Integrating Metal-Catalyzed C–H and C–O Functionalization to Achieve Sterically Controlled Regioselectivity in Arene Acylation

Nicholas A. Serratore, Constance B. Anderson, Grant B. Frost, Truong-Giang Hoang, Steven J. Underwood, Philipp M. Gemmel, Melissa A. Hardy, Christopher J. Douglas*

Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant Street SE, Minneapolis, MN 55455, USA

1.	General Details	1
2.	Optimization of acylation conditions	2
3.	Kinetic studies of the acylation reaction	9
4.	Synthesis of substrates and tabulated characterization data	16
	4.1 Synthesis of aryl ketones 2aa–2as	16
	4.2 Synthesis of salicylate esters 1a–1p	24
	4.3 Synthesis of aryl ketones 2ba–2cl	29
	4.4 Synthesis of hydroxyphenstatin	
5.	Spectra for new compounds	
	• •	

General Experimental Procedures: All acylation reactions were prepared under inert atmosphere in an oxygen-regulated glovebox. Reaction progress was monitored using thin-layer chromatography (TLC) on 0.25 mm silica plates from SiliCycle. Eluted plates were visualized with UV light. Silica Gel Flash Column Chromatography was performed on 230–400 mesh (particle size 0.04–0.063 mm) silica gel purchased from SiliCycle.

Materials. Unless otherwise indicated, chemicals were obtained from commercial sources and used without further purification. All arenes were degassed by bubbling a stream of argon through the liquid in a Schlenk flask and stored over 3 Å molecular sieves in a nitrogen-filled glovebox.

Instrumentation: NMR characterization data were collected at 300 K on Bruker FT NMR instruments. ¹H NMR spectra were internally referenced to TMS ($\delta = 0$ ppm). ¹³C NMR spectra were internally referenced to the residual solvent signal ($\delta = 77.2$ ppm). Data from ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration.

Melting point ranges for solid products were determined on a MEL-TEMP instrument and are reported uncorrected.

IR Spectra were obtained as films either neat or from CH_2Cl_2 on sodium chloride plates on a Thermo Scientific FT-IR or with an ATR source using a Nicolet iS5 FT-IR spectrometer. Data are presented as absorption frequency (cm⁻¹).

High-resolution mass spectrometry (HRMS) using GC-MS was performed on an Agilent 7200-QTOF GC/MS, GC column RTX-5MS 30 m length, 0.255 mm ID, 0.25 μ m df. Method: inlet temperature 250

°C, source temperature 280 °C. The initial column temperature of 120 °C was held for 4 minutes after injection. Column temperature was ramped to 325 °C over 10 minutes and then held for 31 minutes. High-resolution mass spectrometry (HRMS) using ESI experiments were performed on a Bruker BioTOF II instrument using sodium trifluoroacetate internal standard and ammonium bicarbonate additive.

REACTION OPTIMIZATION

Control Experiments

Reactions were prepared using phenyl salicylate (0.2 mmol, 1.0 equiv) *Rac*-2-(di-*t*-butyldiphosphino)-1,1'-binapthyl (TrixiePhos, y mol%), [Ir(cod)OMe]₂ (x mol%), 1,5-cyclooctadiene (1,5-COD, 1.0 equiv), and 1,2-dimethoxybenzene (1,2-DMB, 0.1 M) in PTFE-lined crimp-top vials. The vials sealed, removed from the glovebox, and heated to 170 °C in an oil bath for twenty hours. Product yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.8 mL, 0.1M in CDCl₃).

Table S1. Control Experiments

Entry	[Ir] (mol%)	TrixiePhos (mol%)	Yield 2ag (%) (¹ H NMR)
1	0	3	0
2	1	0	24
3	0	0	0

Catalyst Optimization

Reactions were prepared using phenyl salicylate (0.1 mmol, 1.0 equiv), TrixiePhos (0.003 mmol, 3 mol%), catalyst (0.001 mmol, 1 mol%), base (0.018 mmol, 3 mol%), and *m*-xylene (1.0 mL, 0.1 M) in PTFE-lined crimp-top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 24 h. Product yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.7 mL, 0.143M in CDCl₃).

Entry	Catalyst	Additive	Yield 2aa1 (%) (¹ H NMR)
1	$[Ir(cod)OPh]_2$	-	81
2	$[Ir(cod)Cl]_2$	KOPh	44
3	$[Ir(cod)Cl]_2$	K_2CO_3	3
4	$[Ir(coe)_2Cl]_2$	KOPh	49
5	$[Ir(coe)_2Cl]_2$	K_2CO_3	1

Table S2. Effect of catalyst choice on product yield

Catalyst Loading Optimization

Reactions were prepared using phenyl salicylate (0.1 mmol, 1.0 equiv), [Ir(cod)OPh]₂ (x mol%), TrixiePhos (2x mol%) and *m*-xylene (1.0 mL, 0.1 M) in PTFE-lined crimp-top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 24 h. Product yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.7 mL, 0.143M in CDCl₃).

		• • •	•
Entry	[Ir] (mol%)	Yield 2aa1 (%) (¹ H NMR)	Ratio 2aa1:2aa2 (¹ H NMR)
1	(110170)	(1110000)	× 20.1
1	0.5	49	>20:1
2	1	70	18:1
3	2.5	69	15:1
4	5	60	11:1
5	10	43	7:1

Table S3. Effect of catalyst loading on product yield and distribution

Phosphine/Ligand Screen

Reactions were prepared using phenyl salicylate (0.1 mmol, 1.0 equiv), $[Ir(cod)OPh]_2$ (0.001 mmol, 1 mol%), Phosphine (0.003 mmol, 3 mol%) and *m*-xylene (1.0 mL, 0.1 M) in PTFE-lined crimp-top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 48 h. Product

yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.7 mL, 0.143M in $CDCl_3$).

Entry	Phosphine	Yield 2aa1 (%) (¹ H NMR)
1	t-Bu Xphos	44
2	Xphos	6
3	t-Bu BrettPhos	58
4	BrettPhos	4
5	Cy-JohnPhos	8
6	JohnPhos	61
7	t-Bu MePhos	55
8	MePhos	7
9	t-Bu DavePhos	47
10	DavePhos	6
11	RuPhos	11
12	S-Phos	10
13	TrixiePhos	60
14	$P(o-tol)_3$	2
15	15 dppp	
16	bpy	0
17	TMEDA	0

Table S4. Effect of phosphine/ligand identity on product yield

Phosphine Loading Optimization

Reactions were prepared using phenyl salicylate (0.1 mmol, 1.0 equiv), $[Ir(cod)OPh]_2$ (0.001 mmol, 1 mol%), TrixiePhos (x mol%) and *m*-xylene (1.0 mL, 0.1 M) in PTFE-lined crimp-top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 48 h. Product yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.7 mL, 0.143M in CDCl₃).

Table S5. Effect of phosphine loading on product yield

Enter	TrixiePhos	Yield 2aa1 (%)
Entry	(mol%)	(¹ H NMR)
1	0.5	29
2	1	50
3	2	75
4	4	78
5	8	53
6	16	23
7	32	15

Substrate Concentration Optimization

Reactions were prepared using phenyl salicylate (1.0 equiv), $[Ir(cod)OPh]_2$ (1 mol%), TrixiePhos (3 mol%) and *m*-xylene (volume required to obtain listed concentration of phenyl salicylate) in PTFE-lined crimp-top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 48 h. Product yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.7 mL, 0.143M in CDCl₃).

Entry	Phenyl salicylate (mmol)	Phenyl Salicylate (M)	Yield 2aa1 (%) (¹ H NMR)
1	0.05	0.05	76
2	0.05	0.07	77
3	0.1	0.10	80
4	0.1	0.14	80
5	0.2	0.20	69
6	0.2	0.29	61
7	0.2	0.40	51

Table S6. Effect of substrate concentration on product yield

Effect of Arene Dilution

We made a preliminary attempt use less than solvent quantities of arene in the acylation reaction. Decaline and mesitylene were examined as solvents in the acylation below. Lower concentration of arene led to significantly lower yield of acylation products.

Reactions were prepared in PTFE-lined crimp-top vials using phenyl salicylate (0.1 mmol, 1.0 equiv), $[Ir(cod)OPh]_2$ (0.001 mmol, 1 mol%), TrixiePhos (0.003 mmol, 3 mol%), *m*-xylene (x equiv), and additional solvent to dilute to a final volume of 1.0 mL. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 48 h. Product yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene internal standard (0.7 mL, 0.143M in CDCl₃).

Entry	<i>m</i> -xylene (equiv)	Additional Solvent	Yield 2aa1 (%) (¹ H NMR)
1	40.5	Decalin	51
2	20.3	Decalin	33
3	8.1	Decalin	13
4	4.0	Decalin	6
5	2.0	Decalin	3
6	40.5	Mesitylene	59
7	20.3	Mesitylene	39
8	8.1	Mesitylene	18
9	4.0	Mesitylene	9
10	2.0	Mesitylene	5

Table S7. Effect of arene equivalencies on product yield

COD Equivalents Optimization

Reactions were prepared using phenyl salicylate (1.0 equiv), [Ir(cod)OPh]₂ (1 mol%), TrixiePhos (3 mol%), 1,5-COD (volume required to obtain listed concentrations) and 1,2-dimethoxybenzene (0.1 M final concentration relative to phenyl salicylate, 1 mL final volume) in PTFE-lined crimp top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 4 hr. Product yield was determined by ¹H NMR using dibromomethane internal standard.

Entry	1,5-COD (μL)	1,5-COD (mol%)	Yield 2ag (%) (¹ H NMR)
1	0	0	39
2	20	2	47
3	40	4	50
4	60	6	53
5	80	8	49
6	120	12	53
7	160	16	59
8	200	20	59
9^{1}	12	20	20
10 ¹	61	100	27
11^{1}	310	500	52

Table S8. Effect of 1,5-cyc	clooctadiene additive o	n product yield
-----------------------------	-------------------------	-----------------

Alkene Additive Screen

Reactions were prepared using phenyl salicylate (1 equiv), $[Ir(cod)OMe]_2$ (1 mol%), TrixiePhos (3 mol%), alkene additive (1 equiv) and 1,2-dimethoxybenzene (0.8 mL) in a 5 mm J-young NMR tube. The tube was sealed, removed from the glovebox, and heated to 160 °C. Single-scan ¹H NMR spectra were

¹ Reactions were run on a 5 mL scale for 2 hours.

taken at regular intervals. The reaction progress was monitored until approximately 10% completion was observed, relative to trimethyl(phenyl)silane internal standard.

*Norbornadiene gives no significant conversion to product after 45 minutes at 160 °C.

Iridium Carbonyl from Catalyst Decomposition

TrixiePhos (10 mg, 0.024 mmol, 3 mol%), $[Ir(cod)OMe]_2$ (50 mg, 0.08 mmol, 10 mol%, phenyl salicylate (0.171 g, 0.8 mmol, 1 equiv), 1,5-COD (98 µL, 0.8 mmol, 1 equiv), and mesitylene (8 mL, 0.1 M) were added to a 10 mL PTFE-lined crimp-top vial. The vial was sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 h. The solvent was removed *in vacuo*. An IR spectrum was obtained of the crude product mixture. Distinguishing peaks at 1981 and 2027 cm⁻¹ indicated the probable presence of an Ir–CO complex.

Phosphorus Degradation

TrixiePhos (5.0 mg, 0.013 mmol, 3 mol%), $[Ir(cod)OMe]_2$ (3.0 mg, 0.005 mmol, 1 mol%), phenyl salicylate (90.1 mg, 0.421 mmol, 1 equiv), 1.5-COD (51 µL, 0.416 mmol, 1 equiv) and 1,3-dimethoxybenzene (4.3 mL, 0.1 M) were mixed in a 20 mL scintillation vial. 0.6 mL of the solution was transferred to a J-Young NMR tube, the tube was sealed and removed from the glovebox. A ³¹P NMR spectrum was taken (t=0), and the reaction mixture was heated to 170 °C in an oil bath. ³¹P NMR spectra were taken at regular increments.

Reaction in CO Atmosphere

TrixiePhos (9.6 mg, 0.024 mmol, 3 mol%), $[Ir(cod)OMe]_2$ (5.3 mg, 0.008 mmol, 1 mol%), phenyl salicylate (171.4 mg, 0.800 mmol, 1 equiv), 1.5-COD (98 µL, 0.800 mmol, 1 equiv) and 1,3-dimethoxybenzene (8.0 mL, 0.1 M) were mixed in a 20 mL scintillation vial. The solution was transferred to a 50 mL Schlenk tube, the tube was sealed and removed from the glovebox. The Schlenk tube was evacuated and backfilled with CO. The tube was sealed and heated to 170 °C in an oil bath for 20 h. Solvent was removed *in vacuo* and the crude product mixture was analyzed by ¹H NMR.

KINETIC STUDIES

Initial Rates General. Reactions were prepared using phenyl salicylate, [Ir(cod)OMe]₂, TrixiePhos, 1,5-COD, in 1,2-dimethoxybenzene (0.8 mL) in a 5 mm J-young NMR tube. The tube was sealed, removed from the glovebox, and heated to 160 °C. Single-scan ¹H N MR spectra were taken at regular intervals. The reaction progress was monitored until approximately 10% completion was observed, relative to 1,3,5-trimethoxybenzene internal standard.

One reagent concentration was varied at a time to determine the reaction order of that component, all other reagent concentrations were held constant at the concentration used in standard reactions (phenyl salicylate (0.100 M), [Ir(cod)OMe]₂ (1.0 mM), TrixiePhos (3.0 mM), 1,5-COD (0.100 M)). When varying arene solvent concentration, 1,2-dimethoxybenzene was diluted with mesitylene.

Kinetic Isotopes General. The kinetic isotope effects were determined by the following equation:

$$KIE = \frac{Prod_H}{Prod_D} = \frac{k_H}{k_D}$$

Initial Rates

Proteo - Reactions were performed in triplicate using 0.7 mL aliquots from a stock solution containing phenyl 4-(trifluoromethyl)salicylate (0.4 mmol, 1 equiv), $[Ir(cod)OMe]_2$ (0.004 mmol, 1 mol%), TrixiePhos (0.012 mmol, 3 mol%), 1,5-COD (0.4 mmol, 1 equiv), 1-methoxy-3-(trifluoromethyl)benzene (0.463 mmol, 1.16 equiv) and H_4 -1,2-dimethoxybenzene (4 mL) in a J-Young NMR tube. Once sealed, the tubes were removed from the glovebox, and single-scan ¹H and ¹⁹F NMR spectra were taken for time (t) = 0 min. The reaction mixtures were heated to 160 °C in an oil bath and monitored for 70 minutes. Product formation was monitored by ¹⁹F using 1-methoxy-3-(trifluoromethyl)benzene internal standard. Linear fits were obtained, removing the t=0 data point due to an observed induction period.

Deutero - Reactions were performed in triplicate using 0.7 mL aliquots from a stock solution containing phenyl 4-(trifluoromethyl)salicylate (0.4 mmol, 1 equiv), $[Ir(cod)OMe]_2$ (0.004 mmol, 1 mol%), TrixiePhos (0.012 mmol, 3 mol%), 1,5-COD (0.4 mmol, 1 equiv), 1-methoxy-3-(trifluoromethyl)benzene (0.407 mmol, 1.02 equiv) and D_4 -1,2-dimethoxybenzene (4 mL) in a J-Young NMR tube. Once sealed, the tubes were removed from the glovebox, and single-scan ¹H and ¹⁹F NMR spectra were taken for time (t) = 0 min. The reaction mixtures were heated to 160 °C in an oil bath and monitored for 90 minutes.

Table S9. Initial rates kinetics results				
Entry	k _H (%/min)	k_D (%/min)	KIE	
1	0.360	0.198	_	
2	0.380	0.220	—	
3	0.348	0.201	—	
Average	0.363 ± 0.012	0.206 ± 0.016	1.77 ± 0.13	

Product formation was monitored by 19 F using 1-methoxy-3-(trifluoromethyl)benzene internal standard. Linear fits were obtained, removing the t=0 data point due to an observed induction period.

Intermolecular Competition

Reactions were prepared in triplicate using phenyl salicylate (1 equiv), $[Ir(cod)OMe]_2$ (1 mol%), TrixiePhos (3 mol%), 1,5-COD (1 equiv), H_4 -1,2-dimethoxybenzene (0.5 mL) and D_4 -1,2dimethoxybenzene (92.8% d_4 by ¹H NMR, 0.5 mL) in PTFE-lined crimp top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 hr. Crude mixtures were analyzed by ESI-MS.

$$Prod_H = I_{257}$$

 $Prod_D = I_{260}$

Intramolecular Competition

Reactions were prepared in triplicate using phenyl salicylate (1 equiv), $[Ir(cod)OMe]_2$ (1 mol%), TrixiePhos (3 mol%), 1,5-COD (1 equiv), 4- D_1 -1,2-dimethoxybenzene (90.4% d_4 by ¹H NMR, 1 mL) in PTFE-lined crimp top vials. The vials were sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 hr. Crude mixtures were analyzed by ESI-MS. Correction factors are used to account for ¹³C of products.

$$k_H = I_{259} + (I_{258} - (I_{257} \times 0.16))$$

 $k_D = I_{257} \times 1.16$

Entry	Prod _H /k _H	$Prod_D/k_D$	KIE
Inter1	3332	704	4.73
Inter2	4546	983	4.62
Inter3	5577	1259	4.43
Average			4.59 ± 0.15
Intra1	1057	687	1.54
Intra2	770	457	1.68
Intra3	1437	843	1.70
Average			1.64 ± 0.09

Table S10. Product ratios and KIE values from inter- and intramolecular competition experiments

Cumulative effect of secondary isotope effects and differential reversibility on observed intermolecular KIE

Rate with respect to the formation of $[VII_H]$ is

$$\frac{\Delta[VII_H]}{\Delta t} = k_H[VI_{\sigma H}] - k_{-H}[VII_H] \tag{1}$$

Steady-state approximation on $[VI_{\sigma H}]$

$$0 = \frac{\Delta[VI_{\sigma H}]}{\Delta t} = k_{\sigma H}[VI_{\pi H}] + k_{-H}[VII_{H}] - k_{-\sigma H}[VI_{\sigma H}] - k_{H}[VI_{\sigma H}]$$
(2)

$$[VI_{\sigma H}] = \frac{k_{\sigma H}[VI_{\pi H}] + k_{-H}[VII_{H}]}{k_{-\sigma H} + k_{H}}$$

$$\tag{3}$$

Substitute Equation 3 into Equation 1

$$\frac{\Delta[VII_H]}{\Delta t} = \frac{k_H k_{\sigma H} [VI_{\pi H}] - k_{-H} k_{-\sigma H} [VII_H]}{k_{-\sigma H} k_H} \tag{4}$$

Steady state approximation on $[VI_{\pi H}]$

$$0 = \frac{\Delta[VI_{\pi H}]}{\Delta t} = k_{\pi H}[III][DMB - H_4] + k_{-\sigma H}[VI_{\sigma H}] - k_{-\pi H}[VI_{\pi H}] - k_{\sigma H}[VI_{\pi H}]$$
(5)

Substitute Equation 3 into Equation 5 $\,$

$$0 = \frac{k_{\sigma H}k_{-\sigma H}[VI_{\pi H}] + k_{-H}k_{-\sigma H}[VII_{H}]}{k_{-\sigma H} + k_{H}} + k_{\pi H}[III][DMB - H_{4}] - k_{-\pi H}[VI_{\pi H}] - k_{\sigma H}[VI_{\pi H}]$$
(6)

$$[VI_{\pi H}] = \frac{K_{-\sigma H}k_{\pi H}[III][DMB - H_4] + k_H k_{\pi H}[III][DMB - H_4] + k_{-H}k_{-\sigma H}[VII_H]}{k_{-\sigma H}k_{-\pi H} + k_H k_{-\pi H} + k_H k_{-\sigma H}}$$
(7)

Substitute Equation 7 into Equation 4 $\,$

$$\frac{\Delta[VII_H]}{\Delta t} = \frac{k_H k_{\sigma H} k_{\pi H} [III] [DMB - H_4] (k_{-\sigma H} + k_H) + k_{-H} k_{-\sigma H} k_{-\pi H} [VII_H] (k_{-\sigma H} - k_H)}{k_H^2 k_{\sigma H} + k_H^2 k_{-\pi H} + 2k_H k_{-\sigma H} k_{-\pi H} + k_H k_{\sigma H} k_{-\sigma H} + k_{-\sigma H}^2 k_{-\pi H}}$$
(8)

The second term in numerator should be negligible relative to the first term, so Equation 8 simplifies to

$$\frac{\Delta[VII_H]}{\Delta t} = \frac{k_H k_{\sigma H} k_{\pi H} [III] [DMB - H_4] (k_{-\sigma H} + k_H)}{k_H^2 k_{\sigma H} + k_H^2 k_{-\pi H} + 2k_H k_{-\sigma H} k_{-\pi H} + k_H k_{\sigma H} k_{-\sigma H} + k_{-\sigma H}^2 k_{-\pi H}}$$
(9)

Therefore

$$\frac{\Delta[VII_D]}{\Delta t} = \frac{k_D k_{\sigma D} k_{\pi D} [III] [DMB - D_4] (k_{-\sigma D} + k_D)}{k_D^2 k_{\sigma D} + k_D^2 k_{-\pi D} + 2k_D k_{-\sigma D} k_{-\pi D} + k_D k_{\sigma D} k_{-\sigma D} + k_{-\sigma D}^2 k_{-\pi D}}$$
(10)

 $KIE_{intermolecular}$ can be described as $\frac{\frac{\Delta[VII_{H}]}{\Delta t}}{\frac{\Delta[VII_{D}]}{\Delta t}}$ so

$$\frac{\frac{\Delta[VII_{H}]}{\Delta t}}{\frac{\Delta[V}{\Delta t}} = \frac{\frac{k_{H}k_{\sigma H}k_{\pi H}[III][DMB-H_{4}](k_{-\sigma H}+k_{H})}{k_{D}k_{\sigma D}k_{\pi D}[III][DMB-D_{4}](k_{-\sigma D}+k_{D})} \frac{k_{D}^{2}k_{\sigma D}k_{\pi D}+k_{D}^{2}k_{-\pi D}+k_{D}k_{-\sigma D}k_{-\pi D}+k_{D}k_{-\sigma D}k_{-\pi D}}{k_{H}^{2}k_{\sigma H}+k_{H}^{2}k_{-\pi H}+2k_{H}k_{-\sigma H}k_{-\pi H}+k_{H}k_{\sigma H}k_{-\sigma H}+k_{-\sigma H}^{2}k_{-\pi H}}$$
(11)

Because $[DMB - H_4]_i = [DMB - D_4]_i$ and $\Delta[DMB] << [DMB]_i$, $[DMB - H_4] = [DMB - D_4]$

$$\frac{\underline{\Delta}[VII_H]}{\underline{\Delta}t}_{\underline{\Delta}t} = \left(\frac{k_H}{k_D}\right) \frac{k_{\sigma H}k_{\pi H}}{k_{\sigma D}k_{\pi D}} \frac{k_{-\sigma H} + k_H}{k_{-\sigma D} + k_D} \frac{k_D^2 k_{\sigma D} + k_D^2 k_{-\pi D} + 2k_D k_{-\sigma D} k_{-\pi D} + k_D k_{\sigma D} k_{-\sigma D} + k_{-\sigma D}^2 k_{-\pi D}}{k_H^2 k_{\sigma H} + k_H^2 k_{-\pi H} + 2k_H k_{-\sigma H} k_{-\pi H} + k_H k_{\sigma H} k_{-\sigma H} + k_{-\sigma H}^2 k_{-\pi H}}$$
(12)

ARENE SUBSTRATE SCOPE

Although we used [Ir(cod)OPh]₂ during our optimization study, we found that commercially available [Ir(cod)OMe]₂ was more convenient in our substrate scope study.

Procedure A. TrixiePhos (10 mg, 0.024 mmol, 3 mol%), $[Ir(cod)OMe]_2$ (5 mg, 0.008 mmol, 1 mol%), phenyl salicylate (0.171 g, 0.8 mmol, 1 equiv), 1,5-COD (98 µL, 0.8 mmol, 1 equiv), and arene (8 mL, 0.1 M) were added to a 10 mL PTFE-lined crimp-top vial. The vial was sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 h. The solvent was removed *in vacuo*. Oligomer and residual starting material were hydrolyzed (see general procedure below), and the aqueous layer was extracted with ethyl acetate (3 × 12 mL). The organic extracts were dried over Na₂SO₄ and concentrated. The crude product was purified by column chromatography.

Procedure B. TrixiePhos (14 mg, 0.036 mmol, 3 mol%), $[Ir(cod)OMe]_2$ (8 mg, 0.012 mmol, 1 mol%), phenyl salicylate (0.257 g, 1.2 mmol, 1 equiv), 1,5-cyclooctadiene (1,5-COD, 147 µL, 1.2 mmol, 1 equiv), and arene (12 mL, 0.1 M) were added to a dry 15 mL pressure tube. The pressure tube was sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 h. The solvent was removed *in vacuo*. Oligomer and residual starting material were hydrolyzed (see general procedure below), and the aqueous layer was extracted with ethyl acetate (3 × 15 mL). The organic extracts were dried over Na₂SO₄ and concentrated. The crude product was purified by column chromatography.

Procedure C. Followed procedure B, then after 20 hr, the reaction mixture was cooled to rt, brought into the glovebox, where TrixiePhos (14 mg, 0.036 mmol, 3 mol%) and $[Ir(cod)OMe]_2$ (8 mg, 0.012 mmol, 1 mol%) was added. The pressure tube was sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 h. The solvent was removed *in vacuo*. Oligomer and residual starting material were hydrolyzed (see general procedure below), and the aqueous layer was extracted with ethyl acetate (3 × 15 mL). The organic extracts were dried over Na₂SO₄ and concentrated. The crude product was purified by column chromatography.

Procedure D. Followed procedure A, then after 20 h, the reaction mixture was cooled to rt, brought into the glovebox, and TrixiePhos (10 mg, 0.024 mmol, 3 mol%) and $[Ir(cod)OMe]_2$ (5 mg, 0.008 mmol, 1 mol%) was added. The vial was sealed, removed from the glovebox, and heated to 170 °C for 20 h. The solvent was removed *in vacuo*. Oligomer and residual starting material were hydrolyzed (see general procedure below), and the aqueous layer was extracted with ethyl acetate (3 × 12 mL). The organic extracts were dried over Na₂SO₄ and concentrated. The crude product was purified by column chromatography.

General procedure for hydrolysis. Crude material was dissolved in toluene (10 mL), NaOH (30%, 5 mL for procedure A/C, 6.5 mL for procedure B/D) was added, and the mixture was allowed to stir overnight. The mixture was cooled to 0 °C, and HCl (6 M, 7 mL for Procedure A/C, 8 mL for Procedure B or D) was added dropwise.

(3,5-dimethylphenyl)(2-hydroxyphenyl)methanone (**2aa1**), (2,4-dimethylphenyl)(2-hydroxyphenyl)methanone (**2aa2**). Prepared using procedure A. Brown oil (0.110 g, 0.487 mmol, 61%) as an inseparable mixture of regioisomers (11:1 **2aa1:2aa2**). $R_f = 0.31$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) **2aa1**: δ 12.07 (s, 1H), 7.60 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 (ddd, J = 8.4, 6.8, 1.6 Hz, 1H), 7.27 (br s, 2H), 7.22 (br s, 1H), 7.06 (dd, J = 8.4, 0.8 Hz, 1H), 6.87 (dd, J = 8.0, 7.2, 1.2 Hz, 1H), 2.39 (s, 6H); **2aa2**: δ 12.28 (s, 1H), 7.33 (dd, J = 8.0, 1.6 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.13–7.08 (m, 2H), 6.80 (ddd, J = 8.4, 7.6, 1.6 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, only **2aa1** observed) δ 202.3, 163.3, 138.2, 138.1, 136.3, 133.8, 133.7, 127.0, 119.4, 118.7, 118.5, 21.4. IR (neat) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃O₂ [M–H]⁻ *m/z* 225.0921; found 225.0927.

(3,5-dimethoxyphenyl)(2-hydroxyphenyl)methanone (**2ab1**). Prepared using procedure C with no hydrolysis in the same reaction as **2ab2**; isolated by column chromatography. Brown oil (0.099 g, 0.384 mmol, 48%). $R_f = 0.33$ (5% ethyl acetate in hexanes with 1% acetic acid additive). ¹H NMR (400 MHz, CDCl₃) δ 11.96 (s, 1H), 7.64 (dd, J = 8.0, 1.6 Hz, 1H), 7.49 (ddd, J = 8.8, 7.2, 2.0 Hz, 1H), 7.05 (dd, J = 8.4, 0.8 Hz), 6.86 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 6.78 (d, J = 2.4 Hz, 2H), 6.65 (t, J = 2.4 Hz, 1H), 3.82 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 201.5, 163.3, 160.7, 139.8, 136.6, 133.7, 119.2, 118.8, 118.5, 107.1, 104.1, 55.7. IR (neat) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃O₄ [M–H]⁻ m/z 257.0819; found 257.0826.

(2,4-dimethoxyphenyl)(2-hydroxyphenyl)methanone (**2ab2**). Prepared using procedure C with no hydrolysis in the same reaction as **2ab1**; isolated by column chromatography. Brown oil (0.066 g, 0.256 mmol, 32%). $R_f = 0.22$ (5% ethyl acetate in hexanes with 1% acetic acid additive). ¹H NMR (400 MHz, CDCl₃) δ 12.22 (s, 1H), 7.45 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.40 (dd, J = 8.0, 1.6 Hz, 1H), 7.28 (d, J = 8.4 H, 1H), 7.01 (dd, J = 8.4, 1.2 Hz, 1H), 6.80 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 6.56 (dd, J = 8, 2 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 3.87 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.3, 163.3, 163.0, 158.7, 136.2, 133.9, 131.1, 120.9, 120.6, 118.6, 118.1, 104.7, 99.0, 55.8, 55.7. IR (thin film, CH₂Cl₂) 1606 cm⁻¹. HRMS (ESI) calcd for Cl₁₅H₁₃O₄ [M–H]⁻ m/z 257.0819; found 227.0832.

(3-methoxy-5-methylphenyl)(2-hydroxyphenyl)methanone (**2ac1**), (4-methoxy-2-methylphenyl)(2-hydroxyphenyl)methanone (**2ac3**). Prepared using procedure A in the same reaction as **2ac2**; isolated by column chromatography as an inseparable mixture of isomers (9:1 **2ac1**: **2ac3**). Yellow oil (0.109 mg, 0.450 mmol, 57%) $R_f = 0.42$ (10% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) **2ac1**: δ 12.01 (s, 1H), 7.62 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.08–7.04 (m, 2H), 7.00–6.98 (m, 1H), 6.95–6.93 (m, 1H), 6.87 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 3.84 (s, 3H), 2.40 (s, 3H); **2ac3**: δ 12.27 (s, 1H), 7.37 (dd, J = 8.0, 1.8 Hz, 1H), 6.84–6.76 (m, 3H), 3.86 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, only **2ac1** observed) δ 201.8, 163.3, 159.6, 139.9, 139.2, 136.5, 133.8, 122.5, 119.3, 118.81, 118.76, 118.5, 111.3, 55.6, 21.7. IR (thin film, CH₂Cl₂) 1627 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₄O₃ [M–H]⁻ *m/z* 241.0870; found 241.0870.

(2-methoxy-4-methylphenyl)(2-hydroxyphenyl)methanone (**2ac2**). Prepared using procedure A in the same reaction as **2ac1** and **2ac3**; isolated by column chromatography. Yellow solid (0.027 g, 0.11 mmol, 14%). mp = 97–99 °C. $R_f = 0.31$ (10% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.21 (s, 1H), 7.45 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.36 (dd, J = 8.0, 1.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.02 (dd, J = 8.4, 9.2 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.82 (s, 1H), 6.79 (t, J = 8.0 Hz, 1H), 3.76 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 163.0, 156.9, 142.8, 136.4, 134.0, 129.2, 125.2, 121.3, 120.5, 118.7, 118.1, 112.4, 55.7, 22.0. IR (thin film, CH₂Cl₂) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₄O₃ [M–H]⁻ *m/z* 241.0870; found 241.0875.

Methyl 5-(2-hydroxybenzoyl)-3-methylbenzoate $(2ad)^2$. Prepared using procedure A with no hydrolysis. Brown oil (0.086 g, 0.321 mmol, 40%). $R_f = 0.24$ (10% diethyl ether in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.94 (s, 1H), 8.12 (br s, 1H), 8.08 (br s, 1H), 7.68 (br s, 1H), 7.53 (ddd, J = 8, 6.4, 1.6 Hz, 2H), 7.09 (dd, J = 8.8, 1.2 Hz), 6.95–6.85 (m, 2H), 3.94 (s, 3H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 166.5, 163.4, 139.1, 138.4, 136.8, 133.8, 133.5, 133.5, 130.4, 127.6, 119.1, 119.0, 118.7, 52.5,

² Arene prepared following procedure detailed in *Bioorganic & Medicinal Chemistry* **2006**, 14, 6106-6119

21.4. IR (thin film, CH₂Cl₂) 1725, 1628 cm⁻¹. HRMS (ESI) calcd for $C_{16}H_{13}O_4 [M-H]^- m/z$ 269.0819; found 269.0830.

(3,4-dimethylphenyl)(2-hydroxyphenyl)methanone (**2af**). Prepared using procedure C. Yellow oil (0.143 g, 0.630 mmol, 79%). mp = 74–77 °C. $R_f = 0.27$ (4% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.06 (s, 1H), 7.63 (dd, J = 8.0, 1.6 Hz, 1H), 7.52–7.47 (m, 2H), 7.42 (dd, J = 8.0, 2.0 Hz, 1H), 7.06 (dd, J = 8.4, 0.8 Hz, 1H), 6.87 (ddd, J = 8.4, 7.6, 2.0, 1H), 7.26 (d, J = 7.3 Hz, 1H), 2.36 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.5, 163.1, 141.4, 136.9, 136.0, 135.6, 133.6, 130.4, 129.5, 127.1, 119.4, 118.5, 118.3, 20.0, 19.8. IR (thin film, CH₂Cl₂) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃O₂ [M–H]⁻ *m/z* 225.0921; found 225.0921.

(3,4-dimethoxyphenyl)(2-hydroxyphenyl)methanone (**2ag**). Prepared using procedure A with no hydrolysis. Brown solid (0.192 g, 0.74 mmol, 93%). mp = 67–68 °C. $R_f = 0.29$ (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.88 (s, 1H), 7.67 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.33 (dd, J = 8.4, 2.0 Hz, 1H), 7.31 (d, J = 2.0 Hz, 1H), 7.07 (dd, J = 8.4, 0.9 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.89 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.1, 163.0, 152.8, 149.1, 136.0, 133.4, 130.5, 124.4, 119.5, 118.6, 118.5, 112.2, 110.1, 56.3, 56.2. IR (thin film, CH₂Cl₂) 1624 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃O₄ [M–H]⁻ m/z 257.0819; found 257.0829.

2-hydroxyphenyl)(4-methoxy-3-methylphenyl)methanone (**2ah1**). Prepared using procedure A in the same reaction as **2ah2**; isolated by column chromatography. Yellow oil (0.098 g, 0.404 mmol, 50%). $R_f = 0.21$ (4% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.00 (s, 1H), 7.66 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 (ddd, J = 8.8, 7.6, 1.6 Hz, 1H), 7.24 (dd, J = 8.0, 0.8 Hz, 1H), 7.19 – 7.16 (m, 2H), 7.07 (dd, J = 8.4, 0.8 Hz, 1H), 6.88 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 3.89 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.4, 163.2, 157.9, 136.7, 136.2, 133.7, 131.9, 130.2, 122.2, 119.4, 118.7, 118.5, 110.3, 55.6, 16.6. IR (neat) 1629 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₅O₅ [M–H]⁻ m/z 241.0870; found 241.0865.

(2-hydroxyphenyl)(3-methoxy-4-methylphenyl)methanone (**2ah2**). Prepared using procedure A in the same reaction as **2ah1**; isolated by column chromatography. Yellow solid (0.039 g, 0.16 mmol, 20%). mp = 75-76 °C. $R_f = 0.16$ (4% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.99 (s, 1H), 7.65 (dd, J = 8, 1.6 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.49 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.06 (dd, J = 8.4, 0.8 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.88 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 3.92 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 162.9, 161.2, 135.7, 133.4, 132.1, 129.9, 129.7, 127.0, 119.5, 118.4, 118.3, 109.1, 55.6, 16.3. IR (thin film, CH₂Cl₂) 1625 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₅O₅ [M–H]⁻ m/z 241.0870; found 241.0877.

Methyl 5-(2-hydroxybenzoyl)-2-methoxybenzoate (**2ai**). Prepared using procedure A with no hydrolysis. Yellow solid (0.113 g, 0.394 mmol, 49%). mp = 117–119 °C. $R_f = 0.07$ (25% ethyl acetate in hexanes with 2% acetic acid additive). ¹H NMR (400 MHz, CDCl₃) δ 11.85 (s, 1H), 8.21 (d, J = 2.4 Hz), 7.89 (dd, J = 8.8, 2.4 Hz, 1H), 7.59 (dd, J = 8.0, 1.6 Hz, 1H), 7.52 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.12–7.06 (m, 2H), 6.91 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 4.01 (s, 3H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.3, 165.8, 163.1, 162.1, 136.3, 135.2, 133.7, 133.2, 129.9, 120.1, 119.2, 118.9, 118.6, 111.9, 56.5, 52.5. IR (thin film, CH₂Cl₂) 1731, 1626 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₃O₅ [M–H]⁻ m/z 285.0768; found 285.0762.

(2-hydroxyphenyl)(4-methoxy-3-(trifluoromethyl)phenyl)methanone (**2aj**). Prepared using procedure A light yellow solid (0.083 g, 0.280 mmol, 35%). mp = 68–70 °C. R_f = 0.34 (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.79 (s, 1H), 7.99 (d, *J* = 1.9 Hz, 1H), 7.91 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.59–7.49 (m, 2H), 7.12 (d, *J* = 8.7 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.91 (t, *J* = 7.6 Hz, 1H), 4.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.0, 163.2, 160.6, 136.5, 135.3, 133.0, 129.9, 129.2 (q, *J* = 5.3 Hz), 124.5, 121.8, 119.2 – 118.8 (m), 118.7, 111.7, 56.5. IR (thin film, CH₂Cl₂) 1632 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₄ [M–H]⁻ *m*/z 295.0588, found 295.0598.

(2,5-dimethylphenyl)(2-hydroxyphenyl)methanone (**2ak**). Prepared using procedure C. Due to low yield, the product was unable to be fully purified, and is obtained with minor impurities. Brown oil (0.026 g, 0.114 mmol, 14%). $R_f = 0.43$ (10% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.26 (s, 1H), 7.49 (ddd, J = 8.8, 7.6, 1.6 Hz, 2H), 7.31 (dd, J = 8.0, 1.6 Hz, 1H), 7.21 (dd, J = 8.0, 2.0 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.07 (br s, 1H), 7.05 (dd, J = 8.0, 0.8 Hz, 1H), 2.35 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.8, 163.4, 137.9, 136.8, 135.1, 133.9, 132.4, 131.0, 130.9, 128.0, 120.1, 119.0, 118.4, 21.0, 19.2. IR (neat) 1629 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃O₂ [M–H]⁻ m/z 225.0921; found 225.0932.

(2-fluoro-5-methylphenyl)(2-hydroxyphenyl)methanone (**2al**). Prepared using procedure C. Brown oil (0.024 g, 0.104 mmol, 9%). $R_f = 0.47$ (10% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.98 (s, 1H), 7.51 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.43 (ddd, J = 8.0, 2.8, 1.6 Hz, 1H), 7.32 (ddddd, J = 8.0, 7.2, 4.8, 2.4, 0.4 Hz, 1H), 7.25 (dd, J = 6.4, 2.0 Hz, 1H), 7.07 (t, J = 9.2 Hz, 1H), 7.05 (dd, J = 8.4, 0.8 Hz, 1H), 6.86 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.0, 163.1, 157.2 (d, $J_{C-F} = 247.3$), 137.1, 134.2 (d, $J_{C-F} = 3.7$ Hz), 133.6 (d, $J_{C-F} = 6.2$ Hz), 133.5 (d, $J_{C-F} = 12.0$ Hz), 130.1 (d, $J_{C-F} = 2.7$ Hz), 126.1 (d, $J_{C-F} = 15.9$ Hz), 119.9, 119.2, 118.4, 116.1 (d, J = 21.5 Hz), 20.7. ¹⁹F {¹H} NMR (377 MHz, CDCl₃) δ -117.56. IR (neat) 1629 cm⁻¹. HRMS (QTOF) calcd for C₁₄H₁₁FO₂ [M-H]⁻ *m*/*z* 230.0738; found 230.0742. "Through-space" ⁵J_{C-F} coupling has been reported in the literature.^{3,4}

(2-hydroxyphenyl)(*o*-tolyl)methanone (**2am1**), (2-hydroxyphenyl)(*m*-tolyl)methanone (**2aa2**), (2-hydroxyphenyl)(*p*-tolyl)methanone (**2am3**). Prepared using procedure B. Yellow oil (0.128 g, 0.601 mmol, 50%) as an inseparable mixture of regioisomers (1:17:17 **2am1:2am2:2am3**). $R_f = 0.44$ (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2am1**: δ 12.03 (s, 1H), 2.45 (s, 3H); **2am2**: δ 12.05 (s, 1H), 7.31 (dd, *J* = 8.0, 0.5 Hz, 2H), 2.44 (s, 3H); **2am3**: δ 12.25 (s, 1H), 6.81 (ddd, *J* = 8.5, 8, 1 Hz, 1H),

³ Jaime-Figueroa, S.; Kurz, L. J.; Liu, Y.; Cruz, R. Spectrochim. Acta, Part A 2000, 56, 1167.

⁴ Chen, J.; Reibenspies, J.; Derecskei-Kovacs, A.; Burgess, K. Chem. Commun. 1999, 2501.

2.30 (s, 3H); Overlapping signals from **2am1** and **2am2**: δ 7.63–7.58 (m), 7.53–7.44 (m), 7.41–7.36 (m), 7.07 (m), 6.87 (m). ¹³C NMR (126 MHz, CDCl₃, only **2am1** and **2am2** observed) δ 202.0, 201.5, 163.3, 163.2, 142.9, 138.4, 138.1, 136.4, 136.2, 135.3, 133.8, 133.7, 132.8, 129.7, 129.6, 129.2, 128.3, 126.5, 119.42, 119.36, 118.74, 118.68, 118.49, 118.48, 21.8, 21.5. IR (neat) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₁O₂ [M–H]⁻ *m/z* 211.0765; found 211.0769.

(2-hydroxyphenyl)(4-methoxyphenyl)methanone (2an1), (2-hydroxyphenyl)(2-

methoxyphenyl)methanone (**2an3**). Prepared using procedure C in the same reaction as **2an2**; isolated by column chromatography as an inseparable mixture (10;1 **2an1:2an3**). Brown oil (0.164 g, 0.719 mmol, 60%) . $R_f = 0.24$ (8% diethyl ether in hexanes). ¹H NMR (400 MHz, CDCl₃) **2an1**: δ 11.96 (s, 1H), 7.74–7.70 (m, 2H), 7.63 (dd, J = 8.0, 2.0 Hz, 1H), 7.49 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.02–6.97 (m, 2H), 6.88 (ddd, J = 8.4, 7.2, 1.2 Hz), 3.90 (s, 3H); **2an3**: δ 12.17 (s, 1H), 7.33 (dd, J = 8.0, 1.7 Hz, 1H), 7.29 (dd, J = 7.5, 1.8 Hz, 1H), 6.80 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, only **2an1** observed) δ 200.2, 163.1, 136.0, 133.4, 132.0, 130.5, 119.5, 118.6, 118.5, 113.8, 55.7. IR (neat) 1625 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₁O₃ [M–H]⁻ *m/z* 227.0717; found 227.0711.

(2-hydroxyphenyl)(3-methoxyphenyl)methanone (**2an2**). Prepared using procedure C in the same reaction as **2an1**; isolated by column chromatography. Brown oil (0.038 g, 0.166 mmol, 14%). $R_f = 0.32$ (8% diethyl ether in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.99 (s, 1H), 7.62 (dd, J = 8.0, 1.2 Hz, 1H), 7.51 (app t, J = 8.4 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 6.8 Hz, 1H), 7.20 (m, 1H) 7.12 (dd, J = 8.4, 2.4 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.87 (t, J = 8.0 Hz, 1H) 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.5, 163.4, 159.7, 139.3, 136.5, 133.7, 129.5, 121.8, 119.3, 118.8, 118.5, 118.1, 114.1, 55.6. IR (neat) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₁O₃ [M–H]⁻ *m/z* 227.0717; found 227.0714.

(4-(dimethylamino)phenyl)(2-hydroxyphenyl)methanone (**2ao**). Prepared using procedure C with no hydrolysis. Yellow solid (0.167 g, 0.692 mmol, 87%). mp = 58–60 °C. R_f = 0.33 (20% ethyl acetate in hexanes), 0.45 (3% ethyl acetate in benzene). ¹H NMR (400 MHz, CDCl₃) δ 12.00 (s, 1H), 7.75–7.70 (m, 2H), 7.68 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.45 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.05 (dd, *J* = 8.4, 0.8 Hz, 1H), 6.87 (ddd, *J* = 8.0, 7.2, 1.2 Hz, 1H), 6.74–6.69 (m, 2H), 3.09 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

199.0, 162.7, 153.3, 135.1, 133.2, 132.5, 125.0, 120.1, 118.4, 118.2, 110.8, 40.2. IR (thin film, CH₂Cl₂) 1621 cm⁻¹. HRMS (ESI) calcd for $C_{15}H_{14}NO_2$ [M–H]⁻ m/z 240.1030; found 240.1033.

(3,4,5-trimethoxyphenyl)(2-hydroxyphenyl)methanone (2ap1), (2,3,4-trimethoxy)(2-

hydroxyphenyl)methanone (**2ap2**). Prepared using procedure A. Yellow oil (0.176 g, 0.610 mmol, 76%) as an inseparable mixture of isomers (5:1 **2ap1:2ap2**). $R_f = 0.22$ (15% ethyl acetate in hexanes). **2ap1**: ¹H NMR (500 MHz, CDCl₃) δ 11.87 (s, 1H), 7.67 (dd, J = 6.4, 1.2 Hz, 1H), 7.52 (ddd, J = 7.0, 5.7, 1.4 Hz, 1H), 7.09 (d, J = 6.7 Hz, 1H), 6.94 (s, 2H), 6.90 (t, J = 6.0 Hz, 1H), 3.95 (s, 3H), 3.90 (s, 6H); **2ap2**: δ 12.18 (s, 1H), 7.48 (ddd, J = 6.9, 5.7, 1.4 Hz, 1H), 7.41 (dd, J = 6.4, 1.2 Hz, 1H), 7.03 (d, J = 6.8 Hz, 2H), 6.83 (t, J = 5.9 Hz, 1H), 6.74 (d, J = 6.8 Hz, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) **2ap1**: δ 200.7, 163.3, 153.1, 141.7, 136.4, 133.4, 133.1, 119.3, 118.6, 107.1, 61.2, 56.5; **2ap2**: δ 201.0, 163.1, 156.1, 151.9, 142.3, 136.6, 133.9, 125.7, 124.1, 120.4, 118.8, 118.2, 106.9, 62.1, 56.3. IR (neat) 1625 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₅O₅ [M–H]⁻ *m/z* 287.0925; found 287.0931.

(2-hydroxyphenyl)(napthanlen-2-yl)methanone (**2aq1**), (2-hydroxyphenyl)(naphthalen-1-yl)methanone (**2aq2**). Prepared using procedure A. Yellow solid (0.150 g, 0.61 mmol, 78%) as an inseparable mixture of isomers (>20:1 ratio). mp = 80–82 °C. $R_f = 0.19$ (4% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) **2aq1**: δ 12.04 (s, 1H), 8.19 (br s, 1H), 7.99–7.91 (m, 3H), 7.78 (dd, J = 8.8, 2.0 Hz, 1H), 7.68 (dd, J = 8.0, 1.6 Hz, 1H), 7.66–7.56 (m, 2H), 7.54 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.11 (dd, J = 8.4, 1.2 Hz, 1H), 6.90 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H); **2aq2**: δ 12.34 (s, 1 H). ¹³C NMR (101 MHz, CDCl₃, only **2aq1** observed) δ 201.6, 163.4, 136.5, 135.3, 135.0, 133.8, 132.3, 130.6, 129.3, 128.5, 128.4, 128.0, 127.2, 125.5, 119.5, 118.9, 118.6. IR (thin film, CH₂Cl₂) 1625 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₄O₃ [M–H]⁻ m/z 247.0765; found 247.0767.

(2-hydroxyphenyl)(1-methyl-1*H*-pyrrol-3-yl)methanone (**2ar1**). Prepared using procedure B in the same reaction as **2ar2**; isolated by column chromatography. Brown oil (0.143 g, 0.71 mmol, 59%). $R_f = 0.24$ (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.22 (s, 1H), 7.94 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.44 (ddd, *J* = 8.8, 7.2, 1.6 Hz, 1H), 7.28 (t, *J* = 2.0 Hz, 1H), 7.02 (dd, *J* = 8.0, 0.8 Hz, 1H), 6.90 (ddd, *J* = 8.0, 7.2, 1.2 Hz, 1H), 6.70–6.65 (m, 2H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8,

162.5, 135.0, 131.9, 128.5, 123.8, 123.4, 120.7, 118.6, 118.2, 111.6, 36.9. IR (neat) 1621 cm⁻¹. HRMS (ESI) calcd for $C_{12}H_{11}NO_2$ [M–H]⁻ m/z 200.0717; found 200.0720.

(2-hydroxyphenyl)(1-methyl-1*H*-pyrrol-2-yl)methanone (**2ar2**).Prepared using procedure B in the same reaction as **2ar1**; isolated by column chromatography. Brown oil (0.018 g, 0.09 mmol, 7%). $R_f = 0.48$ (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.76 (s, 1H), 7.88 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.45 (ddd, *J* = 8.8, 7.6, 1.6 Hz, 1H), 7.01 (dd, *J* = 8.0, 0.8 Hz, 1H), 6.94 (t, *J* = 2.0 Hz, 1H), 6.89 (ddd, *J* = 8.0, 7.2, 1.2 Hz, 1H), 6.83 (dd, *J* = 4.0, 1.6 Hz, 1H), 6.20 (dd, *J* = 4.0, 2.4 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.9, 162.2, 134.9, 132.3, 131.7, 129.7, 122.7, 120.7, 118.5, 118.0, 108.5, 37.1. IR (thin film, CH₂Cl₂) 1621 cm⁻¹. HRMS (ESI) calcd for C₁₂H₁₁NO₂ [M–H]⁻ *m/z* 200.0717; found 200.0719.

(2-hydroxyphenyl)(1-methyl-1*H*-indol-3-yl)methanone (**2as**). Prepared using procedure A. Brown solid (0.146 g, 0.581 mmol, 73%). mp = 111–116 °C. $R_f = 0.47$ (50% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.03 (s, 1H), 8.33 – 8.26 (m, 1H), 7.85 (dd, J = 8.0, 9.6 Hz, 1H), 7.63 (s, 1H), 7.46 (ddd, J = 8.8, 7.6, 2.0 Hz), 7.40 – 7.31 (m, 3H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 6.91 (ddd, J = 8.4, 7.6, 1.2 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 162.0, 137.5, 137.0, 134.7, 131.5, 127.4, 123.9, 122.9, 122.5, 121.5, 118.7, 118.2, 114.8, 109.9, 33.8. IR (thin film, CH₂Cl₂) 1679 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₃NO₂ [M–H]⁻ m/z 250.0874; found 250.0873.

SALICYLATE ESTERS

General procedure for salicylate ester synthesis. Salicyclic acid (10 mmol, 1 equiv) and phenol (4.70 g, 50 mmol, 5 equiv) were massed in a 5 dram reaction vial, and then 10 mL of dry toluene was added. Phosphorus oxychloride (0.61g, 0.37 mL, 4 mmol, 0.4 equiv) was dripped in to the solution via syringe. A stir bar was then added and the reaction vial was sealed. The reaction mixture was then heated at 110 °C in an aluminum heating block on a hot plate fitted with a thermocouple for 16-18 h. The mixture was allowed to cool to room temperature, transferred to a separatory funnel, and quenched with saturated aqueous sodium carbonate solution (3×10 mL). The aqueous washes were then extracted with diethyl ether (3×10 mL). The organic layers were combined, dried with sodium sulfate, and concentrated *in vacuo*. The crude product was purified by column chromatography.

Phenyl 2-hydroxy-4-methylbenzoate (**1a**). White solid (1.20 g, 5.30 mmol, 53%). mp = 43–44 °C. R_f = 0.33 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.45 (s, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.49–7.39 (m, 2H), 7.34–7.25 (m, 1H), 7.21 (d, *J* = 1.3 Hz, 1H), 7.19 (dd, *J* = 2.1, 0.9 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 162.3, 150.3, 148.2, 130.3, 129.7, 126.4, 121.8, 120.9, 118.1, 109.4, 22.1. IR (neat) 1683 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₂O₃ [M–H]⁻ *m/z* 227.0714, found 227.0724.

Phenyl 2-hydroxy-4-methoxybenzoate (**1b**). Phenol (264 mg, 2.8 mmol, 1.4 equiv), 4-methoxysalicylic acid (336.3 mg, 2.0 mmol, 1 equiv), and DMAP (49 mg, 0.4 mmol, 0.2 equiv) were dissolved in methylene chloride (8 mL). DCC (743 mg, 3.6 mmol, 1.8 equiv) was added; the reaction mixture was heated to reflux and allowed to reflux overnight. Removal of the solvent and purification by column chromatography (2% ethyl acetate in hexanes to 3% ethyl acetate in hexanes) ultimately gave a white solid (0.358 g, 1.46 mmol, 73%). mp = 59–61 °C. R_f = 0.28 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.49–7.39 (m, 2H), 7.34–7.25 (m, 1H), 7.24–7.15 (m, 2H), 6.53 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.50 (d, *J* = 2.4 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 166.4, 164.7, 150.4, 131.9, 129.7, 126.3, 121.9, 108.2, 105.0, 101.0, 55.7. IR (neat) 1671 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₂O₄ [M–H]⁻ *m/z* 243.0663, found 243.0661.

Phenyl 4-fluoro-2-hydroxybenzoate (**1c**). White solid (1.20 g, 5.20 mmol 52%). mp = 58–60 °C. R_f = 0.32 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.73 (d, *J* = 1.6 Hz, 1H), 8.09 (dd, *J* = 8.9, 6.5 Hz, 1H), 7.51–7.40 (m, 2H), 7.37–7.27 (m, 1H), 7.24–7.16 (m, 2H), 6.77–6.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 167.9 (d, *J*_{C-F} = 255.4 Hz), 164.5 (d, *J*_{C-F} = 14.3 Hz), 150.1, 132.8 (d, *J*_{C-F} = 11.5 Hz), 129.6, 126.6, 121.7, 108.8 (d, *J*_{C-F} = 2.4 Hz), 108.0 (d, *J*_{C-F} = 22.7 Hz), 104.8 (d, *J*_{C-F} = 24.4 Hz). ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ –99.65. IR (neat) 1682 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉FO₃ [M–H]⁻ *m/z* 231.0463, found 231.0473.

Phenyl 2-hydroxy-4-(trifluoromethyl)benzoate (**1d**). White solid (1.24 g, 4.40 mmol, 44%). mp = 68–69 °C. $R_f = 0.39$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.63 (s, 1H), 8.20 (d, *J* = 8.3 Hz, 1H), 7.52–7.41 (m, 2H), 7.37–7.28 (m, 2H), 7.24–7.18 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 162.2, 150.0, 137.7 (q, *J*_{C-F} = 32.9 Hz), 131.4, 129.9, 127.3, 123.2 (q, *J*_{C-F} = 273.8 Hz), 121.5, 115.8 (q, *J*_{C-F} = 3.6 Hz), 115.3 (q, *J*_{C-F} = 4.0 Hz), 114.6. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ –63.85. IR (neat) 1686 cm⁻¹. HRMS (ESI) calcd for C₁₄H₉F₃O₃ [M–H]⁻ *m*/*z* 281.0431, found 281.0436.

Phenyl 2,4-dihydroxybenzoate (**1e**). White solid (0.65g, 2.80 mmol, 28%). mp = 144–145 °C. $R_f = 0.28$ (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.73 (s, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.4 Hz, 1H), 6.47–6.38 (m, 2H), 5.78 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 164.3, 162.8, 150.2, 132.6, 129.8, 126.5, 121.8, 108.5, 105.4, 103.5, 77.5, 77.2, 76.8. IR (neat) 1658 cm⁻¹. HRMS (ESI) calcd for C₁₃H₁₀O₄ [M–H]⁻ *m*/*z* 229.0506, found 229.0510 (avg of 6).

Phenyl 4-chloro-2-hydroxybenzoate (**1f**). White solid (1.47g, 5.9 mmol, 59%). mp = 52–53 °C. R_f = 0.40 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 8.00 (d, *J* = 8.6 Hz, 1H), 7.50–7.40 (m, 2H), 7.36–7.27 (m, 1H), 7.24–7.16 (m, 2H), 7.06 (d, *J* = 2.0 Hz, 1H), 6.95 (dd, *J* = 8.6, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 162.8, 150.1, 142.5, 131.5, 129.8, 126.7, 121.7, 120.4, 118.2, 110.6. IR (neat) 1673 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉ClO₃ [M–H]⁻ *m/z* 247.0167, found 247.0161.

Phenyl 2-hydroxy-5-methylbenzoate (**1g**). White solid (1.61 g, 7.70 mmol, 77%). mp = 87–89 °C. $R_f = 0.36$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 7.86 (d, J = 2.2 Hz, 1H),

7.50–7.39 (m, 2H), 7.34 (dd, J = 8.5, 2.3 Hz, 1H), 7.35–7.26 (m, 1H), 7.24–7.16 (m, 3H), 6.94 (d, J = 8.5 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 160.3, 150.3, 137.6, 130.1, 129.8, 128.8, 126.5, 121.8, 117.7, 111.5, 20.6. IR (neat) 1682 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₂O₃ [M–H]⁻ m/z 227.0714, found 227.0707.

Phenyl 2-hydroxy-5-methoxybenzoate (**1h**). White solid (0.75 g, 3.10 mmol, 31%). mp = 40–41 °C. $R_f = 0.26$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.51 (d, J = 3.1 Hz, 1H), 7.51–7.40 (m, 2H), 7.36–7.27 (m, 1H), 7.27–7.15 (m, 2H), 7.16 (dd, J = 9.1, 3.2 Hz, 1H), 6.98 (d, J = 9.1 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 156.9, 152.3, 150.2, 129.8, 126.6, 125.2, 121.8, 119.0, 112.1, 111.4, 77.5, 77.2, 76.8, 56.1. IR (neat) 1687 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₂O₄ [M–H]⁻ *m/z* 243.0663, found 243.0653 (avg of 8).

Phenyl 5-chloro-2-hydroxybenzoate (**1i**). White solid (1.30 g, 5.20 mmol, 52%). mp = 94–96 °C. R_f = 0.39 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 8.04 (d, *J* = 2.7 Hz, 1H), 7.52–7.41 (m, 3H), 7.37–7.27 (m, 1H), 7.22–7.18 (m, 2H), 6.99 (d, *J* = 8.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 160.9, 150.0, 136.5, 129.8, 129.7, 126.7, 124.4, 121.6, 119.6, 112.9, 77.5, 77.2, 76.8. IR (neat) 1685 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉ClO₃ [M–H]⁻ *m/z* 247.0167, found 247.0179 (avg of 6).

Phenyl 2-hydroxy-3-methylbenzoate (**1j**). White solid (0.76 g, 3.30 mmol, 33%). mp = 145–145 °C. $R_f = 0.45$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.76 (s, 1H), 7.93 (dd, J = 8.0, 1.7 Hz, 1H), 7.49–7.40 (m, 2H), 7.39 (ddt, J = 7.4, 1.7, 0.8 Hz, 1H), 7.35–7.25 (m, 1H), 7.24–7.17 (m, 2H), 6.87 (t, J = 7.7 Hz, 1H), 2.30 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 160.8, 150.3, 137.4, 129.8, 128.0, 127.1, 126.5, 121.8, 118.9, 111.2, 15.8. IR (neat) 1685 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₂O₃ [M–H]⁻ m/z 227.0714, found 227.0725 (avg of 6).

Phenyl 2-hydroxy-4-nitrobenzoate (**1k**). White solid (3 mmol scale, 0.237 g, 0.90 mmol, 30 %). mp = 148–150 °C. $R_f = 0.36$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.73 (s, 1H), 8.27 (d, *J* = 8.7 Hz, 1H), 7.87 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 162.7, 152.7, 149.8, 131.9, 130.0, 127.1, 121.5, 116.8, 113.9, 113.4. IR (neat) 1686 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉NO₅ [M–H]⁻ *m*/*z* 258.0408, found 258.0420.

Phenyl 2-hydroxy-5-nitrobenzoate (**1**). White solid (1.558 g, 6.01 mmol 60%). mp = 148–150 °C. R_f = 0.18 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.17 (s, 1H), 9.04 (d, *J* = 2.8 Hz, 1H), 8.42 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.54–7.44 (m, 2H), 7.41–7.31 (m, 1H), 7.28–7.20 (m, 2H), 7.16 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.8, 149.8, 140.4, 131.3, 130.0, 127.2, 127.1, 121.5, 119.1, 111.9. IR (neat) 1693 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉NO₅ [M–H]⁻ *m*/*z* 258.0408, found 258.0418.

Phenyl 2,6-dihydroxybenzoate (**1m**). White solid (0.88 g, 3.80 mmol, 38%). mp = 91–94 °C. $R_f = 0.36$ (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 2H), 7.54–7.44 (m, 2H), 7.44–7.33 (m, 2H), 7.27–7.18 (m, 2H), 6.56 (d, J = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 161.3, 148.6, 137.6, 130.1, 127.5, 122.1, 108.7, 99.8. IR (neat) 1683 cm⁻¹. HRMS (ESI) calcd for $C_{13}H_{10}O_4$ [M–H]⁻ m/z 229.0506, found 229.0508 (avg of 11).

Phenyl 4-bromo-2-hydroxybenzoate (**1n**). Off-white solid (5 mmol scale, 1.16g, 3.95 mmol, 79%). mp = 69-72 °C. R_f = 0.38 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.57 (s, 1H), 7.92 (d, J

= 8.5 Hz, 1H), 7.50–7.40 (m, 2H), 7.36–7.27 (m, 1H), 7.24 (d, J = 1.9 Hz, 1H), 7.24–7.16 (m, 2H), 7.11 (dd, J = 8.5, 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 162.7, 150.0, 131.4, 131.0, 129.8, 126.7, 123.2, 121.7, 121.3, 111.0. IR (neat) 1673 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉BrO₃ [M–H]⁻ m/z 290.9662, found 290.9667.

Phenyl 5-bromo-2-hydroxybenzoate (**10**). White solid (1.11 g, 3.80 mmol, 38%). mp = 94–96 °C. R_f = 0.36 (5% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 10.45 (s, 1H), 8.19 (d, *J* = 2.5 Hz, 1H), 7.61 (dd, *J* = 8.9, 2.6 Hz, 1H), 7.51–7.41 (m, 2H), 7.37–7.27 (m, 1H), 7.23–7.18 (m, 2H), 6.94 (d, *J* = 8.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 161.3, 150.0, 139.3, 132.7, 129.9, 126.8, 121.6, 120.0, 113.5, 111.3, 77.5, 77.2, 76.8. IR (neat) 1694 cm⁻¹. HRMS (ESI) calcd for C₁₃H₉BrO₃ [M–H]⁻ *m/z* 290.9662, found 290.9653.

Phenyl 5-amino-2-hydroxybenzoate (**1p**). Brown solid (0.383 g, 1.70 mmol, 17%). mp = 72–73 °C. R_f = 0.28 (40% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.49–7.39 (m, 2H), 7.37 (d, *J* = 2.9 Hz, 1H), 7.34–7.25 (m, 1H), 7.24–7.15 (m, 2H), 6.94 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 3.52 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 155.6, 150.3, 138.7, 129.7, 126.4, 125.3, 121.8, 118.6, 114.9, 111.7, 77.5, 77.2, 76.8. IR (neat) 1678 cm⁻¹. HRMS (ESI) calcd for C₁₃H₁₁NO₃ [M–H]⁻ *m/z* 228.0666, found 228.0679 (avg of 8).

SALICYLATE SUBSTRATE SCOPE

For all acylations of *m*-xylene, yield determined for the desired products based on relative integration in the ¹H NMR.

(3,5-dimethylphenyl)(2-hydroxy-4-methylphenyl)methanone (**2ba1**), (2,4-dimethylphenyl)(2-hydroxy-4-methylphenyl)methanone (**2ba2**): Prepared using procedure C; isolated by column chromatography. Yellow solid (0.086g, 0.358 mmol, 45%), as an inseparable mixture (2.3:1 **2ba1/2ba2:2aa1**, 10:1

2ba1:**2ba2**). $R_f = 0.36$ (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2ba1**: δ 12.15 (s, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.26–7.22 (m, 2H), 7.20 (m, 1H), 6.88–6.85 (m, 1H), 6.68 (dd, J = 8.2, 1.6 Hz, 1H), 2.39 (s, 3H), 2.38 (s, 6H); **2ba2**: δ 11.95 (s, 1H). ¹³C NMR (126 MHz, CDCl₃, only **2ba1** observed) δ 201.7, 163.5, 148.0, 138.3, 138.1, 133.7, 133.4, 126.9, 120.0, 118.5, 117.2, 22.1, 21.4. IR (neat) 1624 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₂ [M–H]⁻ m/z 239.1078, found 239.1086.

(3,5-dimethylphenyl)(2-hydroxy-4-methoxyphenyl)methanone (**2bb1**), (2,4-dimethylphenyl)(2-hydroxy-4-methoxyphenyl)methanone (**2bb2**). Prepared using procedure C; isolated by column chromatography. Brown oil (0.0769g, 0.300 mmol, 38%), as an inseparable mixture (4:1 **2bb1/2bb2:2aa1**, 10:1 **2bb1:2bb2**). $R_f = 0.28$ (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2bb1**: δ 12.72 (s, 1H), 7.52 (d, J = 9.0 Hz), 7.22 (br s, 2H), 6.51 (d, J = 2.5 Hz, 1H), 6.41 (dd, J = 9.0, 2.5 Hz, 1H), 3.86 (s, 3H), 2.38 (s, 6H); **2bb2**: δ 12.83 (s, 1H), 3.85 (s, 3H), 2.38 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) only **2bb1** observed) δ 200.7, 166.4, 166.3, 138.5, 135.5, 133.9, 133.2, 126.7, 113.4, 107.4, 101.2, 55.8, 21.4. IR (neat) 1621 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₃ [M–H]⁻ m/z 256.1099, found 255.1036.

(3,5-dimethylphenyl)(4-fluoro-2-hydroxyphenyl)methanone (**2bc1**), (2,4-dimethylphenyl)(4-fluoro-2-hydroxyphenyl)methanone (**2bc2**). Prepared using procedure C; isolated by column chromatography. Yellow oil (0.102g, 0.416 mmol, 52%), as an inseparable mixture (4:1 **2bc1/2bc2:2aa1**, >20:1 **2bc1:2bc2**). $R_f = 0.32$ (5% Ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2bc1**: δ 12.46 (d, ⁵*J*_{H-F} = 1.5 Hz, 1H), 7.62 (dd, *J* = 9.0, 6.6 Hz, 1H), 7.24–7.23 (m, 2H), 7.23–7.21 (m, 1H), 6.74 (dd, *J* = 10.4, 2.5 Hz, 1H), 6.58 (ddd, *J* = 9.0, 8.0, 2.5 Hz, 1H) 2.39 (s, 6H); **2bc2**: δ 12.63 (d, ⁵*J*_{H-F} = 1.4 Hz, 1H), 2.39 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) -98.79 (q, *J* = 8.6 Hz). ¹³C NMR (126 MHz, CDCl₃, only **2bc1** observed) δ 201.2, 167.5 (d, ¹*J*_{C-F} = 257.1 Hz), 165.9 (d, ³*J*_{C-F} = 14.2 Hz), 138.3, 138.0, 136.2 (d, ³*J*_{C-F} = 11.7 Hz), 126.8, 116.5 (d, ⁴*J*_{C-F} = 2.2 Hz), 107.0 (d, ²*J*_{C-F} = 22.5 Hz), 105.1 (d, ²*J*_{C-F} = 23.8 Hz), 21.4. ¹⁹F NMR (471 MHz, CDCl₃) –99.43 (q, *J* = 8.3 Hz). IR (neat) 1623 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃FO₂ [M–H]⁻ *m/z* 243.0827, found 243.0833.

(3,5-dimethylphenyl)(2-hydroxy-4-(trifluoromethyl)phenyl)methanone (**2bd1**), (2,4-dimethylphenyl)(2-hydroxy-4-(trifluoromethyl)phenyl)methanone (**2bd2**). Prepared using procedure C; isolated by column

chromatography. Brown oil (0.105g, 0.357 mmol, 45%), as an inseparable mixture (7:1 **2bd1/2bd2:2aa1**, 13:1 **2bd1:2bd2**). $R_f = 0.39$ (5% ethyl acetate in hexanes). ¹H (500 MHz, CD₂Cl₂) **2bd1**: δ 11.99 (s, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 1.3 Hz, 1H), 7.29 (s, 3H), 7.14 (dd, J = 8.3, 1.4 Hz, 1H), 2.40 (s, 3H); **2bd2**: δ 12.26 (s, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.17 (s, 1H), 7.07 (dd, J = 8.4, 1.8 Hz, 1H), 2.40 (s, 6H). ¹³C (126 MHz, CD₂Cl₂, only **2bd1** observed) δ 201.1, 163.4, 139.0, 137.8, 137.2 (q, ² $_{JC-F} = 32.8$ Hz), 135.0, 134.8, 127.5, 127.4, 123.8 (q, ¹ $_{JC-F} = 273.4$ Hz), 116.0 (q, ³ $_{JC-F} = 3.9$ Hz), 115.5 (q, ³ $_{JC-F} = 3.6$ Hz), 21.5. ¹⁹F (471 MHz, CD₂Cl₂) **2bd1**: δ -64.13; **2bd2**: δ -64.18. IR (neat) 1639 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₃F₃O₂ [M–H]⁻ *m*/z 293.0795, found 293.0789.

(3,5-dimethylphenyl)(2,4-dihydroxyphenyl)methanone (**2be**). Prepared using procedure C; isolated by column chromatography. Yellow solid (0.0306g, 0.126 mmol, 16%). $R_f = 0.16$ (10% ethyl acetate in hexanes). ¹H NMR (500 MHz, Acetone- d_6) δ 12.70 (s, 1H), 9.64 (br s, 1H), 7.52–7.48 (m, 1H), 7.25 (s, 1H), 7.24 (s, 2H), 6.45–6.41 (m, 2H), 2.38 (s, 6H). ¹³C NMR (126 MHz, Acetone- d_6) δ 201.2, 167.3, 165.8, 139.5, 138.9, 136.9, 133.7, 127.2, 113.5, 108.7, 103.8, 21.3. IR (neat) 1623 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₄O₃ [M–H]⁻ *m/z* 241.0870, found 241.0874.

(3,5-dimethylphenyl)(4-chloro-2-hydroxyphenyl)methanone (**2bf1**), (2,4-dimethylphenyl)(4-chloro-2-hydroxyphenyl)methanone (**2bf2**). Prepared using procedure C; isolated by column chromatography. Brown solid (0.0897g, 0.344 mmol, 43%), as an inseparable mixture (18:1 **2bf1/2bf2:2aa1**, 20:1 **2bf1:2bf2**). $R_f = 0.40$ (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2bf1**: δ 12.22 (s, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.24 (br s, 2H), 7.23 (br s, 1H), 7.08 (d, J = 2.0 Hz, 1H), 6.85 (dd, J = 8.6, 2.1 Hz, 1H), 2.39 (s, 6H); **2bf2**: δ 12.42 (s, 1H), 2.28 (s, 3H). ¹³C NMR (126 MHz, CDCl₃, only **2bf1** observed) δ 201.5, 164.0, 142.2, 138.4, 137.8, 134.7, 134.0, 126.9, 119.4, 118.6, 118.0, 21.4. IR (neat) 1618 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃ClO₂ [M–H]⁻ m/z 259.0531, found 259.0533.

(3,5-dimethylphenyl)(2-hydroxy-5-methylphenyl)methanone (**2bg1**), (2,4-dimethylphenyl)(2-hydroxy-5methylphenyl)methanone (**2bg2**). Prepared using procedure C; isolated by column chromatography. Yellow solid (0.0574g, 0.239 mmol, 30%), as an inseparable mixture (1.8:1 **2bg1/2bg2:2aa1**, 18:1 **2bg1:2bg2**). $R_f = 0.37$ (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2bg1**: δ 11.87 (s, 1H), 7.36 (d, J = 1.9 Hz, 1H), 7.31 (dd, J = 8.5, 2.3 Hz, 1H), 7.26 (m, 1H), 7.22 (br s, 1H), 6.97 (d, J = 8.4 Hz, 1H), 2.39 (s, 6H), 2.25 (s, 3H); **2bg1**: δ 12.12 (s 1H). ¹³C NMR (126 MHz, CDCl₃, only **2bg1** observed) δ 202.3, 161.2, 138.3, 137.4, 133.5, 133.4, 127.8, 126.9, 119.1, 118.4, 118.2, 21.4, 20.6. IR (neat) 1630 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₂ [M–H]⁻ m/z 239.1078, found 239.1089.

(3,5-dimethylphenyl)(2-hydroxy-5-methoxyphenyl)methanone (**2bh1**), (2,4-dimethylphenyl)(2-hydroxy-5-methoxyphenyl)methanone (**2bh2**). Prepared using procedure C; isolated by column chromatography. Orange oil (0.085g, 0.331 mmol, 41%), as an inseparable mixture (2.6:1 **2bh1/2bh2:2aa1**, >20:1 **2bh1:2bh2**). R_f = 0.26(5% ethyl acetate in hexanes). ¹H NMR (500 MHz, Chloroform-*d*) δ 11.61 (s, 1H), 7.29 (br s, 2H), 7.22 (br s, 1H), 7.14 (dd, *J* = 9.1, 3.1 Hz, 1H), 7.08 (d, *J* = 3.1 Hz, 1H), 7.01 (d, *J* = 9.1 Hz, 1H), 3.70 (s, 3H), 2.39 (s, 6H) **2bh2**: δ 11.89 (s, 1H), 3.64 (s, 3H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃, only **2bh1** observed) δ 201.8, 157.6, 151.5, 138.2, 138.1, 133.7, 126.9, 124.1, 119.3, 119. 0, 116.6, 56.1, 21.4. IR (neat) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₃ [M–H]⁻ *m/z* 255.1027, found 255.1034.

(3,5-dimethylphenyl)(5-chloro-2-hydroxyphenyl)methanone (**2bi1**), (2,4-dimethylphenyl)(5-chloro-2-hydroxyphenyl)methanone (**2bi2**). Prepared using procedure C; isolated by column chromatography. Yellow solid (0.092g, 0.351 mmol, 44%), as an inseparable mixture (5.5:1 **2bi1/2bi2:2aa1**, 19:1 **2bi1:2bi2**). $R_f = 0.39$ (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) **2bi1**: δ 11.94 (s, 1H), 7.56 (d, J = 2.6 Hz, 1H), 7.44 (dd, J = 8.9, 2.7 Hz, 1H), 7.25 (m, 3H), 7.02 (d, J = 8.9 Hz, 1H), 2.40 (s, 6H); **2bi2**:z δ 12.18 (s, 1H), 2.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃, only **2bi1** observed) δ 201.3, 161.8, 138.5, 137.5, 136.2, 134.1, 132.6, 126.8, 123.4, 120.10, 120.08, 21.4. IR (neat) 1621 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃ClO₂ [M–H]⁻ *m/z* 259.0531, found 259.0535.

(3,5-dimethylphenyl)(2-hydroxy-3-methylphenyl)methanone (**2bj1**), (2,4-dimethylphenyl)(2-hydroxy-3-methylphenyl)methanone (**2bj2**). Prepared using procedure C; isolated by column chromatography. Brown oil (0.082g, 0.343 mmol, 43%), as an inseparable mixture (3:1 **2bj1/2bj2:2aa1**, 10:1 **2bj1:2bj2**).

 R_f = 0.45 (5% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) δ 12.15 (s, 1H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.25 (br s, 2H), 7.20 (br s, 1H) 6.87 (m, 1H), 6.68 (dd, *J* = 8.0, 0.9 Hz, 1H), 2.38 (s, 6H), 2.37 (s, 3H); **2bj2**: δ 11.95 (s, 1H), 7.55 (s, 1H), 6.95 (s, 2H), 2.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃, only **2bj1** observed) δ 201.8, 163.5, 148.0, 138.3, 138.1, 133.7, 133.4, 126.9, 126.8, 120.0, 118.4, 117.2, 22.1. IR (neat) 1618 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₂ [M–H]⁻ *m/z* 239.1078, found 239.1073.

(3,4-dimethoxyphenyl)(2-hydroxy-4-methylphenyl)methanone (**2ca**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.169g, 0.616 mmol, 77%). mp = 135–138 °C. $R_f = 0.39$ (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.00 (s, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.36–7.23 (m, 2H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.88 (s, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 4H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.6, 163.2, 152.5, 149.0, 147.6, 133.3, 130.7, 124.1, 119.9, 118.5, 117.2, 112.1, 110.1, 56.2, 56.1, 22.0. IR (thin film, CH₂Cl₂) 1625 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₄ [M–H]⁻ *m/z* 271.0976, found 271.0977.

(3,4-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone (**2cb**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.183 g, 0.640 mmol, 80%). mp = 135–137 °C. $R_f = 0.29$ (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.62 (s, 1H), 7.59 (d, *J* = 9.0 Hz, 1H), 7.31–7.23 (m, 1H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.52 (d, *J* = 2.5 Hz, 1H), 6.43 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.7, 166.2, 166.0, 152.3, 149.1, 135.1, 130.9, 123.7, 113.4, 112.0, 110.1, 107.3, 101.3, 56.2, 56.2, 55.7. IR (thin film, CH₂Cl₂) 1623 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₅ [M–H]⁻ *m/z* 287.0925, found 287.0922.

(3,4-dimethoxyphenyl)(4-fluoro-2-hydroxyphenyl)methanone (**2cc**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.656 mmol, 0.182 g, 82%). mp = 103–105 °C. R_f = 0.37 (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.31 (s, 1H), 7.69 (dd, *J* = 8.9, 6.6 Hz, 1H), 7.31 – 7.25 (m, 2H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.75 (dd, *J* = 10.4, 2.5 Hz, 1H), 6.60 (td, *J* = 8.6, 2.6 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 168.5, 165.9, 165.5 (d, *J* = 14.3 Hz), 152.8, 149.2, 135.6 (d, *J* = 11.6 Hz), 130.3, 124.1, 116.4 (d, *J* = 2.3 Hz), 111.0 (d, *J* = 189.5 Hz), 106.7 (d, *J* = 22.5 Hz), 105.1 (d, *J* = 23.8 Hz), 56.2, 56.1. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ –100.00.

IR (thin film, CH₂Cl₂) 1628 cm⁻¹. HRMS (ESI) calcd for $C_{15}H_{13}FO_4 [M-H]^- m/z$ 275.0725, found 275.0724.

(3,4-dimethoxyphenyl)(2-hydroxy-4-(trifluoromethyl)phenyl)methanone (**2cd**). Prepared using procedure A; isolated by column chromatography. Yellow solid (0.230 g, 0.705 mmol, 88%). mp = 74–76 °C. R_f = 0.37 (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.78 (s, 1H), 7.79 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.36–7.31 (m, 3H), 7.13 (dd, *J* = 8.3, 1.8 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 3.99 (s, 3H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.0, 162.7, 153.4, 149.4, 136.7 (q, *J* = 33.0 Hz), 133.8, 129.8, 124.8, 123.3 (q, *J* = 273.5 Hz), 121.7, 115.8 (q, *J* = 3.9 Hz), 114.9 (q, *J* = 3.6 Hz), 112.1, 110.2, 56.3, 56.2. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ –63.78. IR (thin film, CH₂Cl₂) 1638 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₃F₃O₄ [M–H]⁻ *m/z* 325.0693, found 325.0689.

(3,4-dimethoxyphenyl) (2,4-dihydroxyphenyl)methanone (**2ce**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.146 g, 0.536 mmol, 67%). mp = 174–172 °C. R_f = 0.36 (40% hexanes in ethyl acetate). ¹H NMR (400 MHz, Acetone-*d*₆) δ 12.51 (s, 1H), 7.47 (d, *J* = 9.0 Hz, 1H), 7.18–7.11 (m, 2H), 6.95 (d, *J* = 8.9 Hz, 1H), 6.34–6.27 (m, 2H), 3.78 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 199.4, 167.0, 165.5, 153.5, 150.1, 136.6, 131.6, 124.2, 113.5, 113.2, 111.5, 108.5, 103.9, 56.3, 56.2. IR (thin film, CH₂Cl₂) 1626 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₄O₅ [M–H]⁻ *m*/*z* 273.0768, found 273.0766.

(3,4-dimethoxyphenyl)(4-chloro-2-hydroxyphenyl)methanone (**2cf**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.108 g, 0.368 mmol, 46%). mp = 114–116 °C. $R_f = 0.37$ (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.06 (s, 1H), 7.60 (d, *J* = 8.6 Hz, 1H), 7.32–7.28 (m, 2H), 7.09 (d, *J* = 2.1 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 1H), 6.87 (dd, *J* = 8.6, 2.1 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.2, 163.7, 153.0, 149.3, 141.8, 134.3, 130.2, 124.3, 119.3, 118.6, 118.1, 112.1, 110.2, 56.3, 56.2. IR (thin film, CH₂Cl₂) 1622 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃ClO₄ [M–H]⁻ *m/z* 291.0430, found 291.0432.

(3,4-dimethoxyphenyl)(2-hydroxy-5-methylphenyl)methanone (**2cg**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.211 g, 0.776 mmol, 97%). mp = 113–116 °C. $R_f = 0.34$ (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.68 (s, 1H), 7.44 (d, *J* = 1.9 Hz, 1H), 7.35–7.29 (m, 3H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.0, 160.9, 152.7, 149.1, 137.0, 133.1, 130.7, 127.7, 124.3, 119.2, 118.2, 112.2, 110.1, 56.2, 56.2, 20.7. IR (thin film, CH₂Cl₂) 1630 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₄ [M–H]⁻ *m/z* 271.0976, found 271.0982.

(3,4-dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl)methanone (**2ch**). Prepared using procedure A; isolated by column chromatography. Yellow-orange solid (0.192 g, 0.664 mmol, 83%). mp = 86–87 °C. $R_f = 0.28$ (30% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.41 (s, 1H), 7.37 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.17–7.09 (m, 2H), 7.06–6.98 (m, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H), 3.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.4, 157.1, 152.7, 151.4, 149.0, 130.4, 124.2, 123.5, 119.2, 119.0, 116.2, 112.1, 110.0, 56.1, 56.0. IR (thin film, CH₂Cl₂) 1632 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₅ [M–H]⁻ *m/z* 287.0925, found 287.0931.

(3,4-dimethoxyphenyl)(5-chloro-2-hydroxyphenyl)methanone (**2ci**). Prepared using procedure A; isolated by column chromatography. Light yellow solid (0.187 g, 0.640 mmol, 80%). mp = 127–130 °C. $R_f = 0.29$ (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.73 (s, 1H), 7.64 (d, *J* = 2.7 Hz, 1H), 7.44 (dd, *J* = 8.9, 2.7 Hz, 1H), 7.36–7.27 (m, 2H), 7.02 (d, *J* = 8.9 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.8, 161.4, 153.2, 149.3, 135.7, 132.3, 129.8, 124.5, 123.4, 120.2, 120.1, 112.1, 110.2, 56.3, 56.2. IR (thin film, CH₂Cl₂) 1623 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃ClO₄ [M–H]⁻ *m/z* 291.0430, found 291.0424.

(3,4-dimethoxyphenyl)(2-hydroxy-3-methylphenyl)methanone (**2cj**). Prepared using procedure A; isolated by column chromatography. Yellow solid (0.192 g, 0.704 mmol, 88%). mp = 81–84 °C. R_f = 0.26 (20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.17 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.34–7.28 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.78 (t, *J* = 7.7 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.4, 161.4, 152.7, 149.0, 136.8, 131.1, 130.8, 127.5, 124.4, 118.8, 117.9, 112.2, 110.0, 56.2, 56.2, 15.8. IR (neat) 1597 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆O₄ [M–H]⁻ *m/z* 279.0976, found 279.0976.

(4-nitro-2-hydroxyphenyl)(3,4-dimethoxyphenyl)methanone (**2ck**). Prepared using procedure A; isolated by column chromatography. Orange solid (0.118 g, 0.392mmol, 49%). mp = 128–130 °C. R_f = 0.25 (5% acetic acid 15% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 11.76 (s, 1H), 7.89 (d, *J* = 2.1 Hz, 1H), 7.85 (d, *J* = 8.7 Hz, 1H), 7.73 (d, *J* = 2.2 Hz, 1H), 7.38–7.30 (m, 2H), 6.97 (d, *J* = 8.9 Hz, 1H), 4.00 (s, 3H), 3.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.6, 163.0, 153.8, 151.7, 149.5, 134.1, 129.5, 125.0, 123.6, 113.8, 113.0, 112.1, 110.2, 56.4, 56.3. IR (thin film, CH₂Cl₂) 1623 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃NO₆ [M–H]⁻ *m/z* 302.0670, found 302.0666.

(5-nitro-2-hydroxyphenyl)(3,4-dimethoxyphenyl)methanone (**2cl**). Prepared using procedure A; isolated by column chromatography. Light brown solid (0.114 g, 0.376mmol, 47%). mp = 179–182 °C. R_f = 0.25 (5% acetic acid 15% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.59 (s, 1H), 8.69 (d, *J* = 2.7 Hz, 1H), 8.38 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.37 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.34 (d, *J* = 1.7 Hz, 1H), 7.17 (d, *J* = 9.2 Hz, 1H), 7.01 (d, *J* = 8.3 Hz, 1H), 4.01 (s, 3H), 3.97 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 167.9, 153.9, 149.6, 139.5, 130.5, 129.5, 128.9, 124.8, 119.5, 118.4, 112.0, 110.5, 56.4, 56.3. IR (thin film, CH₂Cl₂) 1622 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₃NO₆ [M–H]⁻ *m/z* 302.0670, found 302.0670.
HYDROXYPHENSTATIN

Phenyl 2,3-dihydroxy-4-methoxybenzoate (**4**). In a nitrogen-filled glovebox, 2,3-dihydroxy-4methoxybenzoic acid⁵ (500 mg, 2.72 mmol, 1 equiv), phenol (5.11 g, 54.3 mmol, 20 equiv), and phosphorus oxychloride (631.5 mg, 4.07 mmol, 1.5 equiv) were added to a 25 mL screw top pressure vessel with a stir bar. The vessel was sealed, removed from the glovebox, and heated to 100 °C for 20 hours. The vessel was cooled to room temperature and the solvent and remaining phenol removed *in vacuo*. The product was purified by flash chromatography (20% \rightarrow 30% ethyl acetate in hexanes). Offwhite/yellow powder (0.532 g, 2.04 mmol, 75% yield). mpt = 145–147 °C. R_f = 0.16 (20% ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl₃) δ 10.56 (s, 1H), 7.66 (d, *J* = 9.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz. 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.59 (d, *J* = 9.0 Hz, 1H), 4.97 (br s, 1H), 3.98 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 152.3, 150.3, 149.9, 133.6, 129.7, 126.4, 122.1, 121.8, 106.2, 103.4, 56.4. IR (thin film, CH₂Cl₂) 1667 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₂O₅ [M–H]⁻ *m/z* 259.0612, found 259.0599.

(2,3-dihydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (Hydroxyphenstatin, **5**). TrixiePhos (18 mg, 0.045 mmol, 3 mol%), [Ir(cod)OMe]₂ (10 mg, 0.015 mmol, 1 mol%), phenyl salicylate (0.390 g, 1.5 mmol, 1 equiv), 1,5-COD (0.18 mL, 1.5 mmol, 1 equiv), and 1,2,3-trimethoxybenzene (19.8 g, 78.5 equiv) were added to a 75 mL PTFE-sealed screw top pressure vessel. The vessel was sealed, removed from the glovebox, and heated to 170 °C in an oil bath for 20 h. The vessel was then cooled to room temperature and brought into the glovebox and TrixiePhos (18 mg, 0.045 mmol, 3 mol%) and [Ir(cod)OMe]₂ (10 mg, 0.015 mmol, 1 mol%) was added. The vessel was sealed, brought out of box, and heated to 170 °C for an additional 20 hours. After 20 hours, the vessel was then cooled and a third charge of iridium and phosphine was added as before. The vessel was heated to 170 °C for an additional 20 hours. The vessel was then cooled to room temperature and contents were transferred to a 50 mL pear-shaped flask. The solvent was removed *in vacuo*. Product was purified by column chromatography (20:80:2 EtOAc:Hex:AcOH for ~10 column volumes, 40:60:2 for ~4 column volumes, 50:50:2 for ~4 column volumes). Yellow/brown solid obtained (0.240 g, 0.718 mmol, 48% yield). R_f = 0.22 (50% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 12.22 (s, 1H), 7.26 (d, *J* = 9.0 Hz,

⁵ Prepared using method reported in Org. Process Res. Dev. 2011, 15, 376–381.

1H), 6.92 (s, 2H), 6.51 (d, J = 9.0 Hz, 1H), 5.56 (bs, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.90 (s, 6H). IR (neat) 1635 cm⁻¹. All data are consistent with prior synthesis.⁶

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 f1 (ppm)

S118

																		S119	
1,3-DMB t=0 phosph 298.1 # of scans = 16	orus																		-5
1,3-DMB t=20min Ph 298.1 # of scans = 16	nosphor	us	in The Constant and American Street	YT (AMERICAN) AND	Longer Manager Manager	Υφιστή Λογασιά για ματο	ų, nakautori (Akrista), are	herman (af)utraetiun)	in nin an	inernen en	YEN I TANÀN MANAGAMANA ANG ANG ANG ANG ANG ANG ANG ANG ANG	dr. Bergeland Polerado (), // (g.	gunge of angle of angle of angle of an	n an	94440,000,000,000,000,000,000,000	YARAN YA	Λ.Ο.μιλ (μαλιβοτική μαλ	MQO X994394	-4
1,3-DMB t=2hr Phos 298.1 # of scans = 16	phorus	инци-ранети-рациа	joogen van de seere		ми л айн ороноо	Ng LL AN LAN PARTY ANG TANA	in to the fact in the fact in the fact	Ϋ́Υμουν [,] «Υμουναίζα» (Lipn		ine fill the opposite of the	un norma de la constante de la La constante de la constante de	9449714498344399744394	Le Var (Rollongarde	(ngju jetan jewe dan kan dan dan dan dan dan dan dan dan dan d	JYW, g ywladdod	iana na		-3
1,3-DMB t=12hrs Pho 298.1 # of scans = 32	osphori	nivîndî 18	ану (Цу (Ц) (Ч)	n Talan (Gali Hak Lore of Talan U	(nyaf hay), juskyi (iyongék	Mangala Variation	an a	ang kang kang kang kang kang kang kang k	an Levy Linn Canada	καμανικητριστργιτη	Të rezhonike poper	eunod (politika) 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 199	Magnin kuri (ki ki k	nel (Line) and features	(Renfordering)	Yiqiy)ndaynaqisi yqiff	alışın yaran bir ye	nişir (âryır((Vinstan	-2
unit/punit/punit/unit/disenses/punit/punit/ Timecourse t=20hr p 298.1 # of scans = 16	uninanina and an	nginalinging US	ndyr (f) fyn Llynwr, allyn yn yn ywr, ywr, ywr, ywr, ywr, ywr, ywr, ywr,	teginanyjų/tūkiųjuraityvaµni neovoja: πλ∩υνθάφζιστχιαθητα	ระสารของระจาก	19444(1)41947(1)444)(1)	u (B) (And y (A) And (A) (A) (A) (A)	n of the grand of the state of	un Managan an a	(**************************	Yanayada ya ku	an for a serie of the series of the	vart))///finaneryartyartyy)	auto (1999) and a francesia (1997) and a francesia (1997) and a francesia (1997) and a francesia (1997) and a francesia (1997) and a francesia	Jachangerak (ngananan da	\v.e%\\\\ \v.e%\\\ \v.e%\\\	landa ya su ya	ilan (Lational) Sevel (Lational)	-1
140 120 1	00	80	60	40	20	0	-20	-40 f1 (p	-60 pm)	-80	-100	-120	-140	-160	-180	-200	-220	-240	

-63.1 f1 (ppm) -62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.2 -63.3 -63.4 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2

j3

3-CF3-anisole		5157
298.0	Starting Material	
	Produc	-6
	۲	
Proteo Experiment 2, t = 55 min 298.0		
		-5
Proteo Experiment 2, t = 40 min 298.0		
		-4
Proteo Experiment 2, t = 25 min 298.0		
		-3
Proteo Experiment 2, t = 10 min 298.0		
		-2
Proteo Experiment 2, t = 0 min 298.0		
		-1

-62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.1 -63.2 -63.3 -63.4 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2 f1 (ppm)

S157

j3

-63.1 f1 (ppm) -62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.2 -63.3 -63.4 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2

3-CF3-anisole	Starting	S173
298.0 °C 19F	Produc	-7
Deutero Experiment 1, t = 75 min 298.0 °C 19F		-6
Deutero Experiment 1, t = 60 min 298.0 °C 19F		-5
Deutero Experiment 1, t = 45 min 298.0 °C 19F		-4
Deutero Experiment 1, t = 30 min 298.0 °C 19F		-3
Deutero Experiment 1, t = 15 min 298.0 °C 19F		-2
Deutero Experiment 1, t = 0 min 298.0 °C 19F		-1

-62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.1 -63.2 -63.3 -63.4 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2 f1 (ppm)

-54

-55

-56

-57

-58

-59

-60

-61

ዞ ዞ

2.74 86.23

-64

-65

-66

-67

-68

102.00 --≖

-63

-62 f1 (ppm)

-70

-54

-55

-56

-57

-58

-59

-60

-61

102.00-

-63

-62 f1 (ppm) łł

6.27 82.07

-64

-65

-66

-67

-68

-69

-54

-55

-56

-57

-58

-59

-60

-61

102.00-

-63

-62 f1 (ppm) 1 4

13.59 72.23

-64

-65

-66

-67

-68

-69

3-CF3	anisole	Starting	Material S	5181	1
298.0 °C 19F	Prod	uc			-7
Deutero Experiment 2, t = 75 min 298.0 °C 19F	, // \				-6
Deutero Experiment 2, t = 60 min	l				
19F					-5
Deutero Experiment 2, t = 45 min 298.0 °C 19F					-4
Deutero Experiment 2, t = 30 min 298.0 °C 19F					-3
Deutero Experiment 2, t = 15 min 298.0 °C 19F	^				-2
Deutero Experiment 2, t = 0 min					
Т9F					-1
				I	1

-62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.1 -63.2 -63.3 -63.4 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2 f1 (ppm)

j3

-54

-55

-56

-59

-60

-61 f1 (ppm) -62 -63

-64

-65

-66

-67

-68

-69

-7

-57

-58

j3

-54

-55

-56

-59

-60

-57

-58

44

2.46 86.36

-64

-65

-66

-67

-68

-69

-7

-63

-61 f1 (ppm) -62

53

3-CF3	anisole	Starting	Material S	S189	
Deutero Experiment 3, t = 90 min 298.0	Proc	luc			
	·			-	-7
Deutero Experiment 3, t = 75 min 298.0	/~~~~//	·			
				-	-6
Deutero Experiment 3, t = 60 min 298.0					
				-	-5
Deutero Experiment 3, t = 45 min 298.0					
	Λ			-	-4
Deutero Experiment 3, t = 30 min 298.0		^			
				-	-3
Deutero Experiment 3, t = 15 min 298.0					
				-	-2
Deutero Experiment 3, t = 0 min 298.0					
				-	-1

-62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.1 -63.2 -63.3 -63.4 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2 f1 (ppm)

Analysis Info

Analysis Name Method Sample Name	2LOW RES negative_010616.t NAS-2-63_4-1 ESI NEGFree form	ofpar nat commentsFre	e format comme	Ac Or Ins	equisition Date perator strument	4/20/2017 9:08:35 / operator name BioTOF II	AM
Acquisition Para	ameter						
n/a EndP	n/a 3000 V	n/a n/a	n/a n/a		detbias n/a	1800 V n/a	
Intens.			257.1				
3000							
2000							
1000		255.2	5.2 258.1	260.1 259.1			
04-	252 25	54 256	258	260	262	264	m/z
[-							

#	m/z	I
1	145.0	1485
2	169.1	144
3	212.1	268
4	213.0	4652
5	214.1	811
6	215.1	112
7	241.0	141
8	255.2	1002
9	256.2	156
10	257.1	3332
11	258.1	450
12	259.1	249
13	260.1	704
14	283.2	1502
15	284.2	237

Intermolecular Competition 1

Analysis Info

16

17

18

19

20

21

22

23

24

25

26

27

258.0968

259.1042

260.1100

261.1144

283.0535

283.2723

284.0571

333.0851

339.0162

377.1115

378.1166

380.1266

745

358

983

176

327

175

251

110

173

675

168

165

Analysis Info

23

24

25

26

27

28

29

283.0545

283.2726

284.0579

333.0878

377.1130

378.1167

380.1296

187

322

154

117

747

159

193

Analysis Info

Analysis Name Method Sample Name	11-1 low res negative_010616.tofpar NAS-2-63_1-1 ESI NEGFree format co	mmentsFree forn	nat comments	Acquisition Date Operator Instrument	4/21/2017 10:30:58 AM operator name BioTOF II
Acquisition Para	ameter				
n/a EndP	n/a 3000 V	n/a n/a	n/a n/a	detbias n/a	1800 V n/a
Intens.			258.0940 I		
800-		055 0070			
600-		200.2373	257.0872		
400-					
200-		256.23	259.094	43	
0-	252 25	4 256	258	260 262	264 m/z
[-					

#	m/z	I
1	137.0321	2104
2	138.0389	456
3	144.9732	3873
4	212.0814	693
5	213.0637	1525
6	214.0684	254
7	229.0890	131
8	230.0972	270
9	231.1001	101
10	243.0776	132
11	244.0814	189
12	255.2373	632
13	256.2373	114
14	257.0872	593
15	258.0940	1009
16	259.0943	143
17	282.0462	150
18	283.0469	811
19	283.2674	806
20	284.0531	351
21	284.2673	121
22	378.1092	105

Intramolecular Competition 1

Analysis Info

Analysis Name Method Sample Name	11-2 low res negative_010616.tofpa NAS-2-63_1-2 ESI NEGFree format c	r ommentsFree	format comments	Acquisition Date Operator Instrument	4/21/2017 10:34:27 AM operator name BioTOF II	
Acquisition Par	ameter					
n/a EndP	n/a 3000 V	n/a n/a	n/a n/a	detbias n/a	1800 V n/a	
Intens.			258.092	26		7
600-						
400 -			257.0783			
200 -		,		259.0965		
0	254	<u>//</u> 256	258	260	262 m	/z
[MS					

#	m/z	I
1	137.0335	7775
2	138.0391	1620
3	139.0411	120
4	144.9737	1990
5	212.0817	436
6	213.0667	551
7	214.0708	177
8	230.1000	204
9	257.0783	394
10	258.0926	699
11	259.0965	134
12	273.0839	131
13	274.0908	207
14	282.0472	196
15	283.0490	999
16	283.2700	129
17	284.0519	404
18	297.0425	306
19	298.0456	181

Intramolecular Competition 2

Analysis Info

Analysis Name Method Sample Name	11-3 low res negative_01 NAS-2-63_1 ESI NEGFre	0616.tofpar -3 e format co	ommentsFree for	mat commen	Ac Op Ins ts	quisition Date erator trument	4/21/2017 10:36:4 operator name BioTOF II	1 AM
Acquisition Para	ameter							
n/a EndP	n/a 3000 V		n/a n/a	n/a n/a		detbias n/a	1800 V n/a	
Intens.				258.0938				
1250								
1000								
750			257	.0820				
500								
250			255.2440	25	9.0977			
0 ¹		254	<u>.</u> 256	258	260	262	264	 m/z
[-	MS							

#	m/z	I
1	137.0338	6045
2	138.0388	1360
3	139.0431	104
4	144.9735	530
5	212.0826	655
6	213.0675	1163
7	214.0728	269
8	229.0926	126
9	230.0996	258
10	243.0836	111
11	244.0828	167
12	255.2440	119
13	257.0820	727
14	258.0938	1387
15	259.0977	166
16	273.0821	165
17	274.0870	316
18	282.0524	129
19	283.0495	662
20	283.2674	131
21	284.0532	321
22	297.0419	171
23	298.0507	122
24	378.1095	118

Intramolecular Competition 3

10

) 110 f1 (ppm)

2af proton 399.87 298.0 CDCI3

2ah1 carbon 100.56 294.7 CDCl3

2aj proton 399.87 298.0 CDCI3

4.01

2al with {1H} decoupling 19F 376.22 298.1 CDCl3

OH

0

F´ 2al Me

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

f1 (ppm)

399.87 298.0

2ap1/2ap2 carbon 125.77 298.0 CDCI3

2aq1/2aq2 carbon 100.62 298.0 CDCI3

10

3.97

6.0 f1 (ppm) 1.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 7.5 6.5 5.5 5.0 3.5 3.0 2.5 2.0 1.5 0.5 0.0 8.0 7.0 4.5 4.0 1.0

10

-100 -110 f1 (ppm) 10 -10 -20 -30 -50 -60 -70 -120 -130 -150 -160 -170 -180 -190 -200 0 -40 -80 -90 -140 -210 1c with {1H} decoupling 19F 376.46 298.0 CDCl3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-99.65

1d carbon 100.56 298.0

-100 -110 -120 -130 f1 (ppm) 10 -10 -20 -30 -50 -60 -70 -80 -90 -140 -150 -160 -170 -180 -190 -200 -210 0 -40

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1f carbon 100.56 298.1 CDCl3

1k proton 399.87 298.0 CDCI3

S272

OH

 O_2N

0

1k

OH

0

ΌН

1n proton 399.87 298.0 CDCI3

S278

1o proton 399.87 298.0 CDCI3

S280

110 100 f1 (ppm)

Т

2bg1/2bg2 carbon 125.78 298.0 CDCI3

2bh1/2bh2 carbon 125.78 298.0 CDCI3

2bj1/2bj2 carbon 125.78 298.0 CDCl3

F

-100 -110 f1 (ppm) 10 -10 -20 -30 -50 -60 -70 -120 -130 -150 -160 -170 -180 0 -40 -80 -90 -140 -190 -200 -210 2cc with {1H} decoupling 19F 376.46 298.0 CDCI3

	1		'	'	'	'	'	'		'	·	'	'	'		·	'	· 1	'		'	, 1 ,
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
f1 (ppm)																						

-100 -110 -120 -130 f1 (ppm) 10 -10 -20 -30 -50 -60 -70 -80 -90 -140 -150 -160 -170 -180 -190 -200 0 -40 -210

-63.78

-100 -110 -120 f1 (ppm) 10 -10 -30 -50 -70 -150 -170 -180 -20 -40 -60 -80 -90 -130 -140 -160 -190 -200 -210 0

 \neg

4 Proton 500.15 298.0 CDCl3

10

