 8.1 Hz, 2H), 7.80 (dd, J = 7.7, 1.5 Hz, 1H), 7.49 (dd, J = 7.7, 4.7 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 6.75 (t, J = 5.5 Hz, 1H), 3.12 – 3.07 (m, 2H), 1.35 – 1.30 (m, 2H), 1.27 – 1.22 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.2, 163.6, 155.3, 153.7, 148.9, 148.3, 147.4, 139.0, 138.2, 135.6, 134.7, 129.6, 129.4, 126.4, 123.4, 121.4, 38.7, 31.6, 19.9, 13.6; HRMS (ESITOF) calcd for $C_{22}H_{21}N_3NaO_2^+$ [M+Na] *: 382.1526, found: 382.1526.

3'-(4-acetylphenyl)-N-butyl-[2,2'-bipyridine]-6-carboxamide (4i)

4i was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-(4-iodophenyl)ethanone (0.6 mmol, 147.6 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (56.0 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.77 (dd, J = 4.7, 1.7 Hz, 1H), 8.21 (dd, J = 7.8, 1.1 Hz, 1H), 8.07 (dd, J = 7.7, 1.1 Hz, 1H), 7.96 – 7.92 (m, 3H), 7.78 (dd, J = 7.7, 1.7 Hz, 1H), 7.47 (dd, J = 7.8, 4.7 Hz, 1H), 7.32 – 7.29 (m, 2H), 6.77 (t, J = 5.7 Hz, 1H), 3.13 – 3.06 (m, 2H), 2.60 (s, 3H), 1.36 – 1.30 (m, 2H), 1.28 – 1.22 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.1, 163.7, 155.5, 153.8, 148.8, 148.4, 146.0, 139.1, 138.2, 135.9, 135.4, 129.0, 128.4, 126.4, 123.4, 121.4, 38.8, 31.7, 26.5, 20.0, 13.7; HRMS (ESITOF) calcd for $C_{23}H_{24}N_3O_2^+$ [M+H]⁺: 374.1863, found: 374.1863.

N-butyl-3'-(4-cyanophenyl)-[2,2'-bipyridine]-6-carboxamide (4j)

4j was prepared from **1a** (0.2 mmol, 51.0 mg) and 4-iodobenzonitrile (0.6 mmol, 137.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (58.4 mg , 82% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.79 (dd, J = 4.7, 1.6 Hz, 1H), 8.22 (dd, J = 7.8, 0.9 Hz, 1H), 8.11 (dd, J = 7.7, 1.0 Hz, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.76 (dd, J = 7.8, 1.6 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.49 (dd, J = 7.8, 4.7 Hz, 1H), 7.33 – 7.30 (m, 2H), 6.76 (s, 1H), 3.24 – 3.19 (m, 2H), 1.45 – 1.38 (m, 2H), 1.34 – 1.30 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 163.6, 155.2, 153.8, 149.2, 148.4, 146.0, 139.0, 138.4, 135.1, 132.1, 130.0, 126.5, 123.5, 121.7, 118.3, 110.9, 38.9, 31.8, 20.1, 13.8; HRMS (ESI-TOF) calcd for $C_{22}H_{20}N_4NaO^+$ [M+Na] $^+$: 379.1529, found: 379.1529.

N-butyl-3'-(4-nitrophenyl)-[2,2'-bipyridine]-6-carboxamide (4k)

4k was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-iodo-4-nitrobenzene (0.6 mmol, 149.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (4:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (60.9 mg, 81% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.81 (dd, J = 4.7, 1.6 Hz, 1H), 8.25 (dd, J = 7.8, 1.0 Hz, 1H), 8.23 – 8.19 (m, 2H), 8.10 (dd, J = 7.7, 1.0 Hz, 1H), 7.97 (t, J = 7.8 Hz, 1H), 7.79 (dd, J = 7.8, 1.6 Hz, 1H), 7.50 (dd, J = 7.8, 4.7 Hz, 1H), 7.40 – 7.35 (m, 2H), 6.75 (s, 1H), 3.15 – 3.10 (m, 2H), 1.35 – 1.29 (m, 2H), 1.27 – 1.21 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 155.2, 153.9, 149.3, 148.4, 148.0, 146.7, 139.0, 138.4, 134.7, 129.6, 126.5, 123.6, 123.5, 121.7, 38.8, 31.7, 20.0, 13.6; HRMS(ESI-TOF) calcd for $C_{21}H_{20}N_4NaO_3^+$ [M+Na⁺]: 399.1428, found: 399.1428.

N-butyl-3'-(3-methoxyphenyl)-[2,2'-bipyridine]-6-carboxamide (41)

41 was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-iodo-3-methoxybenzene (0.6 mmol, 140.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (60.7 mg, 84% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.76 – 8.66 (m, 1H), 8.14 (dd, J = 7.8, 1.2 Hz, 1H), 8.08 – 7.99 (m, 1H), 7.94 – 7.85 (m, 1H), 7.81 – 7.72 (m, 1H), 7.45 – 7.36 (m, 1H), 7.25 – 7.16 (m, 1H), 6.93 (s, 1H), 6.86 – 6.78 (m, 1H), 6.73 (d, J = 11.5 Hz, 2H), 3.71 – 3.65 (m, 3H), 3.22 – 3.14 (m, 2H), 1.46 – 1.37 (m, 2H), 1.32 – 1.24 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 159.5, 155.9, 153.9, 148.4, 148.3, 142.4, 139.2, 137.9, 136.9, 129.3, 126.2, 123.3, 121.2, 121.1, 114.3, 112.3, 55.1, 38.9, 31.6, 20.1, 13.8; HRMS (ESI-TOF) calcd for $C_{22}H_{24}N_3O_2^+$ [M+H]⁺: 362.1863, found: 362.1863.

N-butyl-3'-(3-fluorophenyl)-[2,2'-bipyridine]-6-carboxamide (4m)

4m was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-fluoro-3-iodobenzene (0.6 mmol, 133.2 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (54.4 mg, 78% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (dd, J = 4.7, 1.6 Hz, 1H), 8.20 (dd, J = 7.8, 0.9 Hz, 1H), 8.09 (dd, J = 7.7, 0.9 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.7, 1.6 Hz, 1H), 7.46 (dd, J = 7.7, 4.7 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.04 – 6.95 (m, 2H), 6.94 – 6.89 (m, 2H), 3.25 – 3.21 (m, 2H), 1.47 – 1.42 (m, 2H), 1.35 – 1.30 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.7, 162.5 (d, J = 246.9 Hz), 155.6, 153.8, 148.5, 148.3, 143.2 (d, J = 7.8 Hz), 139.0, 138.0, 135.7 (d, J = 1.9 Hz), 129.7 (d, J = 8.3 Hz), 126.3, 124.5 (d, J = 2.9 Hz), 123.3, 121.2, 115.6 (d, J = 21.9 Hz), 113.7 (d, J = 20.9 Hz), 38.8, 31.5, 20.0, 13.7; HRMS (ESI-TOF) calcd for $C_{21}H_{21}FN_3O^+$ [M+H]⁺: 350.1663, found: 350.1664..

N-butyl-3'-(3-chlorophenyl)-[2,2'-bipyridine]-6-carboxamide(4n)

4n was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-chloro-3-iodobenzene (0.6 mmol, 143.1 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a scream solid (64.2 mg, 88% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.75 (dd, J = 4.7, 1.6 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.08 (d, J = 7.7 Hz, 1H), 7.94 (t, J = 7.8 Hz, 1H), 7.76 (dd, J = 7.7, 1.6 Hz, 1H), 7.44 (dd, J = 7.7, 4.7 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.20 (t, J = 7.8 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.86 (s, 1H), 3.26 – 3.18 (m, 2H), 1.48 – 1.41 (m, 2H), 1.36 – 1.28 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 155.5, 153.8, 148.7, 148.4, 142.9, 139.2, 138.1, 135.6, 134.3, 129.4, 128.6, 127.1, 127.0, 126.3, 123.4, 121.3, 39.0, 31.7, 20.1, 13. 8; HRMS (ESI-TOF) calcd for C₂₁H₂₁ClN₃O⁺ [M+H]⁺: 366.1368, found: 366.1368.

3'-(3-bromophenyl)-N-butyl-[2,2'-bipyridine]-6-carboxamide (40)

40 was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-bromo-3-iodobenzene (0.6 mmol, 169.2 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a scream solid (54.8 mg, 67% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.74 (dd, J = 4.7, 1.4 Hz, 1H), 8.21 (d, J = 7.7 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.94 (t, J = 7.8 Hz, 1H), 7.75 (dd, J = 7.7, 1.4 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.13 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 6.85 (s, 1H), 3.26 – 3.17 (m, 2H), 1.49 – 1.41 (m, 2H), 1.36 – 1.28 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 163.8, 155.5, 153.7, 148.7, 148.3, 143.2, 139.2, 138.1, 135.4, 131.4, 129.9, 129.7, 127.6, 126.3, 123.4, 122.3, 121.3, 39.0, 31.8, 20.1, 13.8; HRMS (ESI-TOF) calcd for $C_{21}H_{20}BrN_3NaO^+$ [M+Na $^+$]: 432.0682, found: 432.0682.

N-butyl-3'-(3-(trifluoromethyl)phenyl)-[2,2'-bipyridine]-6-carboxamide (4p)

4p was prepared from **1a** (0.2mmol, 51.0 mg) and 1-iodo-3-(trifluoromethyl)benzene (o.6 mmol, 163.2 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a yellow oil (33.5 mg, 42% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.77 (dd, J = 4.7, 1.3 Hz, 1H), 8.20 (d, J = 7.7 Hz, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H), 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.48 (dd, J = 7.7, 4.7 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 6.77 (s, 1H), 3.18 – 3.12 (m, 2H), 1.39 – 1.33 (m, 2H), 1.27 – 1.24 (m, 2H); 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.7, 155.5, 153.9, 148.8, 148.3, 141.7, 139.2, 138.2, 135.4, 132.3, 130.9 (q, J = 32.5 Hz), 128.6, 126.5, 125.4 (q, J = 3.7 Hz), 123.8 (q, J = 272.3 Hz), 123.6 (q, J = 3.6 Hz), 123.5, 121.4, 38.8, 31.6, 20.0, 13.6; HRMS (ESI-TOF) calcd for C₂₂H₂₁F₃N₃O⁺ [M+H]⁺: 400.1631, found: 400.1631.

N-butyl-3'-(3-nitrophenyl)-[2,2'-bipyridine]-6-carboxamide(4q)

4q was prepared from 1a (0.2 mmol, 51.0 mg) and 1-iodo-3-nitrobenzene (0.6 mmol, 149.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate) gave the product as a white solid (48.9 mg, 65% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.80 (dd, J = 4.7, 1.6 Hz, 1H), 8.22 (dd, J = 7.8, 1.0 Hz, 1H), 8.20 – 8.15 (m, 2H), 8.09 (dd, J = 7.7, 1.0 Hz, 1H), 7.97 (t, J = 7.8 Hz, 1H), 7.82 (dd, J = 7.7, 1.6 Hz, 1H), 7.51 (dd, J = 7.8, 4.7 Hz, 1H), 7.48 –7.40 (m, 2H), 6.81 (s, 1H), 3.19 – 3.11 (m, 2H), 1.35 – 1.28 (m, 2H), 1.27 – 1.20 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 163.4, 155.2, 153.9, 149.1, 148.2, 148.1, 142.6, 139.0, 138.3, 134.9, 134.4, 129.1, 126.6, 123.5, 123.3, 121.8, 121.5, 38.8, 31.5, 19.9, 13.6.; HRMS (ESI-TOF) calcd for $C_{21}H_{20}N_4NaO_3^+$ [M+Na] $^{+}$: 399.1428, found: 399.1428.

N-butyl-3'-(2-methoxyphenyl)-[2,2'-bipyridine]-6-carboxamide (4r)

4r was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-iodo-2-methoxybenzene (0.6 mmol, 140.4 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a scream oil (32.5 mg, 45% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.71 (dd, J = 4.7, 1.5 Hz, 1H), 8.16 (d, J = 7.8 Hz, 1H), 8.04 (dd, J = 7.7, 1.0 Hz, 1H), 7.91 (t, J = 7.8 Hz, 1H), 7.75 (dd, J = 7.7, 1.6 Hz, 1H), 7.43 (dd, J = 7.7, 4.8 Hz, 1H), 7.35 (dd, J = 7.4, 1.7 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.10 – 7.05 (m, 1H), 6.83 (s, 1H), 6.72 (d, J = 8.1 Hz, 1H), 3.32 – 3.00 (m, 5H), 1.45 – 1.37 (m, 2H), 1.34 – 1.26 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 156.9, 155.4, 154.8, 148.0, 139.8, 137.7, 133.3, 130.2, 130.1, 128.9, 125.4, 123.4, 121.0, 120.8, 110.7, 100.0, 54.8, 38.8, 31.7, 20.1, 13.8; HRMS (ESI-TOF) calcd for $C_{22}H_{24}N_3O_2^+$ [M+H]⁺: 362.1863; found: 362.1863.

N-butyl-3'-(2-fluorophenyl)-[2,2'-bipyridine]-6-carboxamide(4s)

4s was prepared from **1a** (0.2 mmol, 51.0 mg) and 1-fluoro-2-iodobenzene (0.6 mmol, 133.2 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10%Et₃N) gave the product as a white solid (28.6 mg, 41% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (dd, J = 4.7, 1.6 Hz, 1H), 8.24 (dd, J = 7.9, 0.9 Hz, 1H), 8.07 (dd, J = 7.7, 0.9 Hz, 1H), 7.94 (t, J = 7.8 Hz, 1H), 7.77 (dd, J = 7.7, 1.6 Hz, 1H), 7.45 (dd, J = 7.7, 4.7 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.23 – 7.19 (m, 1H), 6.97 (t, J = 9.0 Hz, 1H), 6.82 (s, 1H), 3.20 – 3.13 (m, 2H), 1.44 – 1.39 (m, 2H), 1.33 – 1.29 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 159.0 (d, J = 246.8 Hz), 156.1, 154.6, 148.8, 148.2, 139.8, 138.1, 130.6 (d, J = 2.9 Hz), 129.2 (d, J = 8.0 Hz), 128.9 (d, J = 15.9 Hz), 125.9, 124.2 (d, J = 3.7 Hz), 123.3, 121.4, 115.6 (d, J = 22.0 Hz); HRMS (ESI-TOF) calcd for $C_{21}H_{20}FN_{3}NaO$ [M+Na]⁺: 372.1483. found: 372.1482.

dimethyl 5-(6'-(butylcarbamoyl)-[2,2'-bipyridin]-3-yl)isophthalate (4t)

4t was prepared from **1a** (0.2 mmol, 51.0 mg) and diethyl 5-iodoisophthalate (0.6 mmol, 192.0) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (42.9 mg, 48% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.82 – 8.76 (m, 1H), 8.63 (d, J = 5.4 Hz, 1H), 8.26 (dd, J = 7.8, 4.3 Hz, 1H), 8.11 –8.04 (m, 3H), 8.00 – 7.93 (m, 1H), 7.83 – 7.77 (m, 1H), 7.52 – 7.46 (m, 1H), 6.72 (d, J = 5.3 Hz, 1H), 3.92 (d, J = 6.1 Hz, 6H), 3.14 – 3.07 (m, 2H), 1.31 – 1.26 (m, 2H), 1.25 – 1.18 (m, 2H), 0.90 (t, 3H); 13 C NMR (126 MHz, CDCl₃) δ 165.6, 163.6, 155.3, 153.9, 149.0, 148.2, 142.0, 139.2, 138.3, 134.9, 133.8, 130.8, 129.0, 126.6, 123.5, 121.5, 52.5, 38.8, 31.6, 20.0, 13.6; HRMS (ESI-TOF) calcd for $C_{25}H_{26}N_3O_5^+$ [M+H] $^+$: 448.1867; found: 448.1867.

N-butyl-6"-chloro-[2,2":3",3"-terpyridine]-6-carboxamide (4u)

4u was prepared from **1a** (0.2 mmol, 51.0 mg) and 2-chloro-5-iodopyridine (0.6 mmol, 143.7 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a white solid (54.2 mg , 74% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.80 (dd, J = 4.7, 1.5 Hz, 1H), 8.35 (d, J = 2.4 Hz, 1H), 8.23 (d, J = 7.8 Hz, 1H), 8.12 (d, J = 7.7 Hz, 1H), 7.97 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.8, 1.6 Hz, 1H), 7.50 (dd, J = 7.7, 4.7 Hz, 1H), 7.36 (dd, J = 8.2, 2.5 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 6.85 (t, J = 5.4 Hz, 1H), 3.31 – 3.24(m, 2H), 1.50 – 1.43 (m, 2H), 1.37 – 1.30 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 155.2, 154.0, 150.2, 149.3, 148.9, 148.4, 139.1, 138.8, 138.4, 135.6, 132.0, 126.6, 123.6, 123.6, 121.7. 38.9, 31.6, 20.1, 13.7; HRMS (ESI-TOF) calcd for C₂₀H₁₉ClN₄NaO⁺ [M+Na⁺]: 389.1140, found: 389.1140.

N-butyl-3'-(thiophen-2-yl)-[2,2'-bipyridine]-6-carboxamide (4v)

4v was prepared from **1a** (0.2 mmol, 51.0 mg) and 2-iodothiophene (0.6 mmol, 126.0 mg) according to the general procedure. After 24 hours, purification using preparative TLC (10:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a yellow oil (47.8 mg ,71% yield); 1 H NMR (500 MHz, CDCl₃) δ 8.70 (dd, J = 4.7, 1.6 Hz, 1H), 8.12 (dd, J = 7.7, 0.9 Hz, 1H), 8.00 (dd, J = 7.8, 0.9 Hz, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.88 (dd, J = 7.8, 1.6 Hz, 1H), 7.41 (dd, J = 7.8, 4.7 Hz, 1H), 7.36 (s, 1H), 7.29 (d, J = 1.0 Hz, 1H), 6.95 (dd, J = 5.1, 3.6 Hz, 1H), 6.78 (dd, J = 3.5, 1.0 Hz, 1H), 3.33 – 3.27 (m, 2H), 1.52 – 1.46 (m, 2H), 1.36 – 1.31 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 164.0, 155.9, 154.7, 148.7, 148.6, 141.6, 139.5, 138.0, 129.9, 127.2, 126.7, 126.4, 126.0, 123.2, 121.4, 38.9, 31.6, 20.1, 13.8; HRMS (ESI-TOF) calcd for C₁₉H₂₀N₃OS⁺ [M+H]⁺: 338.1322, found: 338.1322.

2.5 Procedure for Synthesis of I-1 and I-2

Synthesis of Complex I-1

To a vial equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (0.1 mmol ,22.4 mg), 1a (0.1 mmol, 25.5 mg) and MeCN (1 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was filtered, and the filter cake was collected and dried *in vacuo* to afford of complex **I-1** (35.6 mg, 85%) as a gold powder; 1H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J = 5.4, 1.0 Hz, 1H), 8.22 (d, J = 7.9 Hz, 1H), 8.12 (dd, J = 8.1, 1.8 Hz, 1H), 8.11 – 8.08 (m, 1H), 8.08 – 8.04 (m, 1H), 7.67 (dd, J = 7.1, 1.7 Hz, 1H), 7.49 – 7.45 (m, 1H), 3.16 – 3.10 (m, 2H), 2.16 (s, 3H), 1.64 – 1.57 (m, 2H), 1.45 – 1.37 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 178.1, 170.1, 155.2, 154.6, 152.9, 151.1, 140.6, 140.1, 127.2, 125.0, 123.0, 122.4, 45.7, 32.4, 23.6, 20.7, 14.1; HRMS (ESI-TOF) calcd for $C_{17}H_{19}N_3O_3NaPd^+$ [M+Na] $^+$: 442.0353. found: 442.0357.

Synthesis of Complex I-2

To a vial equipped with a magnetic stir bar was charged with Pd(OAc)₂ (22.5 mg, 0.1 mmol), **1b** (22.7 mg, 0.1 mmol) and MeCN (1 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was filtered, and the filter cake was collected and dried *in vacuo* to afford of complex **I-2** (36.7 mg, 94%) as a gold powder; ¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, J = 5.2 Hz, 1H), 8.13 – 8.08 (m, 3H), 7.98 (dd, J = 8.0, 0.8 Hz, 1H), 7.76 (dd, J = 7.8, 0.9 Hz, 1H), 7.56 – 7.53 (m, 1H), 3.21 (q, J = 7.1 Hz, 2H), 2.18 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 178.3, 170.0, 155.6, 154.7, 153.0, 151.4, 140.6, 140.1, 127.4, 125.1, 122.5, 121.8, 40.5, 23.6, 15.1; HRMS (ESI-TOF) calcd for C₁₅H₁₅N₃O₃NaPd⁺ [M+Na]⁺: 414.0040 found: 414.0042.

Crystal structure and data of N-butyl-3'-phenyl-[2,2'-bipyridine]-6-carboxamide (3a) (CCDC 1840936, Displacement ellipsoids are drawn at the 50% probability level.)

Identification code exp 5180 Empirical formula $C_{21}H_{21}N_3O$ Formula weight 331.41 Temperature/K 293(2) Crystal system monoclinic Space group $P2_1/n$ a/Å 12.3246(5) b/Å 10.4302(5) c/Å 14.0891(5) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 98.191(4) γ/° 90

Volume/ $Å^3$ 1792.65(13)

 $\begin{array}{cccc} Z & & 4 \\ & & \\ \rho_{calc} g/cm^3 & & 1.228 \\ \mu/mm^{-1} & & 0.608 \\ F(000) & & 704.0 \end{array}$

Crystal size/mm³ $0.21 \times 0.2 \times 0.19$ Radiation CuK α ($\lambda = 1.54178$) 2Θ range for data collection/° 8.924 to 143.382

Index ranges $-15 \le h \le 14, -12 \le k \le 12, -10 \le l \le 17$

Reflections collected 7029

Independent reflections 3420 [$R_{int} = 0.0209$, $R_{sigma} = 0.0286$]

 $\begin{array}{ll} Data/restraints/parameters & 3420/0/228 \\ Goodness-of-fit on F^2 & 1.058 \\ \end{array}$

Final R indexes [I>= 2σ (I)] $R_1 = 0.0596$, $wR_2 = 0.1711$ Final R indexes [all data] $R_1 = 0.0764$, $wR_2 = 0.1892$

Largest diff. peak/hole / e Å⁻³ 0.54/-0.25

Crystal structure and data of I-2 (CCDC 1840935, Displacement ellipsoids are drawn at the 50% probability level.)

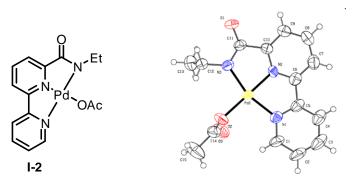


Table S1. Crystal data and structure refinement for I-2

 $\begin{array}{lll} \text{Identification code} & \text{exp_5179_pl_sq} \\ \text{Empirical formula} & \text{C}_{15}\text{H}_{15}\text{N}_{3}\text{O}_{3}\text{Pd} \\ \text{Formula weight} & 391.70 \\ \end{array}$

Temperature/K 293.15 Crystal system triclinic Space group P-1 a/Å 8.8222(6) b/Å 10.4866(7) c/Å 10.6004(6) $\alpha/^{\circ}$ 100.088(5) β/° 108.748(6) $\gamma/^{\circ}$ 97.604(6)

 $\begin{array}{ccc} Volume/\text{Å}^3 & 895.39(11) \\ Z & 2 \\ \rho_{calc}g/cm^3 & 1.453 \\ \mu/mm^{-1} & 8.485 \\ F(000) & 392.0 \end{array}$

Crystal size/mm³ $0.22 \times 0.21 \times 0.2$ Radiation $CuK\alpha (\lambda = 1.54178)$

2Θ range for data collection/° 8.746 to 143.332

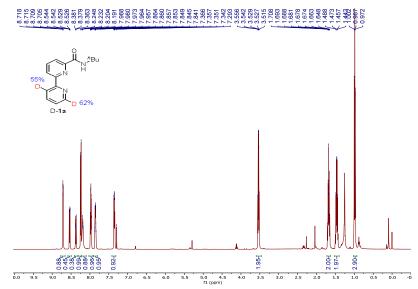
Index ranges $-10 \le h \le 6, -12 \le k \le 12, -10 \le l \le 13$

Reflections collected 5820

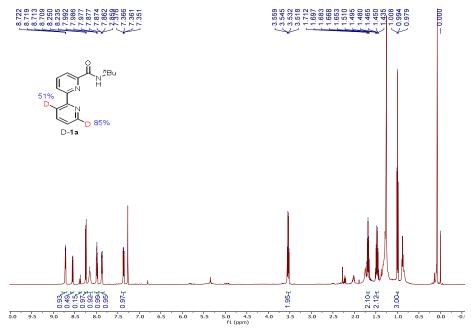
Independent reflections 3393 [$R_{int} = 0.0585$, $R_{sigma} = 0.0679$]

Data/restraints/parameters 3393/0/201 Goodness-of-fit on F² 1.083

Final R indexes [I>= 2σ (I)] R₁ = 0.0571, wR₂ = 0.1550 Final R indexes [all data] R₁ = 0.0629, wR₂ = 0.1629

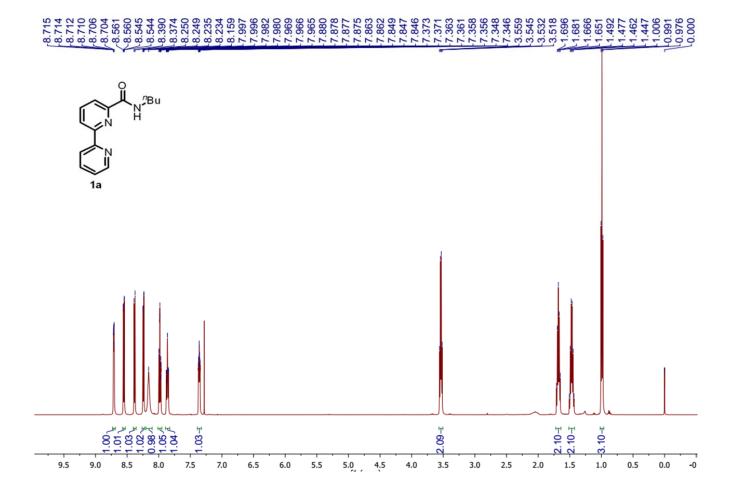

Largest diff. peak/hole / e Å⁻³ 1.33/-1.77

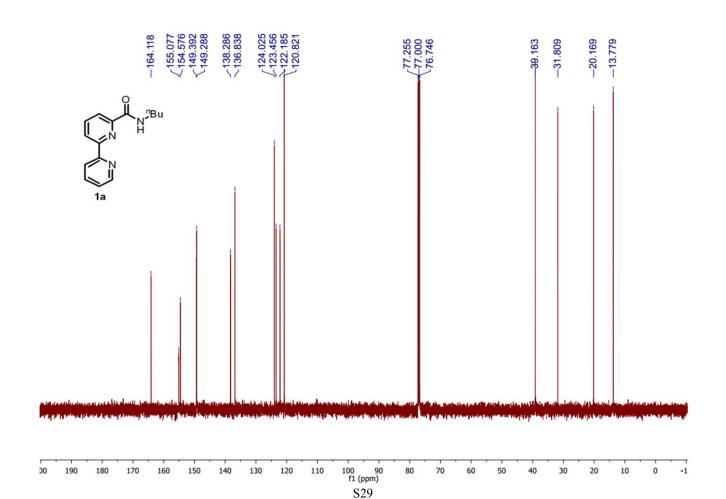
2.6 1 mmol-Scale Experiment of 3a

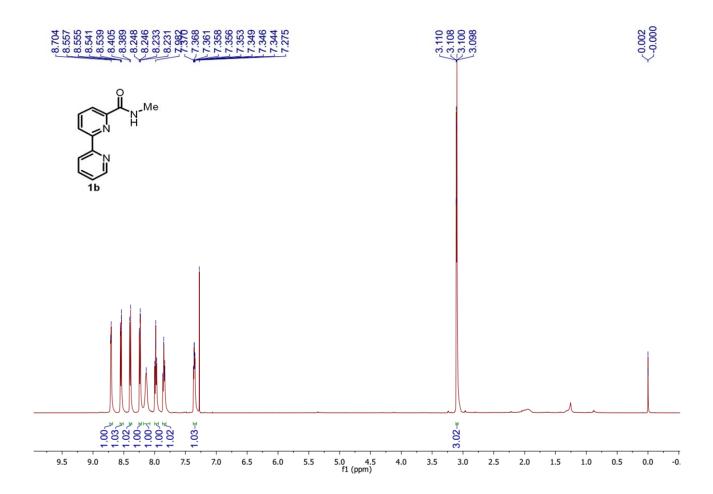

To a dried 10 mL Schlenk tube equipped with a magnetic stir bar were added 2,2'-bipyridin-6-carboxamide (1 mmol, 255 mg), iodobenzene (3 mmol, 612 mg), Pd(OAc)₂ (0.1 mmol, 22.5 mg), Cs₂CO₃ (4 mmol, 1.3 g), mesitylene (3 mL). Then the tube was evacuated and back filled with nitrogen (10 times). The mixtures were stirred at 160 °C under a blanket of nitrogen. After 24 hours, the reaction was cooled to room temperature; the crude reaction mixture was diluted with DCM, washed with H₂O and brine, dried over Mg₂SO₄. The organic phase was concentrated and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (245 mg, 74% yield).

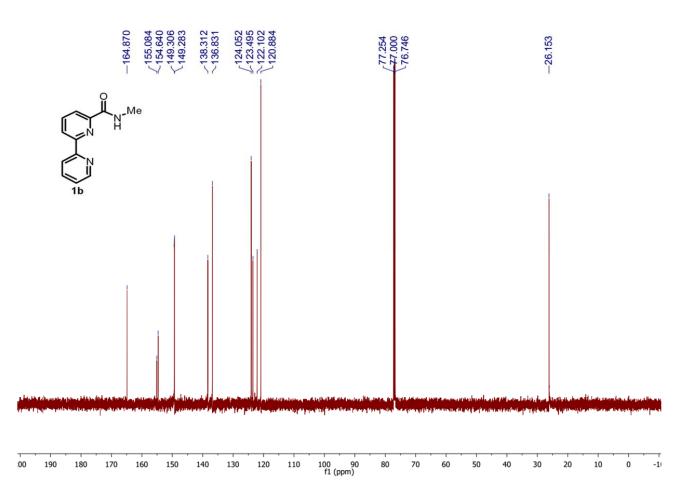
2.7 Reversibility and KIE Study

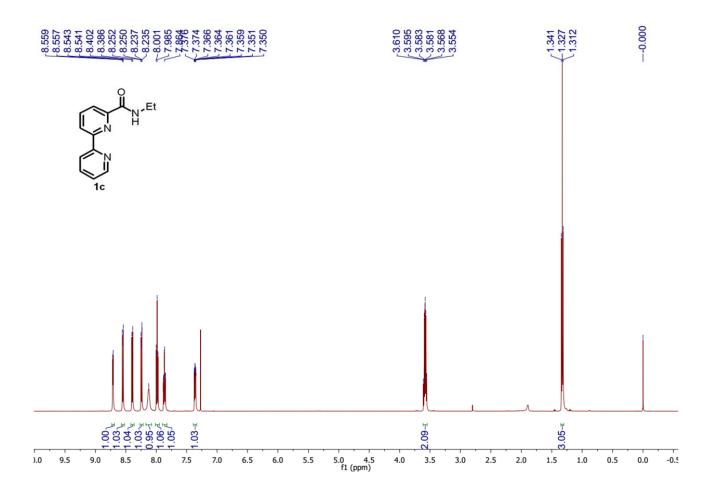
In a clean oven dried tube equipped with a magnetic stir bar were added 2,2'-bipyridin-6-carboxamide (0.2 mmol, 51 mg), Pd(OAc)₂ (0.02 mmol, 4.5 mg), 0.25 ml D₄-AcOH, mesitylene (1 mL). Then the tube was evacuated and back filled with nitrogen (10 times). The mixtures were stirred at 160 °C under a blanket of nitrogen. After 72 hours, the reaction was cooled to room temperature; the crude reaction mixture was diluted with DCM, washed with H₂O and brine, dried over Mg₂SO₄. The organic phase was concentrated and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the product as a colorless solid (47 mg, 92% yield).

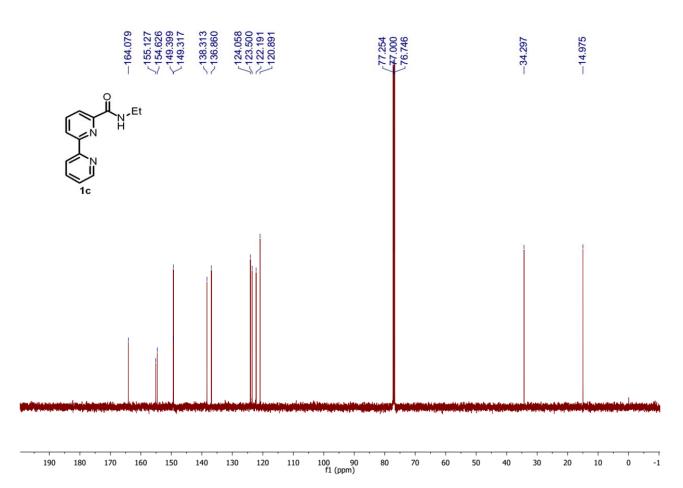

In a clean oven dried tube equipped with a magnetic stir bar were added the mixture of **1a** and D-**1a** (0.2 mmol), iodobenzene (0.6 mmol, 122.4 mg), Pd(OAc)₂ (0.02 mmol, 4.5 mg), Cs₂CO₃ (0.8 mmol, 261 mg), mesitylene (2 mL). Then the tube was evacuated and back filled with nitrogen (10 times). The mixtures were stirred at 160 °C under a blanket of nitrogen. After 12 hours, the reaction was cooled to room temperature; the crude reaction mixture was diluted with DCM, washed with H₂O and brine, dried over Mg₂SO₄. The organic phase was concentrated and dried. After 10 hours, and purification using preparative TLC (8:1 hexane: ethyl acetate and 5-10% Et₃N) gave the starting material (7.1 mg, 14% yield) the product **3a** as a colorless solid (45.7 mg, 69% yield).

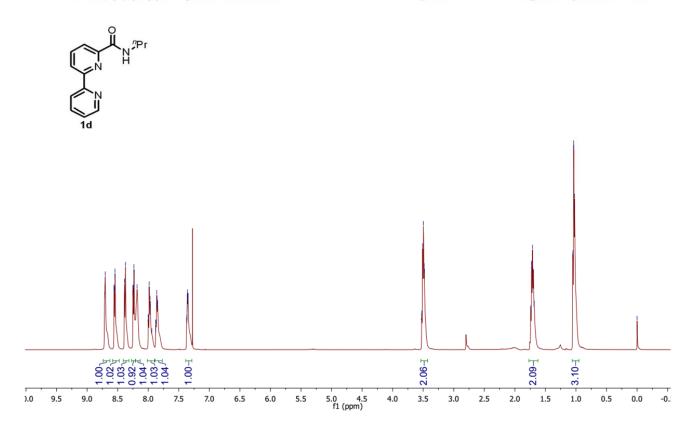


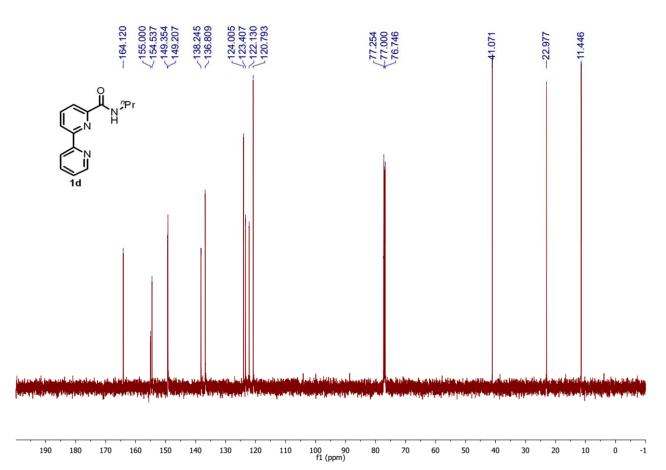

3. References

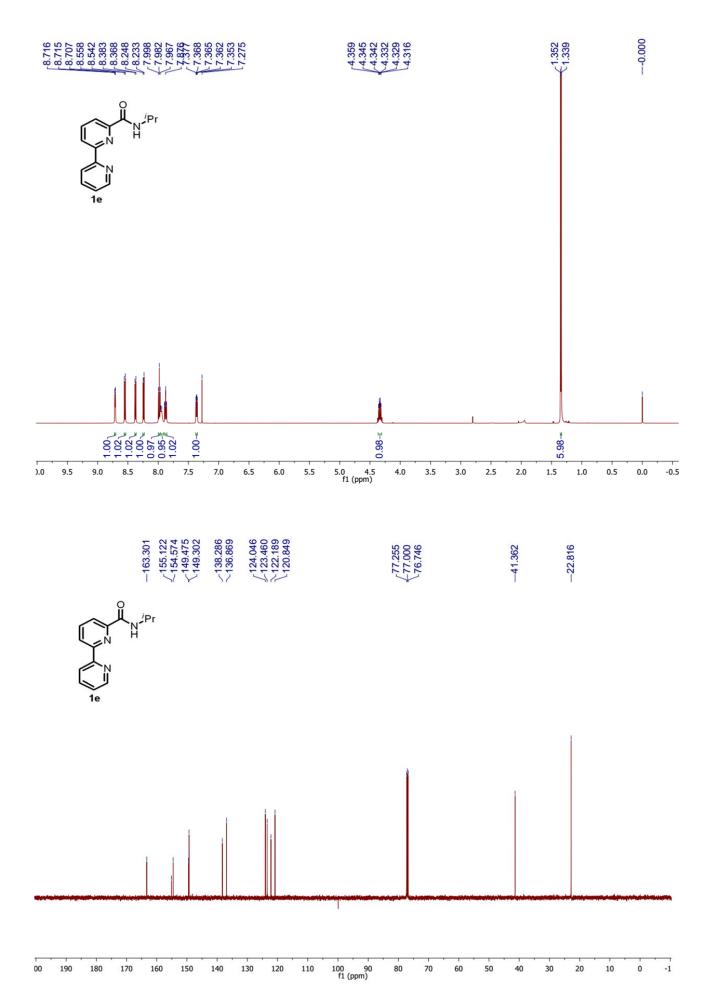

Young, M. C.; Liew, E.; Ashby, J.; McCoy, K. E.; Hooley, R. J. Chem. Commun. 2013, 49, 6331-6333.
O'Duill, M. L.; Matsuura, R.; Wang, Y.; Turnbull, J. L.; Gurak, J. A., Jr.; Gao, D.-W.; Lu, G.; Liu, P.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 15576-15579.

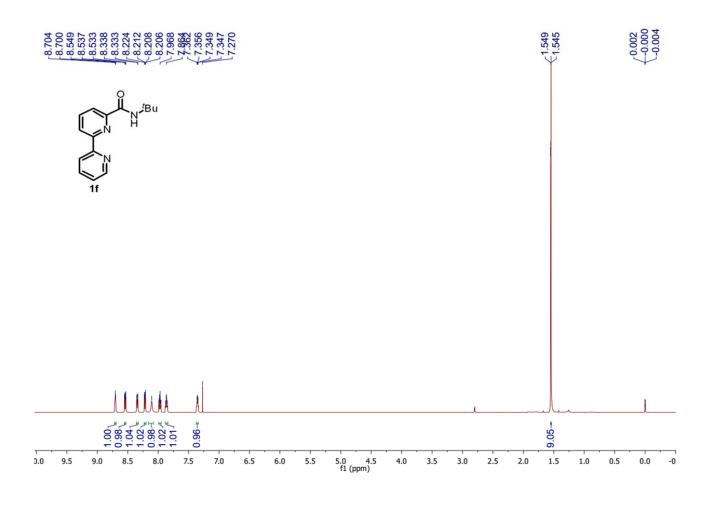

4. ¹H and ¹³C NMR Spectra

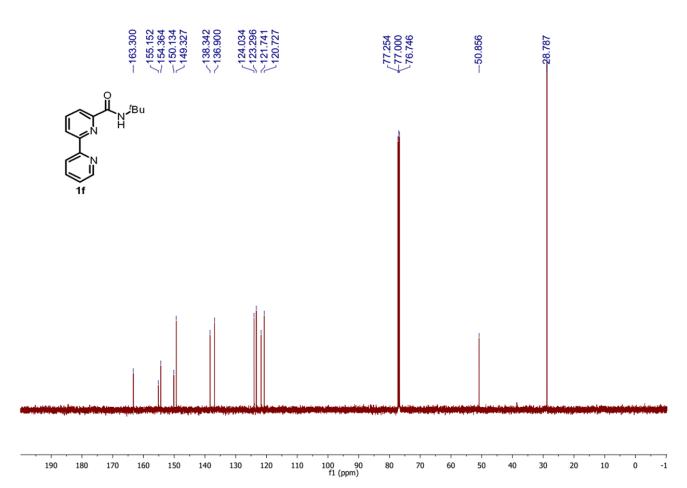


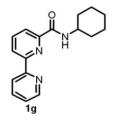


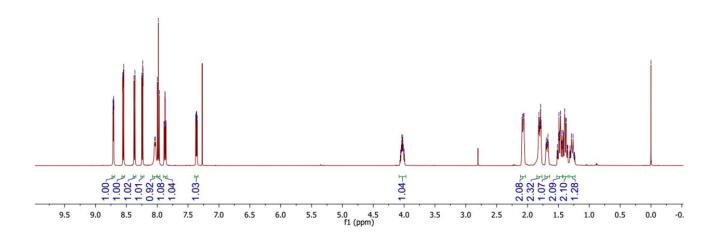


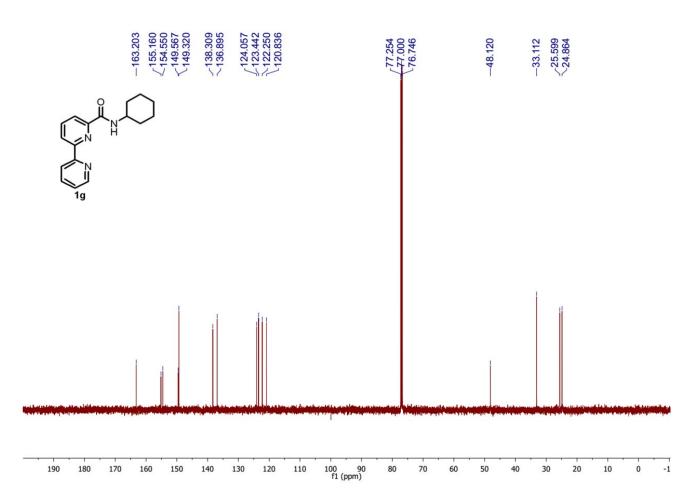


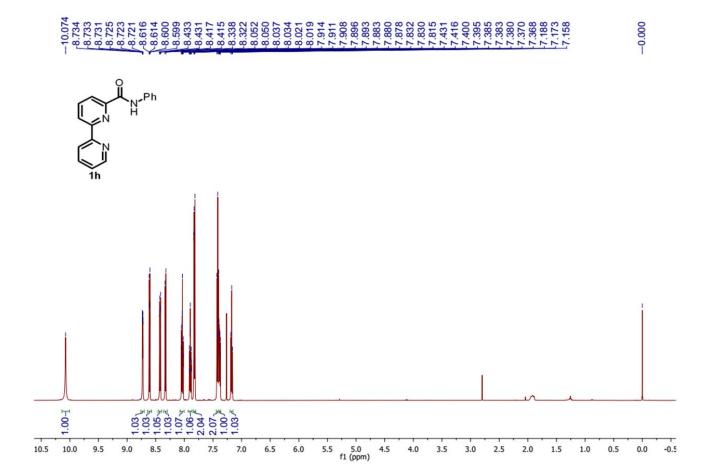


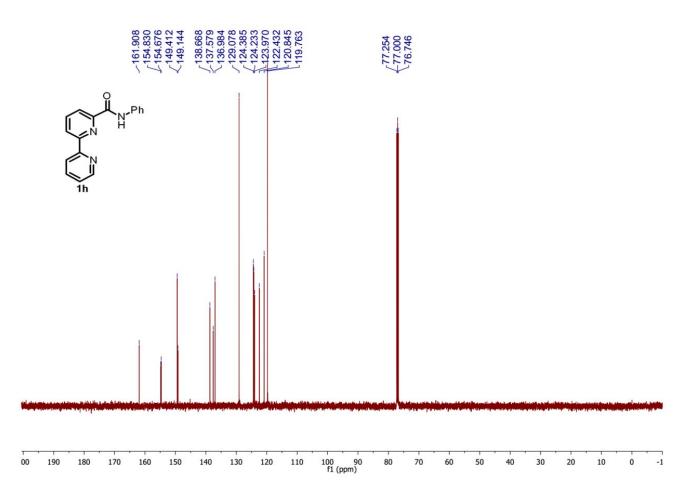


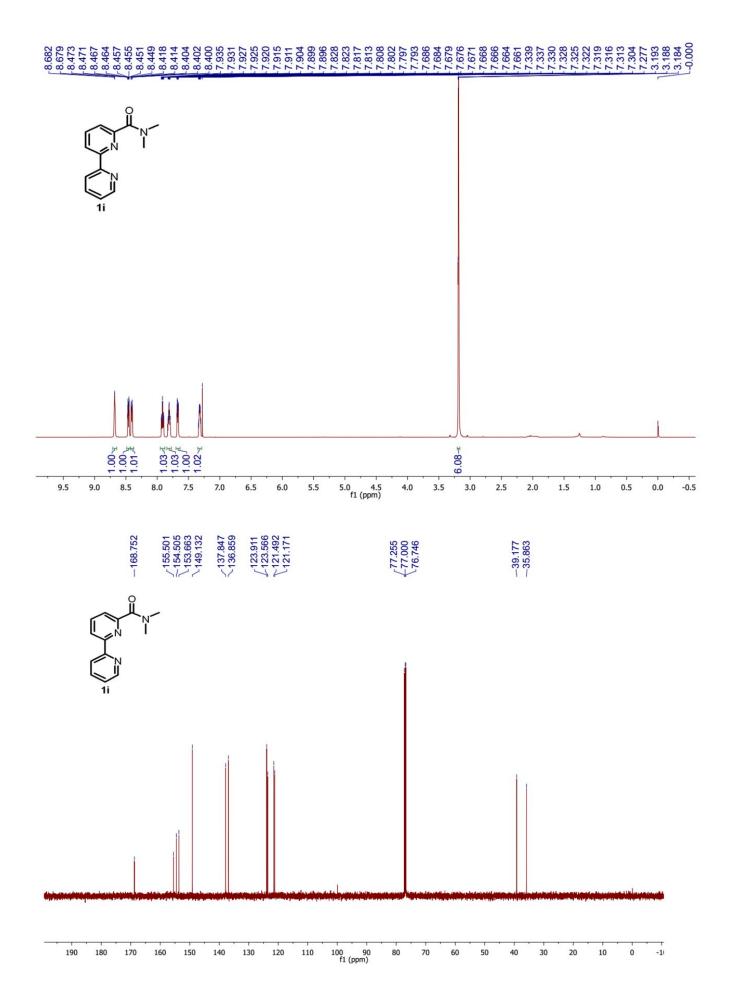


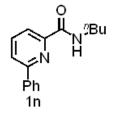


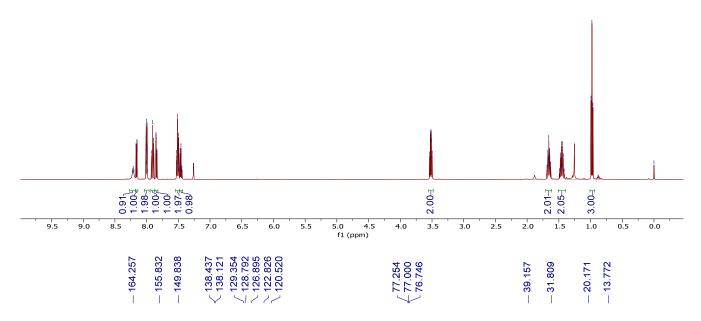


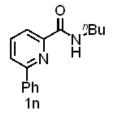


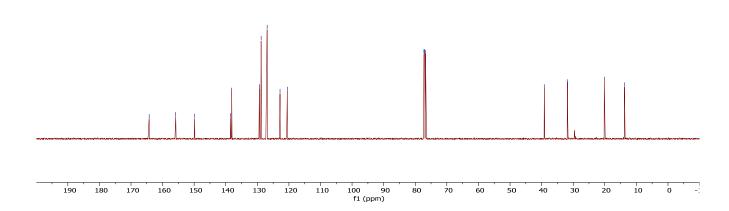


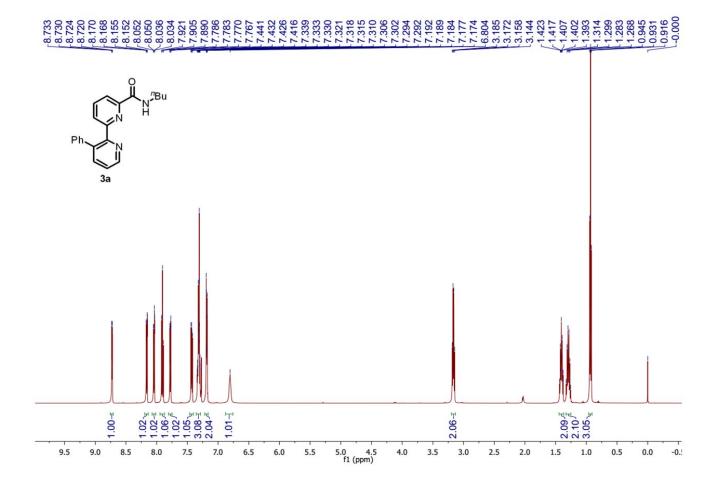


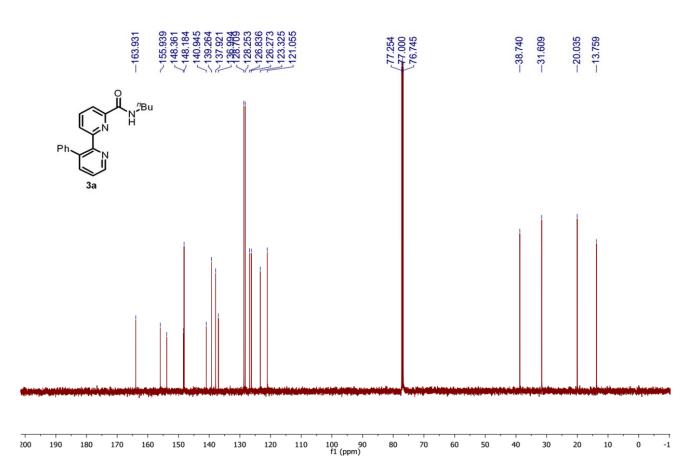


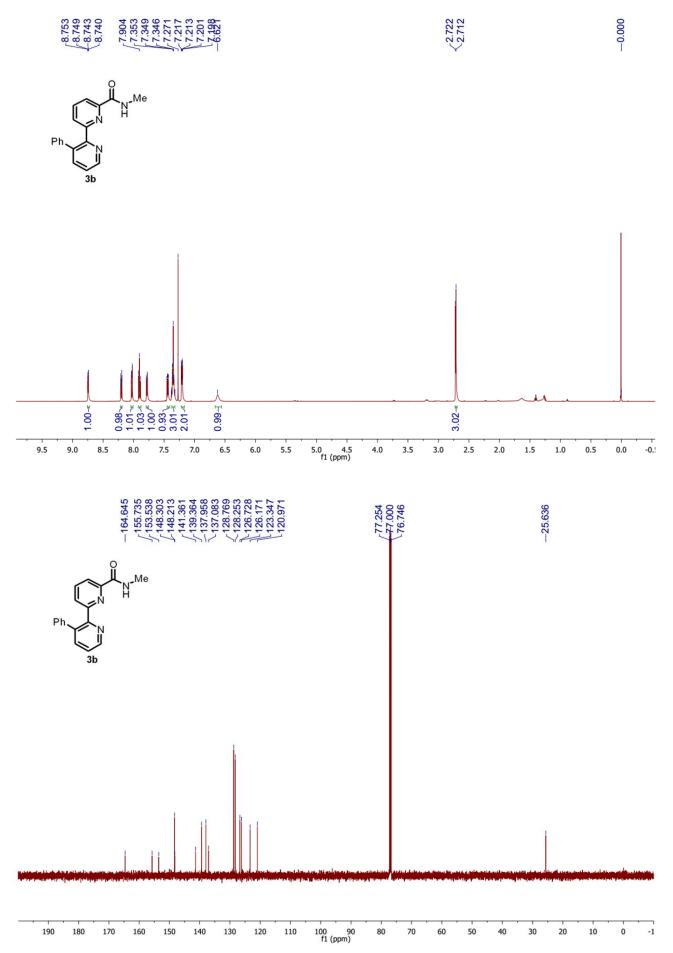


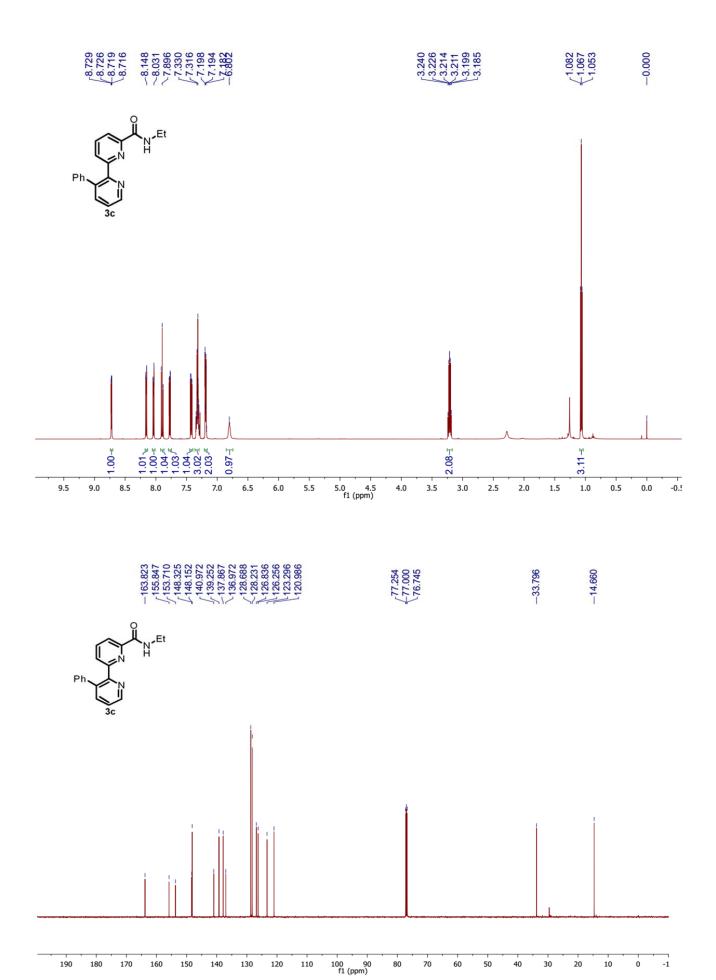


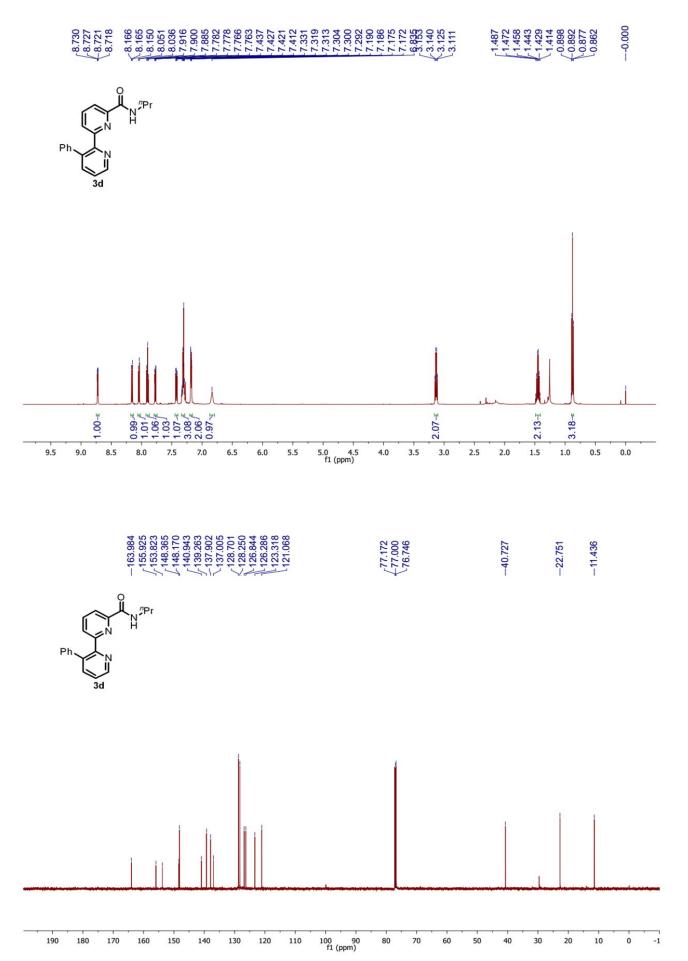


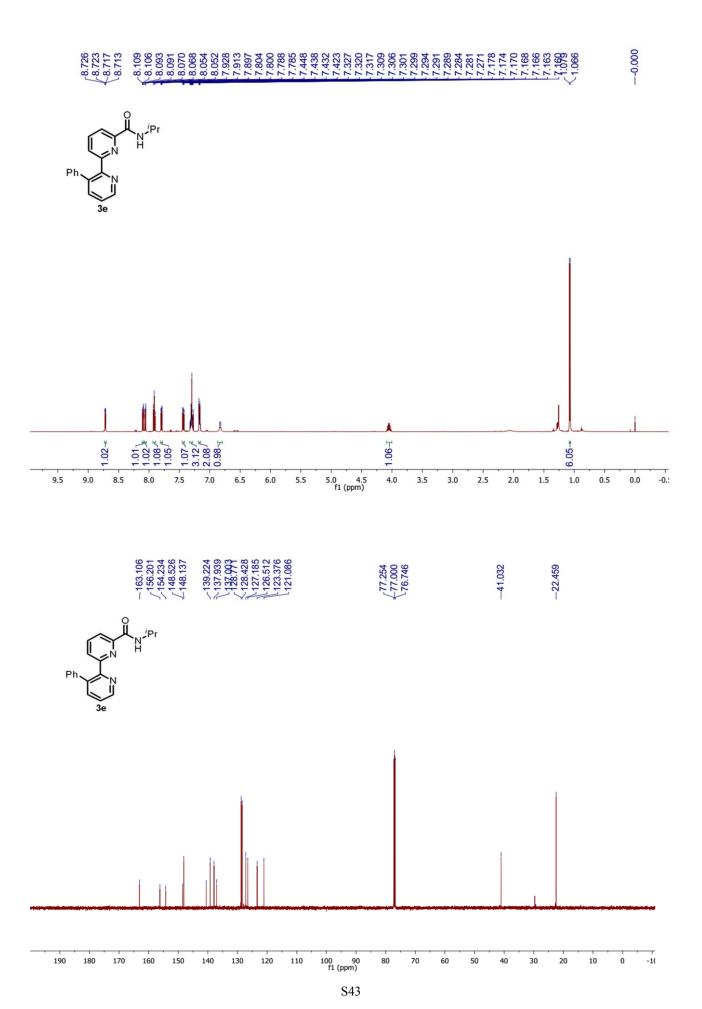


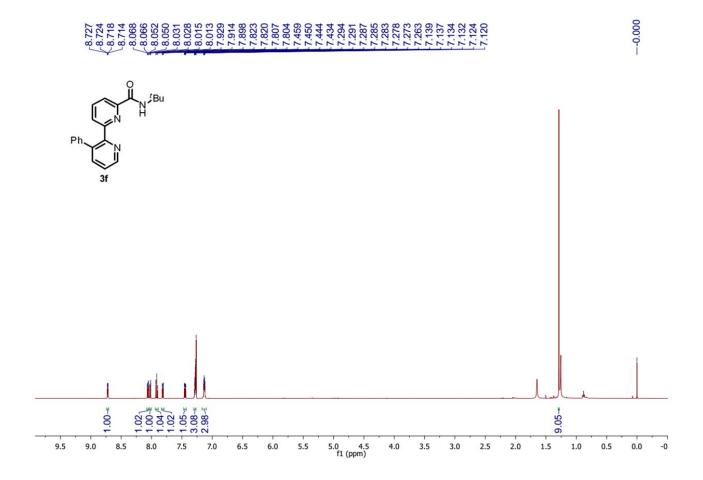


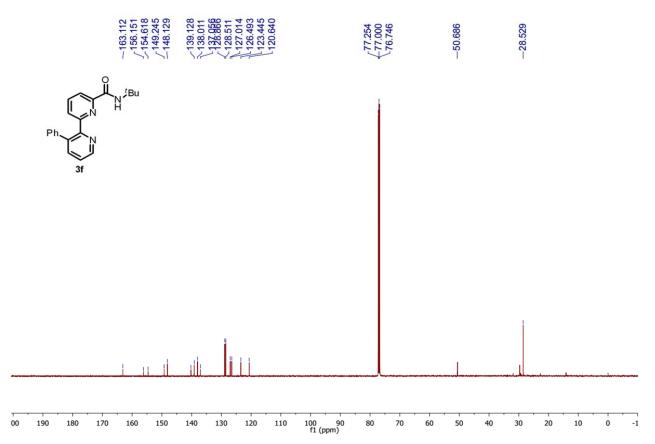


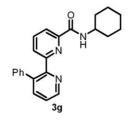


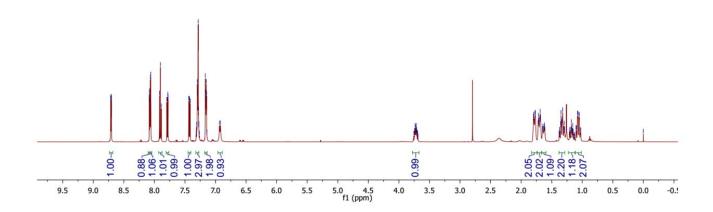


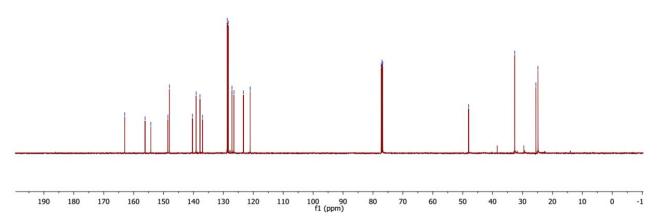


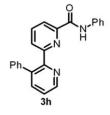


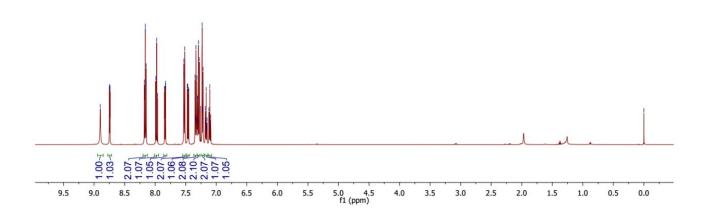


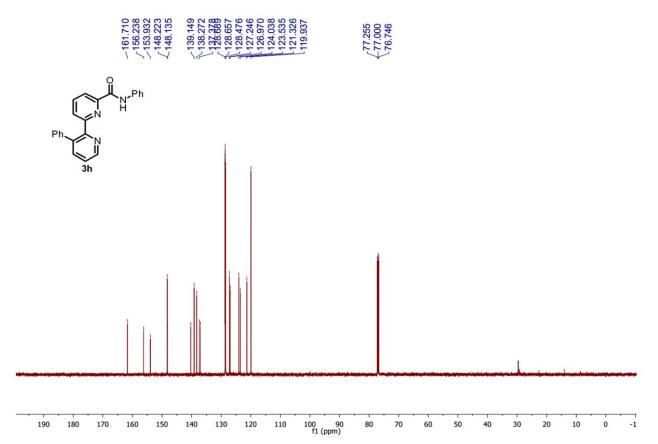




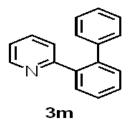


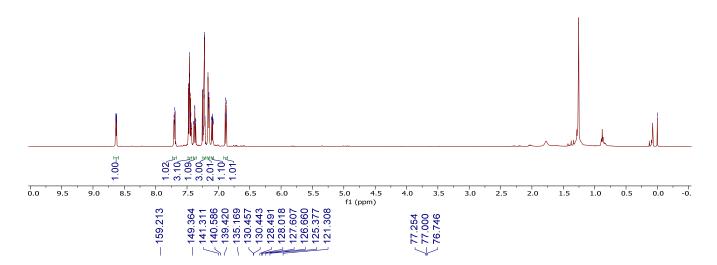


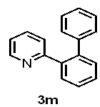


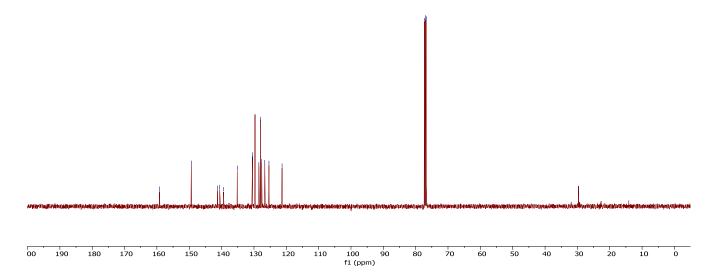

77.255 -77.000 76.746 -48.018 -32.631 -25.538

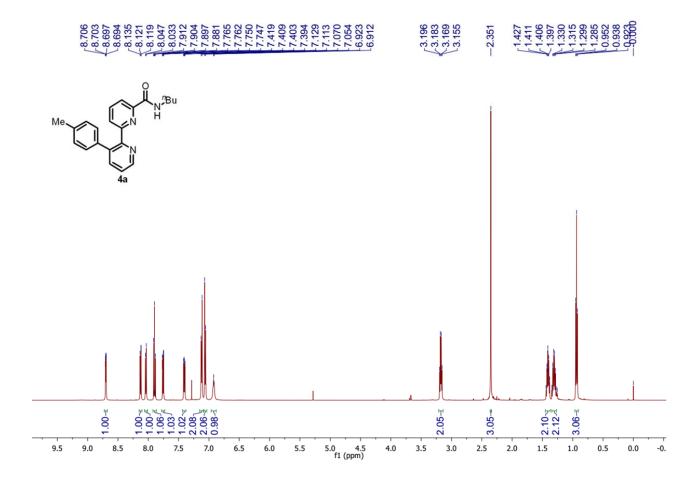
$$\bigcap_{\text{Ph}} \bigcap_{N} \bigcap_{\text{H}}$$

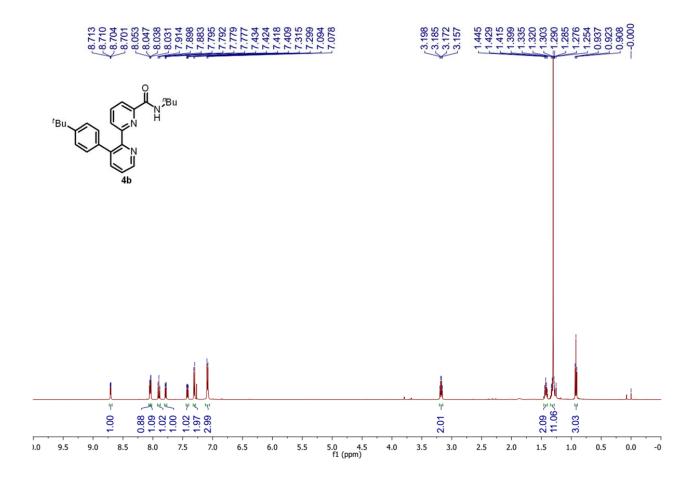


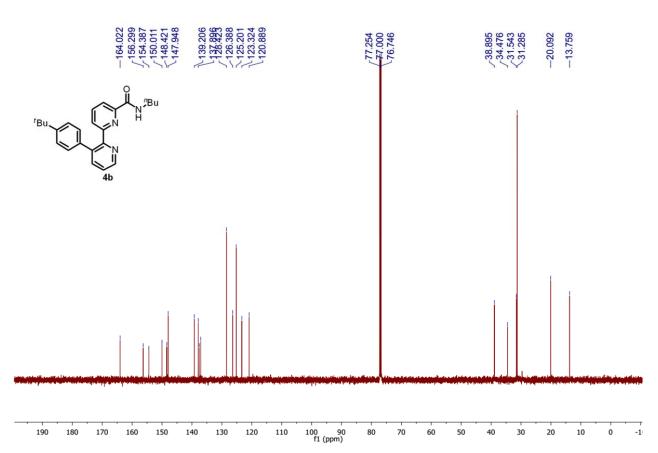


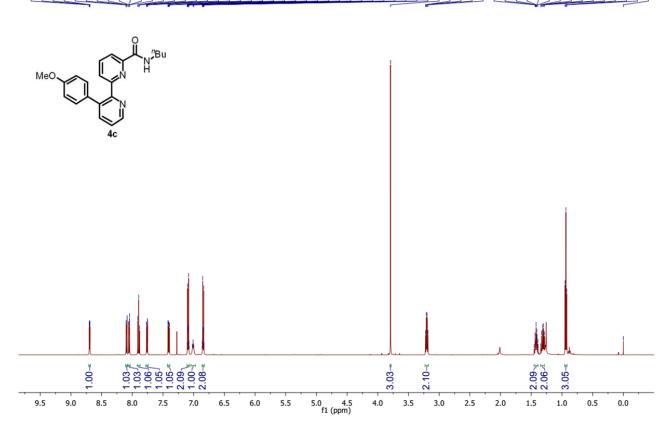


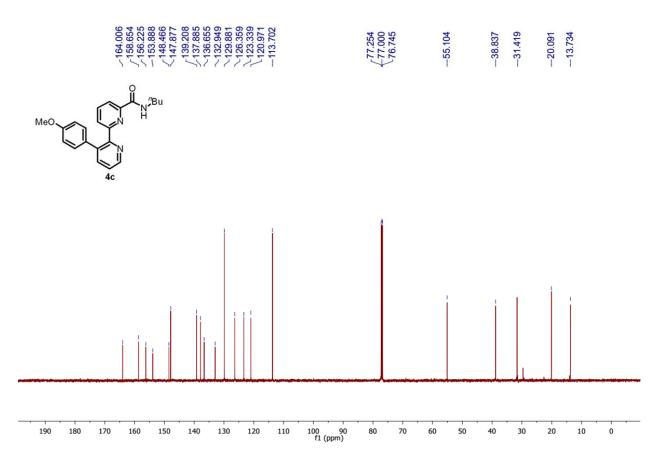


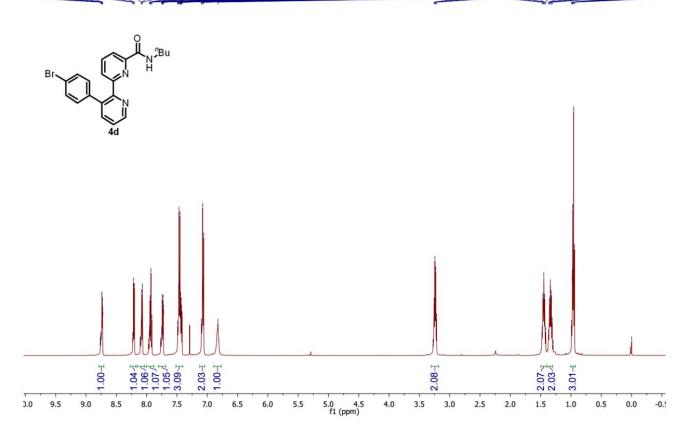


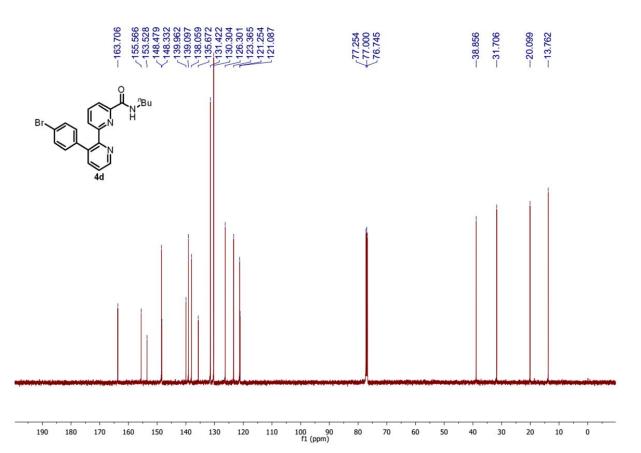


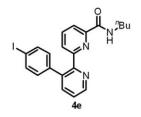


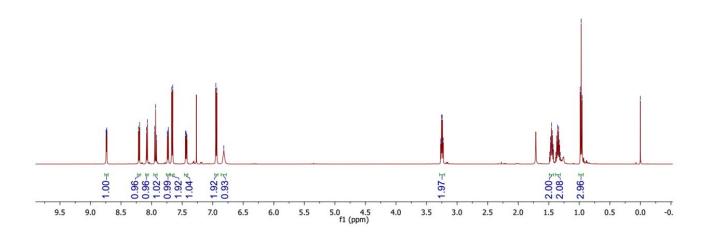


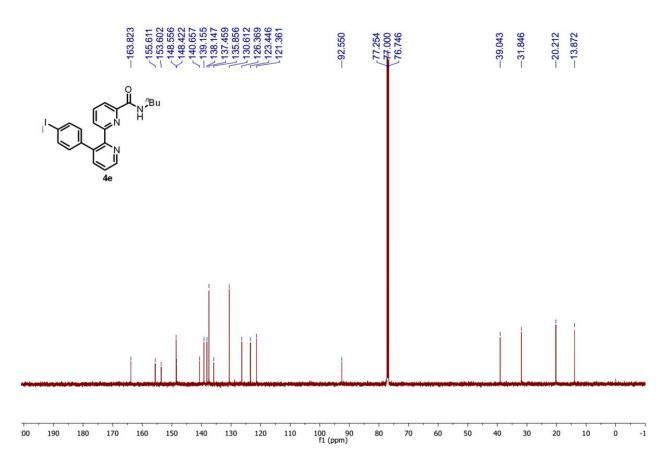


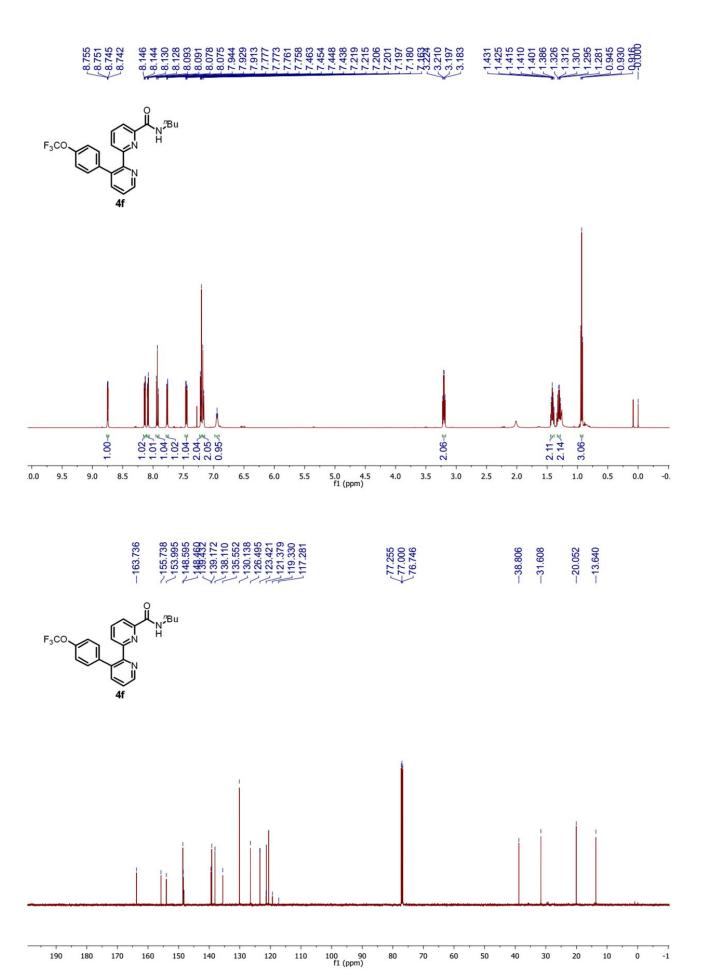













3.255 3.255 3.227 1.485 1.445 1.1426 1.1426 1.1340

1.02 1.03 1.03 2.04

7.5

7.0

6.0

5.5

5.0 4.5 f1 (ppm)

4.0

3.5

8.5

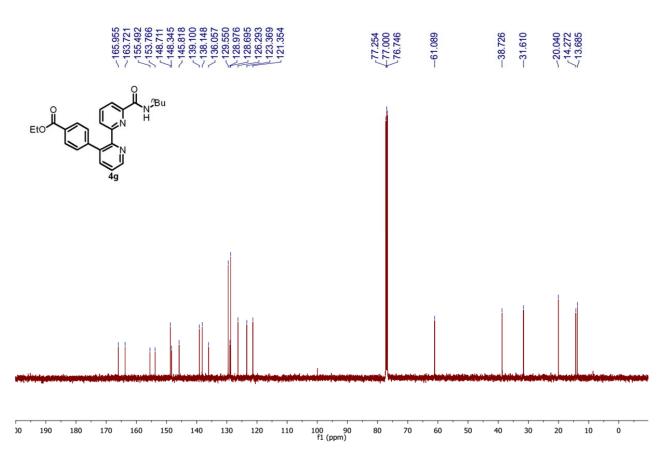
9.0

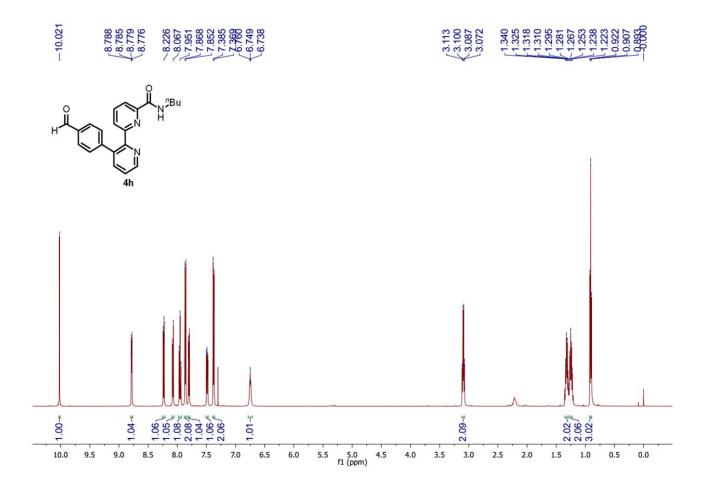
9.5

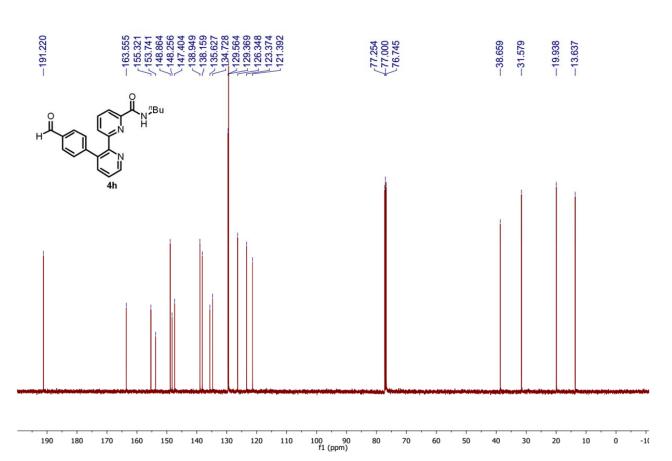
3.12 2.05 2.04 3.03

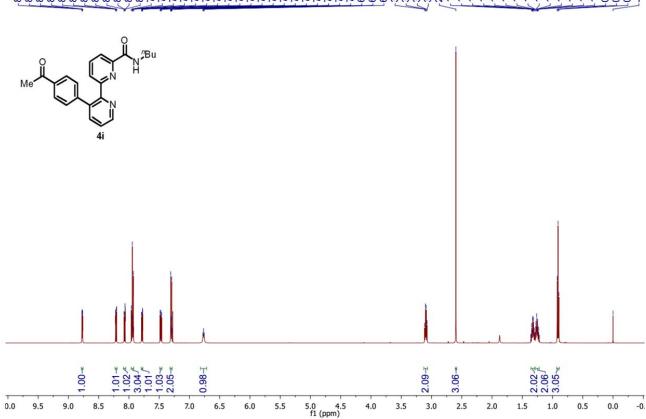
1.0

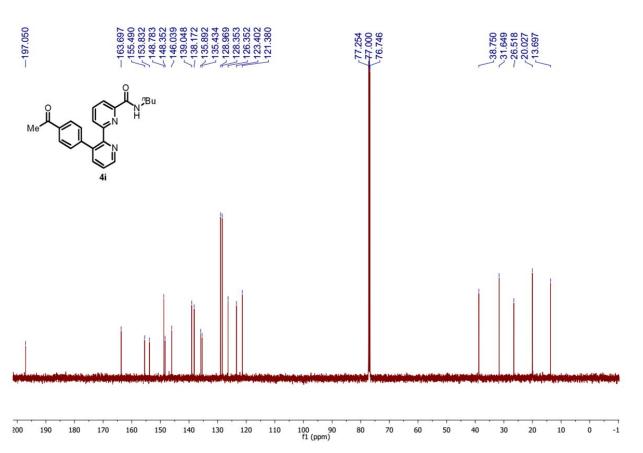
0.5

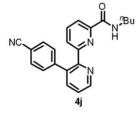

0.0

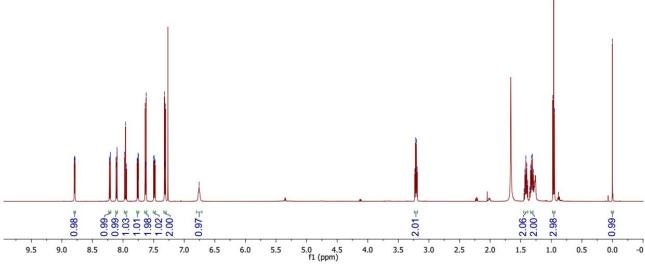

-0.

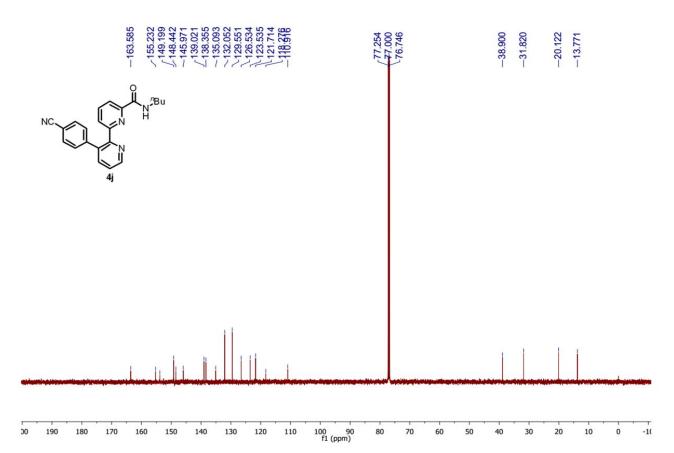

1.5

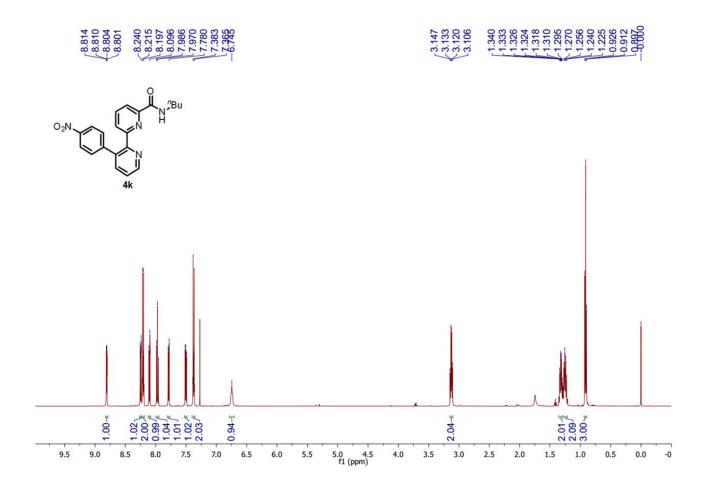

2.5

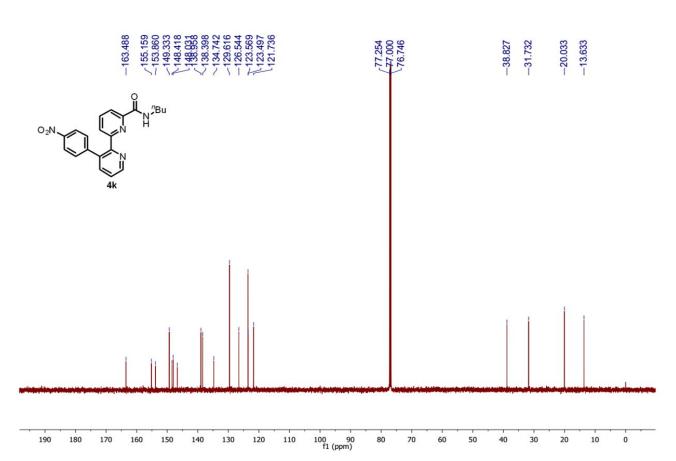

2.0

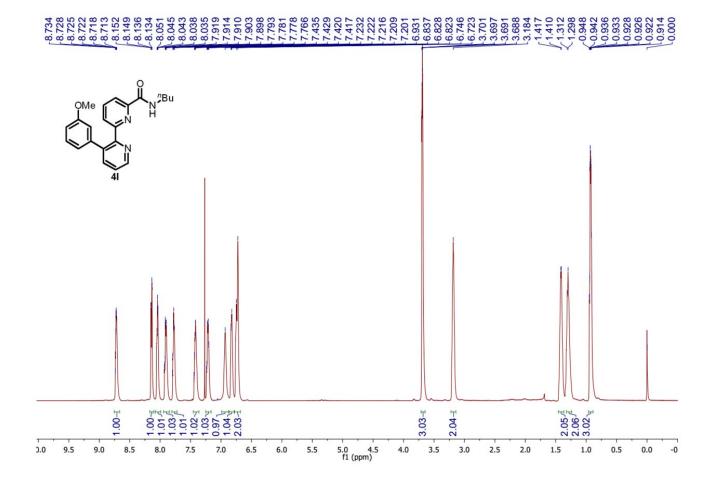


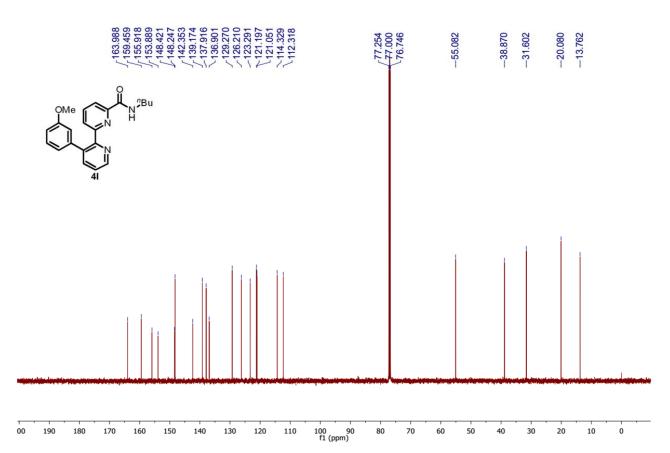


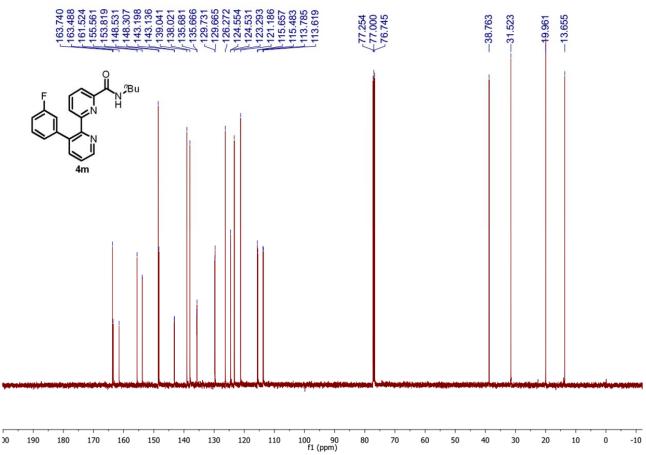


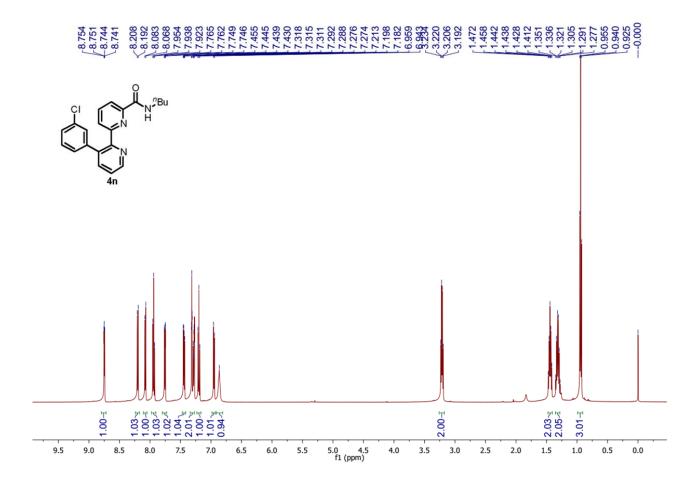


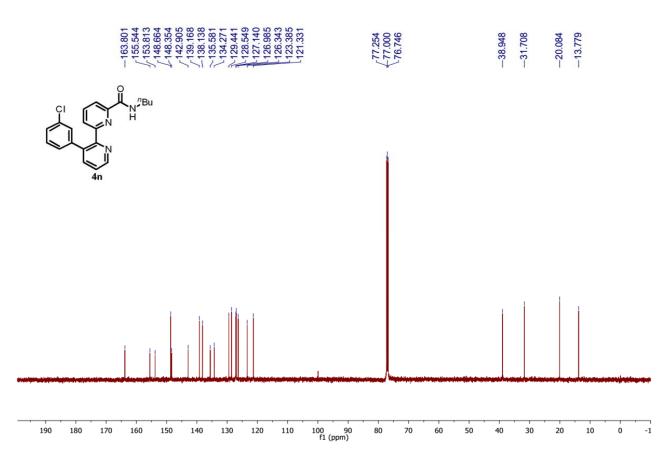

3.232 3.218 3.205 3.205 3.191 1.425 1.445

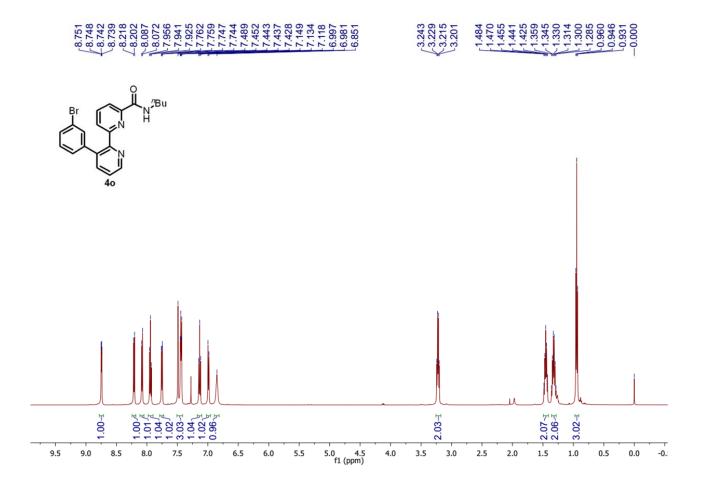


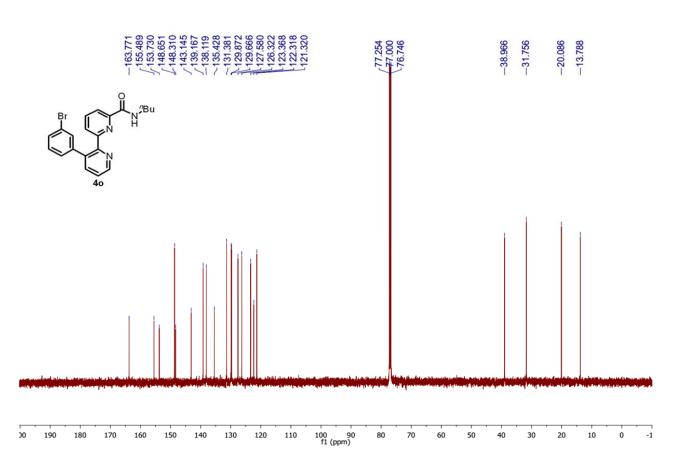


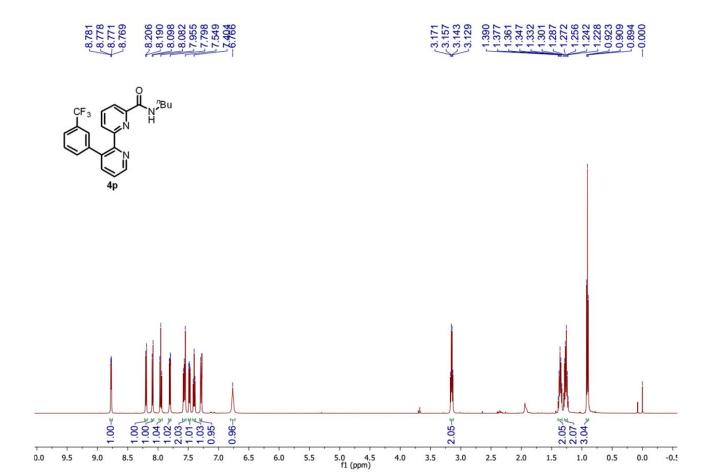


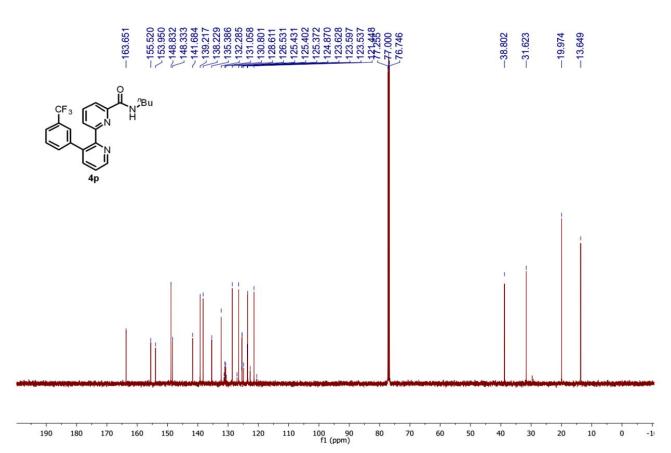


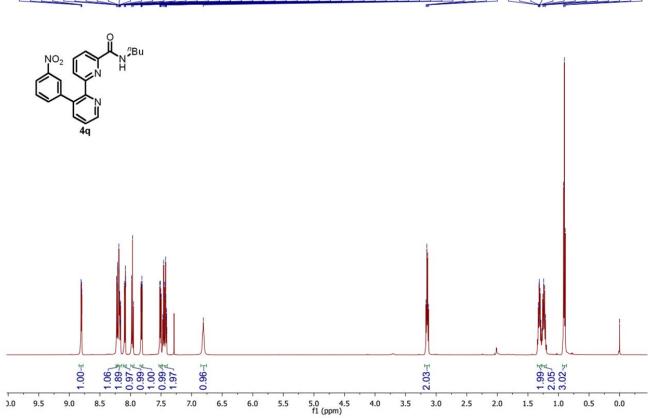




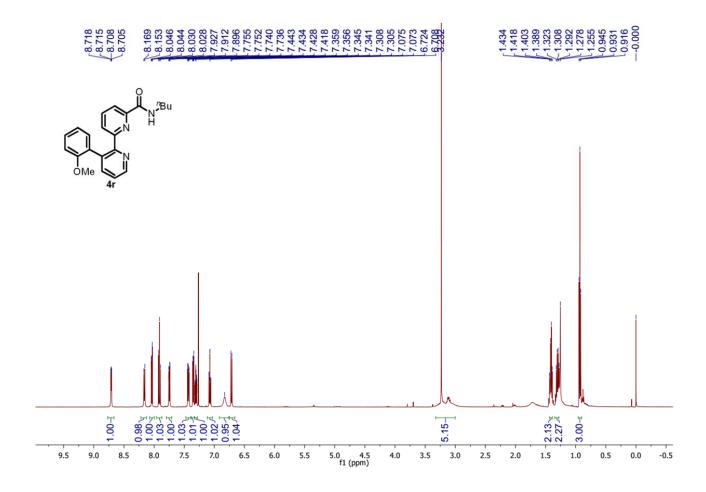


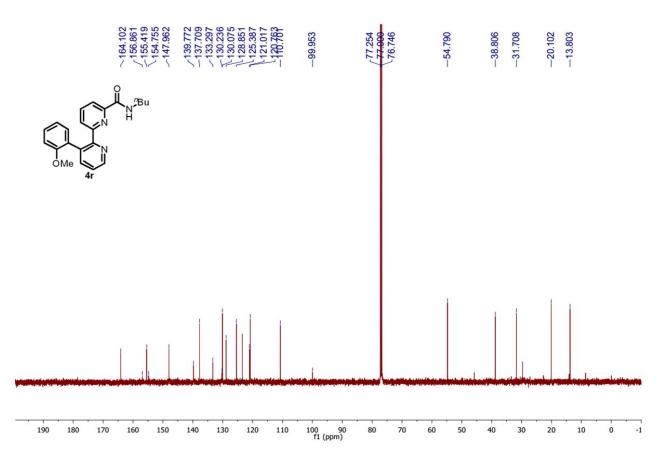


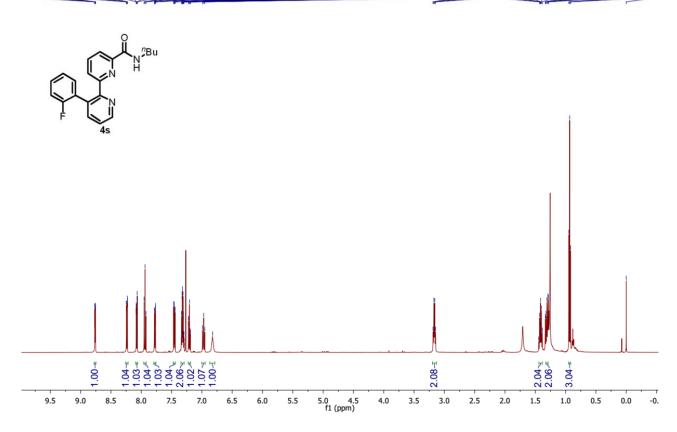


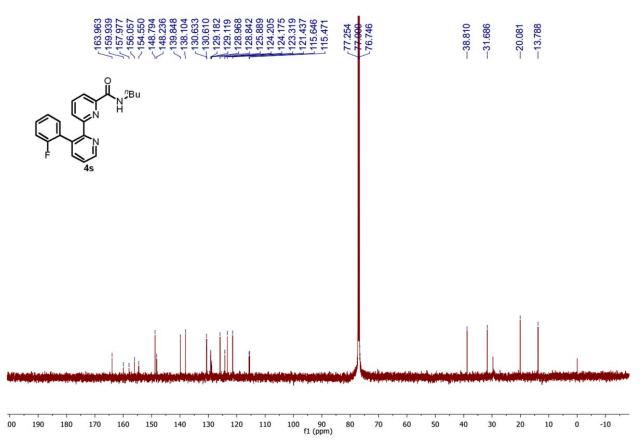


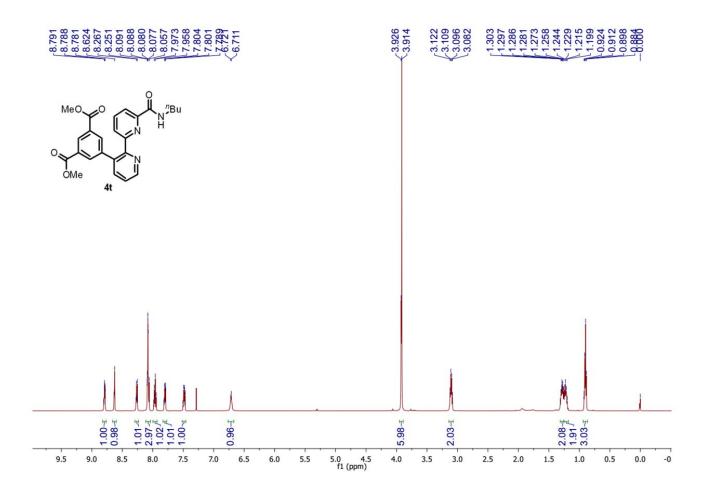


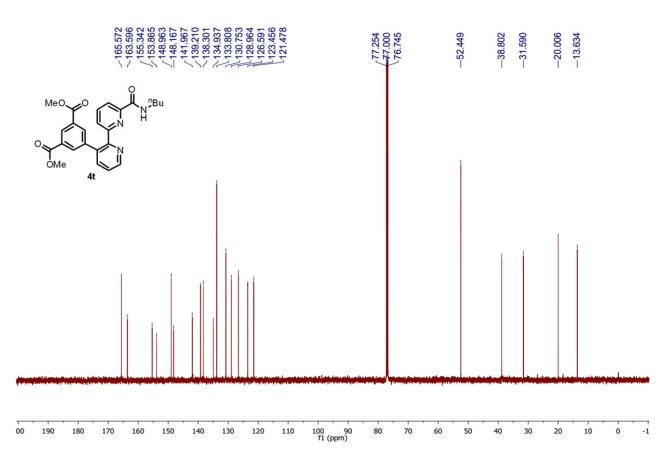


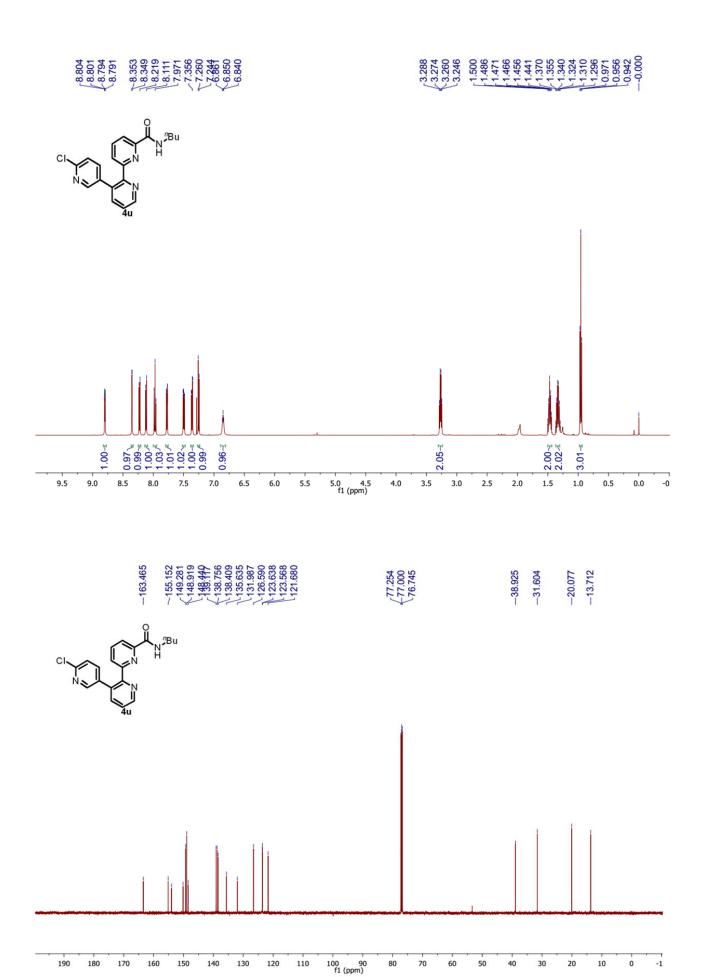


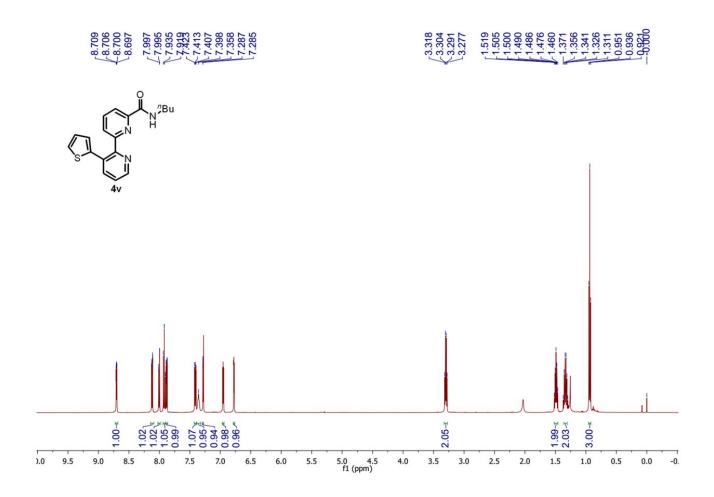


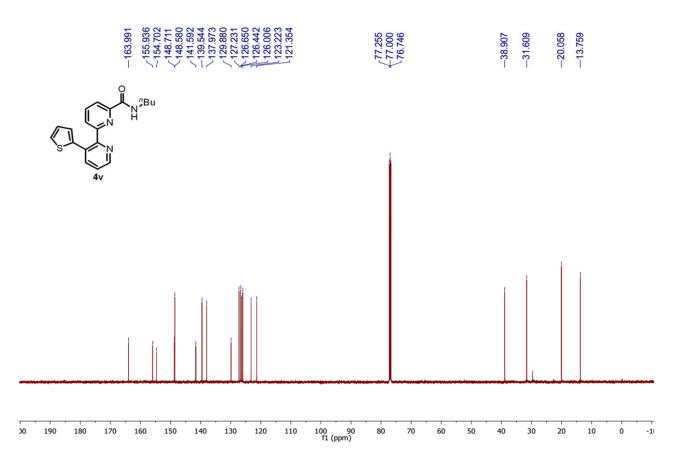


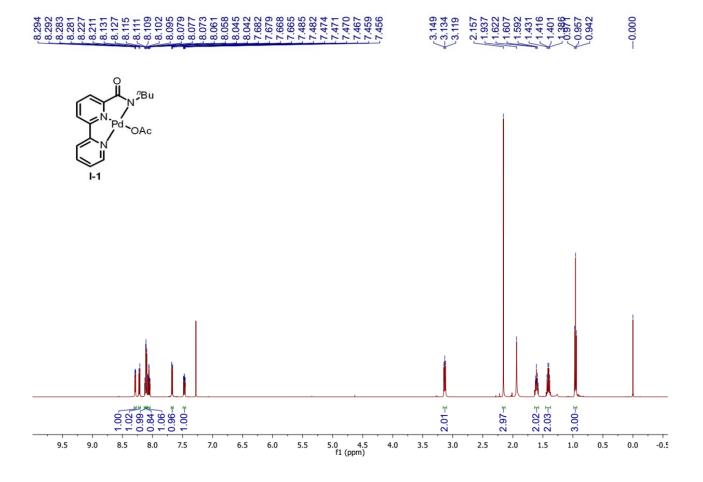


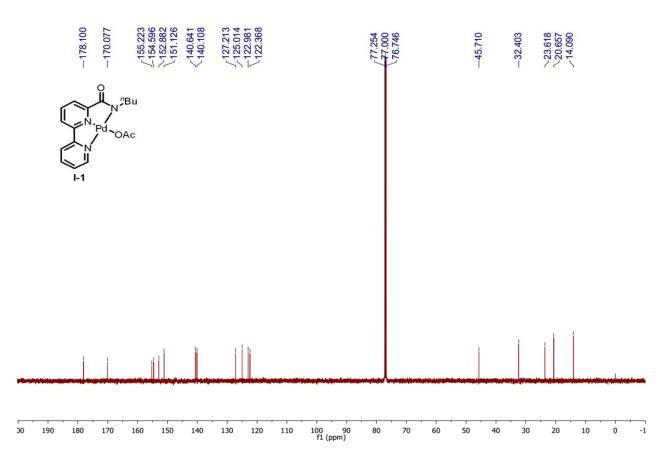


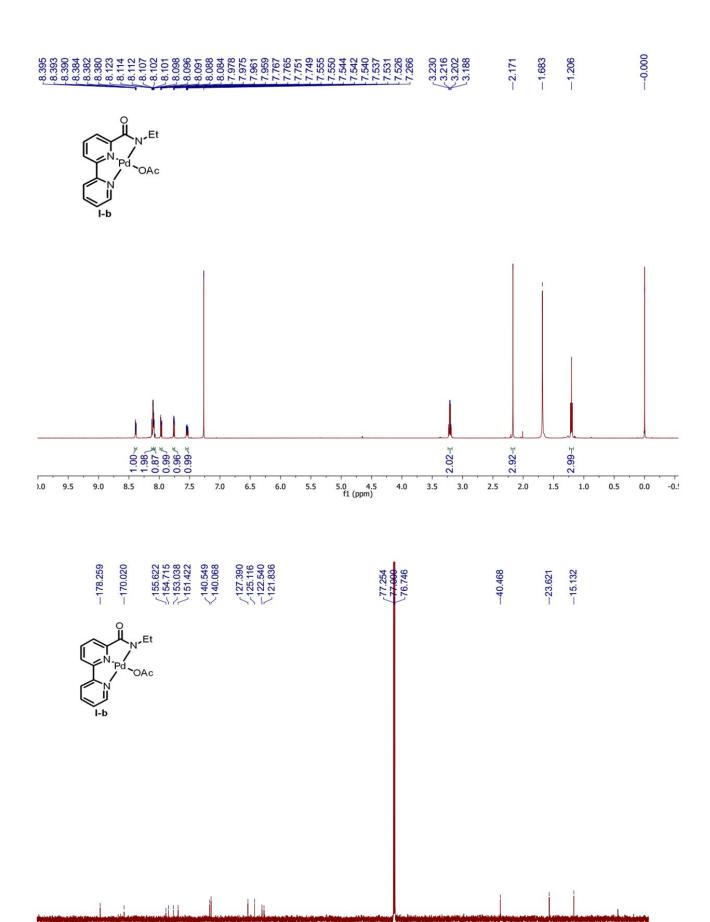












100 90 f1 (ppm)

-1

Ó