Broadly Applicable Stereoselective Syntheses of Serrulatane, Amphilectane Diterpenes and Their Diastereoisomeric Congeners using Asymmetric Hydrovinylation for Absolute Stereochemical Control

Srinivasarao Tenneti, Souvagya Biswas, Glen Adam Cox, Daniel J. Mans, Hwan Jung Lim, T. V. RajanBabu*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States *e-mail: rajanbabu.1@osu.edu*

Table of Contents

1.	General Information	S3			
2.	Experimental Procedure and Characterization of the Key Compounds				
	A. Experimental Data of Scheme 2	S3			
	B. Experimental Data of Scheme 3	S 7			
	C. Experimental Data of Scheme 5	S 8			
	D. Experimental Data of Scheme 6	S11			
	E. Experimental Data of Scheme 7	S12			
	F. Experimental Data of Scheme 8	S14			
	G. Experimental Data of Scheme 10	S14			
	H. Experimental Data of Scheme 11	S15			
	I. Experimental Data of Scheme 12	S17			
	J. Experimental Data of Scheme 13	S20			
	K. Experimental Data of Scheme 15	S20			
	L. Experimental Data of Scheme 16	S22			
	M. Experimental Data of Scheme 17	S23			
	N. Experimental Data of Scheme 18	S24			
	O. Experimental Data of Scheme 19	S29			
3.	Additional Discussion				
	A. Alternative routes to synthesize compound 23 from aryl iodide	S31			
	B. Efforts on metathesis reaction to synthesize compound 60a and 60b	S31			
4.	Comparison of NMR Spectra with Known Literature Values				
	A. Comparison of spectra of compound 36e with literature	S32			
	B. Comparison of spectra of compound 43a with literature	S34			
	C. Comparison of spectra of compound 69 with literature	S35			
	D. Comparison of spectra of compound 8a, 8b and 9a with literature	S36			
5.	References	S38			
6.	TABLE 1A. Comparison of the Hydrovinylation approach with others for the				
	synthesis of Pseudopterosins	S39			

Supporting Information B. TABLE 1B. Comparison of the Hydrovinylation approach with others for the synthesis of prototypical serrulatanes and amphilectanes S43 7. NMR Spectra S51. 8. Gas Chromatograms of crude products showing selectivities S95

1. General Information

Unless otherwise noted, reagents were purchased from commercial suppliers and used without further purification. Air-sensitive reactions were conducted under an inert atmosphere of argon using Schlenk techniques or a Vacuum Atmospheres glovebox. Solvents were distilled from the appropriate drying agents under nitrogen. Ethylene (99.5%) was purchased from Matheson, Inc., and passed through Drierite® and potassium hydroxide before use. Analytical TLC was performed on E. Merck pre-coated (0.25 mm) silical gel 60 F254 plates. Flash column chromatography was carried out on silica gel 40 (Sorbtech Chemicals), gas chromatographic analysis was conducted on an Agilent 7820A using hydrogen as the carrier gas, equipped with a methyl silicone column (30 m X 0.32 mm, 0.25 µm film thickness). Enantiomeric excess of chiral compounds were determined by chiral stationary phase gas chromatographic (CSP GC) analysis, which was performed on an Agilent 7820A using hydrogen as the carrier gas, equipped with a Cyclosil-B (30 m x 0.25 mm, 0.25 µm film thickness), capillary GC columns purchased from Agilent. Each GC was equipped with FID detectors and integrators or a computer. Optical rotations were recorded on a Rudolph 21CFR 11 polarimeter at the sodium D line in chloroform or dichloromethane on solutions filtered through a 45 micron nylon filter.

2. Experimental Procedure and Characterization of the Key Compounds

A. Experimental Data of Scheme 2

A three-necked 1 L round bottomed flask equipped with magnetic stir bar, glass stoppers and reflux condenser with gas inlet was flame-dried, purged with nitrogen and charged with solid KHMDS (19.15 g, 96.0 mmol). Dry THF (400 mL) was added, and the solution was stirred at rt. Methyltriphenylphosphonium bromide (34.30 g, 96.0 mmol) was added in portions over 10 min, causing a yellow solution to form. This solution was stirred for 3 h at rt, then was treated portionwise with solid 2,3-dimethoxybenzaldehyde (13.30 g, 80.0 mmol, Alfa Aesar). The reaction was heated to reflux and stirred for 18 h, then cooled to rt and diluted with water (100 mL). The whole was transferred to a separatory funnel containing water (300 mL) and was extracted with ether (3 x 300 mL). The organic extracts were combined, dried (MgSO₄) and concentrated *in vacuo* to a clear pale yellow oil, which was kept warm *via* heat gun, then purified by vacuum distillation (75 °C at 3 torr) to afford pure styrene **22** as a clear colorless oil that solidified upon standing to a white solid: 9.34 g, 57.0 mmol, 72%. R_f 0.30 (5:95 EtOAc:Hexanes); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.13 (d, 1H, *J* 6.4 Hz), 7.07 (dd, 1H, *J* 10.8 Hz, 6.8 Hz), 7.04 (d, 1H, *J* 8.4 Hz), 5.77 (dd, 1H, *J* 17.6 Hz, 1.2 Hz), 5.31 (dd, 1H, 10.8 Hz, 1.6 Hz), 3.87 (s, 3H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 152.86, 146.61, 131.62, 131.07, 123.84, 117.68, 114.94, 111.46, 60.67, 55.61; IR (neat) 1628, 1576, 1475, 1298, 1223, 1070 cm⁻¹; [M + Na] Calc. 165.0915 Meas. 165.0914.

A 500 mL three-necked flask equipped with a magnetic stirring bar, stopper, addition funnel and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 2,3-dimethoxytoluene (10.0 mL, 67.35 mmol) and freshly distilled TMEDA (2.52 mL, 16.84 mmol, 0.25 equiv.) dissolved in anhydrous hexanes (200 mL). A 1.7 M solution of t-butyl lithium in pentane (47.5 mL, 80.82 mmol, 1.2 equiv.) was added dropwise via addition funnel over 30 min. The resulting cloudy yellow solution was allowed to stir at room temperature overnight (16 h). The reaction vessel was cooled to 0° C and freshly distilled, degassed, anhydrous DMF (10.4 mL, 134.70 mmol, 2.0 equiv.) was added dropwise over 10 min. The reaction vessel was warmed to room temperature and allowed to stir for 1 h. The reaction was quenched by the slow addition of water (20 mL) followed by the addition of 2 N HCl until the pH of the solution was neutral. The reaction mixture was poured into water (200 mL) and extracted with ether (3 x 50 mL). The organic layers were combined and dried over MgSO₄, filtered, and evaporated to give the crude aldehyde which was purified via flash column chromatography ($R_f = 0.40$, hexanes-ethyl acetate, 9:1) to yield (S1) as a pale yellow oil (8.95 g, 49.68 mmol, 74%). 1 H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 7.47 (d, 1H, J = 8.0 Hz), 6.99 (d, 1H, J = 8.0 Hz), 3.98 (s, 3H), 3.85 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 189.8, 156.4, 151.7, 140.6, 128.6, 126.3, 123.0, 62.2, 60.4, 16.7. IR (neat) 2855, 2743, 1688, 1596, 1464, 1257, 1253, 1071, 1023 cm⁻¹.

A 500 mL three-necked flask equipped with magnetic stirring bar, stoppers and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with KHMDS (5.486 g, 27.50 mmol, 1.2 equiv.) dissolved in anhydrous THF (170 mL). Methyltriphenylphosphonium bromide (9.824 g, 27.50 mmol, 1.2 equiv.) was added in small portions and the reaction mixture was allowed to stir for 1 h. A solution of (S1) (4.130 g, 22.92 mmol) in anhydrous THF (50 mL) was added dropwise via syringe and then heated to reflux in an oil bath. The reaction was allowed to reflux overnight (16 h). The vessel was allowed to cool to room temperature, then the reaction mixture was diluted with pentane (150 mL) and cooled to 0° C to induce precipitation of triphenylphosphine oxide. The reaction mixture was then passed through a plug of Celite, followed by rinsing of the reaction vessel

with pentane (3 x 50 mL). The crude styrene was purified via flash column chromatography ($R_f = 0.36$, hexanes-ethyl acetate, 19:1) to yield (**23**) as a colorless oil (3.78 g, 20.98 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, 1H, J = 8.0 Hz), 6.98 (dd, 1H, $J_{1,2} = 10.8$, 17.7 Hz), 6.88 (d, 1H, J = 8.0 Hz), 5.72 (dd, 1H, $J_{1,2} = 1.4$, 17.7 Hz), 5.25 (dd, 1H, $J_{1,2} = 1.4$, 10.8 Hz), 3.84 (s, 6H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 150.9, 132.1, 131.4, 130.2, 126.0, 120.8, 114.4, 61.0, 60.4, 16.1. IR (neat) 1824, 1625, 1601, 1567, 1284, 1222, 1066, 1024 cm⁻¹. HRMS (ESI); *m/z* 201.0898 ([M + Na]); exact mass calculated for C₁₁H₁₄O₂Na, 201.0891. GC (Cyclodex-β, 85 °C isotherm): $t_R = 61.41$ min.

MeO OMe

A 250 mL 3-necked flask equipped with a magnetic stirring bar, thermometer, stopper, and a reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with anhydrous DMF (22.4 mL, 289.11 mmol, 1.1 equiv.) and cooled to 0 °C in an ice/water bath. POCl₃ (28.9 mL, 315.40 mmol, 1.2 equiv.) was added dropwise via syringe over 15 min. 2,6-Dimethoxytoluene (40.00 g, 262.83 mmol) was added in a single portion and the flask was placed in an oil bath pre-heated to 110 °C. The reaction mixture was allowed to stir at 110 °C for 16 h, then cooled to ambient temperature and slowly quenched with excess 4 M NaOH (75 mL). The whole was poured into H₂O (1500 mL) and extracted with DCM (4 x 200 mL). The organic layers were combined and dried over MgSO₄, filtered, and concentrated to give the crude aldehyde, which was purified by passing through a plug of silica (R_{*f*} = 0.26, pentane-diethyl ether, 4:1) to yield **S2** as pale yellow solid (41.68 g, 231.30 mmol, 88%). M.P.: 48-50 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.07 (1H, s), 7.57 (1H, d, *J* = 9.0 Hz), 6.60 (1H, d, *J* = 9.0 Hz), 3.76 (3H, s), 3.72 (3H, s), 2.02 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 188.8, 163.8, 162.4, 127.8, 122.6, 119.9, 106.4, 62.9, 55.7, 8.3. IR (neat) 2948, 1670, 1594, 1458, 1388, 1281, 1260, 1108, 1002, 962. HRMS (ESI); *m/z* 203.0680 ([M + Na]); exact mass calculated for C₁₀H₁₂O₃Na, 203.0679.

A 2 L 3-necked flask equipped with a magnetic stirring bar, stoppers, and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 70-75% w/w *m*-CPBA (85.53 g, 346.95 mmol, 1.5 equiv.) in DCM (750 mL) and cooled to 0 °C in an ice/water bath. A solution of **S2** (41.68 g, 231.30 mmol) in DCM (175 mL) was added slowly and the flask was allowed to warm to ambient temperatures before refluxing in an oil bath for 16 h. The flask was then cooled to 0 °C and quenched slowly with sat. aq. NaHCO₃ with vigorously stirring until bubbling ceased. The whole was poured into a separatory funnel and the organic layer was drained. The aqueous layer was extracted with DCM (5 x 50 mL) and the organic layers were combined and concentrated. The crude formate ester was dissolved in methanol (500 mL), KOH (129.78 g, 2.313 mol, 10.0 equiv.) was added, and the reaction mixture was allowed to stir at ambient temperatures for 6 h. The reaction was quenched by slow addition of 10% H₂SO₄ until acidic pH was achieved. The whole was poured into H₂O (1 L) and extracted with DCM (5 x 100 mL). The organic layers were combined, dried over MgSO₄, and concentrated to give **S3** (30.95 g, 184.02 mmol, 80%) which was used in the subsequent reaction without further purification.

A 1 L 3-necked flask equipped with a magnetic stirring bar, stopper, thermometer, and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with MgCl₂ (26.28 g, 276.03 mmol, 1.5 equiv.) and paraformaldehyde (28.74 g, 956.90 mmol, 5.2 equiv.). A solution of **S3** (30.95 g, 184.02 mmol) in anhydrous acetonitrile (370 mL) was added via syringe, followed by addition of Et₃N (102.6 mL, 736.08 mmol, 4.0 equiv.). The reaction mixture was heated to 110 °C and allowed to stir for 16 h. **CAUTION**: A strong exotherm is observed when the reaction mixture reaches ~85-90 °C. The reaction mixture was cooled to 0 °C and slowly quenched with 10% H₂SO₄ until acidic pH was achieved. The whole was extracted with DCM (5 x 50 mL), dried over MgSO₄, filtered, and concentrated to give a crude mixture of **S4** and a demethylated product. The mixture was used in the subsequent reaction without further purification.

A 2 L 3-necked flask equipped with a magnetic stirring bar, stoppers and reflux condenser fitted with a nitrogen inlet was purged with nitrogen. The flask was charged with K_2CO_3 (129.65 g, 938.07 mmol, 9.0 equiv.) and a solution of **S4** (mixture) (20.45 g) dissolved in acetone (695 mL). MeI (97.3 mL, 1.563 mol,

15.0 equiv.) was added via syringe and the reaction mixture was heated to reflux in an oil bath and allowed to stir for 16 h. The flask was then cooled to ambient temperature, poured into H₂O (1 L), and extracted with DCM (5 x 50 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated to give the crude aldehyde which was purified via flash column chromatography (R_f = 0.26, hexanes-ethyl acetate, 9:1) to give **S5** (25.275 g, 120.23 mmol, 65% over 2 steps). ¹H NMR (500 MHz, CDCl₃) δ 10.27 (s, 1H), 6.96 (s, 1H), 3.89 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 2.12 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 189.3, 154.6, 152.2, 151.4, 129.7, 127.2, 102.2, 62.5, 60.5, 55.8, 9.7. IR (neat) 2999, 2939, 2856, 1684, 1598, 1466, 1407, 1387, 1332, 1283, 1207, 1133, 1084, 1030 cm⁻¹. HRMS (ESI); *m/z* 233.0782 ([M + Na]); exact mass calculated for C₁₁H₁₄O₄Na, 233.0784.

A 100 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was flamedried and purged with nitrogen. The flask was charged with methyltriphenylphosphonium bromide (1.026 g, 2.872 mmol, 1.2 equiv.) and anhydrous THF (13 mL). 2.5 M n-BuLi (1.05 mL, 2.632 mmol, 1.1 equiv.) was added dropwise via syringe and the reaction mixture was allowed to stir at ambient temperatures for 1 h, then was cooled to 0 °C in an ice/water bath. A solution of **S5** (503 mg, 2.393 mmol) in anhydrous THF (10 mL) was added via syringe and the reaction mixture was allowed to warm to ambient temperature and stir for 1 h. The reaction mixture was concentrated and dissolved in a minimal amount of DCM and purified via flash column chromatography (R_f = 0.36, pentane-ether, 20:1) to yield **25** as a colorless oil (452 mg, 2.170 mmol, 91%). ¹H NMR (500 MHz, CDCl₃) δ 7.03 (dd, 1H, $J_{1,2}$ = 11.0, 17.5 Hz), 6.75 (s, 1H), 5.72 (dd, 1H, $J_{1,2}$ = 1.0, 17.5 Hz), 5.28 (dd, 1H, $J_{1,2}$ = 1.0, 11.0 Hz), 3.85 (s, 3H), 3.83 (s, 3H), 3.80 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 152.3, 145.2, 131.6, 128.8, 121.1, 114.1, 102.2, 61.2, 60.6, 55.9, 9.2. IR (neat) 2959, 2933, 1487, 1461, 1400, 1272, 1224, 1072, 1024, 904, 820 cm⁻¹. HRMS (ESI); m/z 231.0987 ([M + Na]); exact mass calculated for C₁₂H₁₆O₃Na, 231.0992. GC (Cyclosil-B, 125 °C isotherm): t_R = 32.59 min.

B. Experimental Data of Scheme 3

General Procedure of Ni(II)-Catalyzed Asymmetric Hydrovinylation: *Precatalyst preparation*: In a glovebox, NaBARF (0.0586 mmol, 1.0 mol%), ligand (0.0586 mmol, 1.0 mol%), and [(allyl)NiBr]₂ (0.0293 mmol, 0.5 mol%) were weighed into separate glass vials. The ligand was dissolved in anhydrous DCM (1.0 mL) and transferred to the vial containing [(allyl)NiBr]₂, followed by 1.0 mL rinsing of the source vial. The resulting yellow solution of phosphoramidite ligand and [(allyl)NiBr]₂ was transferred to the vial containing NaBARF, followed by 1.0 mL rinsing of the source vial. The resulting orange-yellow solution was allowed to stand for 1.5 h. *Asymmetric hydrovinylation*: A 100 mL three-necked flask equipped with a rubber septum, flow-controlled nitrogen inlet, thermometer, and magnetic stirring bar was flame-dried and purged with nitrogen. The catalyst solution prepared above was transferred to the reaction

vessel via cannula, followed by 1.0 mL rinsing of the source vial. The system was closed at the flowcontrolled stopcock and cooled to desired temperature in a cryogenic bath, creating a small vacuum. A strong flow of dry ethylene was introduced via needle through the septum to relieve the vacuum and then the atmosphere of the vessel was evacuated three times via syringe to remove any remaining nitrogen. The flow of ethylene was adjusted to maintain a pressure of 1 atm by releasing excess gas through an oil bubbler. A solution of the Vinyl-styrene substrate (5.858 mmol) in anhydrous DCM (6 mL), followed by 2.0 mL rinsing of the source vial was introduced via syringe as to not increase the reaction temperature above the desired maintained temperature. The reaction mixture was allowed to stir at the desired temp for desired time (reaction progress was monitored by GC-FID analysis). The ethylene needle was then removed and the reaction was exposed to air and NH₄OH (1.0 mL) was added to quench the reaction. The resulting mixture was poured into H₂O (25 mL) and extracted with DCM (3 x 15 mL). The organic layers were combined, dried over MgSO₄, and concentrated to give the crude hydrovinylation product, which was then eluted through a plug of silica with pentane-ether (20:1) to remove any nickel salts. The eluent was concentrated to yield the pure hydrovinylated product.

Ligands (L1, L2, L3, L4, L5, L6, L7)¹ were synthesized following literature procedures. Hydrovinylated product 26^{1a} and 27^{2} was previously reported from our research group.

General procedure of Ni(II)-catalyzed hydrovinylation was followed. (99%, 96% *ee* using complex of L3). Authentic racemic sample was obtained via complex of achiral ligand L6.). ¹H NMR (500 MHz, CDCl₃) δ 6.45 (s, 1H), 6.10-6.04 (m, 1H), 5.12-5.07 (m, 2H), 3.69 (quintet, 1H, *J* = 7.0 Hz), 3.86-3.81 (m, 9H, containing: 3.86 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H)), 2.16 (s, 3H), 1.37 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 152.1, 144.7, 143.4, 136.3, 118.8, 113.2, 104.4, 61.1, 60.3, 55.9, 36.0, 20.6, 8.9. $[\alpha]_D^{20}$ -16.8 (*c* 3.00, CHCl₃); IR (neat) 2962, 2934, 2832, 1604, 1584, 1484, 1464, 1403, 1224, 1190, 1130, 1060, 1035, 917 cm⁻¹. HRMS (ESI); *m/z* 259.1306 ([M + Na]); exact mass calculated for C₁₄H₂₀O₃Na, 259.1305. GC (Cyclosil-B, 125 °C isotherm): *t*_R = 40.66 (*R*), 41.62 (*S*) min.

C. Experimental Data of Scheme 5

A 100 mL 3-necked flask equipped with a magnetic stirring bar, thermometer, stopper, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 9-BBN dimer (1.289 g, 5.281 mmol, 1.0 equiv.) and a solution of **28** (1.248 g, 5.281 mmol) in anhydrous THF (50 mL) was added via

syringe. The reaction mixture was allowed to stir at ambient temperature for 2 h, then cooled to 0 °C in an ice/water bath. 4 M NaOH (10.6 mL) was added dropwise, maintaining the internal temperature below 10 °C. A solution of ~30% H₂O₂ (7.9 mL) was added dropwise, maintaining the internal temperature below 10 °C. **CAUTION**: A strong exotherm is observed upon the initial addition of H₂O₂. Once addition was complete, the reaction mixture was allowed to warm to ambient temperature, poured into H₂O (100 mL), and extracted with ether (3 x 25 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated. The crude alcohol was purified via flash column chromatography (R_f = 0.12, hexanes-ethyl acetate, 4:1) to give **30** as a colorless oil (1.341 g, 5.273 mmol, >99%). ¹H NMR (500 MHz, CDCl₃) δ 6.42 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 3.54-3.50 (m, 1H), 3.36-3.31 (m, 2H), 2.47 (bs, 1H), 2.10 (s, 3H), 1.95-1.88 (m, 1H), 1.60-1.54 (m, 1H), 1.28 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 151.8, 144.8, 136.6, 118.7, 103.4, 61.4, 61.1, 60.5, 55.9, 41.4, 28.2, 21.8, 8.9. $[\alpha]_D^{20}$ +47.3 (*c* 2.73, CHCl₃); IR (neat) 3427, 2932, 2869, 2833, 1738, 1605, 1583, 1485, 1462, 1403, 1230, 1127, 1042 cm⁻¹. HRMS (ESI); *m/z* 277.1417 ([M + Na]); exact mass calculated for C₁₄H₂₂O₄Na, 277.1410.

A 100 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was flamedried and purged with nitrogen. The flask was charged with **30** (1.341 g, 5.273 mmol) in anhydrous THF (55 mL). Imidazole (718 mg, 10.546 mmol, 2.0 equiv.) and triphenylphosphine (1.521 g, 5.800 mmol, 1.1 equiv.) were added to the flask and the reaction mixture was cooled to 0 °C in an ice/water bath. Iodine crystals (1.472 g, 5.800 mmol, 1.1 equiv.) were added in small portions until a red solution persisted, then the reaction mixture was allowed to warm to ambient temperature. The reaction mixture was concentrated and the crude mixture was purified via flash column chromatography (R_f = 0.40, hexanesethyl acetate, 19:1) to give **S6** (1.894 g, 5.200 mmol, 99%) as a white chalky oil. ¹H NMR (500 MHz, CDCl₃) δ 6.39 (s, 1H), 3.83-3.79 (m, 9H, containing: 3.83 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H)), 3.27 (sextet, 1H, *J* = 7.0 Hz), 3.14-3.06 (m, 2H), 2.20-2.06 (m, 5H, containing: 2.12 (s, 3H)), 1.24 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 152.2, 145.2, 136.0, 119.0, 103.8, 61.2, 60.4, 56.0, 41.8, 34.2, 21.4, 9.0, 4.9. [α] $_{D}^{20}$ +26.8 (*c* 3.16, CHCl₃); IR (neat) 2957, 2930, 2867, 2831, 1604, 1583, 1485, 1462, 1403, 1227, 1189, 1130, 1035, 837, 486 cm⁻¹. HRMS (ESI); *m/z* 387.0420 ([M + Na]); exact mass calculated for C₁₄H₂₁IO₃Na, 387.0428.

A 100 mL single-necked flask equipped a magnetic stirring bar and a reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with NaCN (463 mg,

9.445 mmol, 2.0 equiv.) and a solution of **S6** (1.720 g, 4.722 mmol) in anhydrous DMSO (24 mL). The reaction mixture was heated to 60 °C in an oil bath and allowed to stir for 2 h. The flask was then cooled to ambient temperature and the whole was poured into H₂O (100 mL) and extracted with ether (3 x 25 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated to give the crude nitrile which was eluted through a plug of silica ($R_f = 0.35$, hexanes-ethyl acetate, 4:1) to yield **31** as a colorless oil (1.242 g, 4.716 mmol, >99%). ¹H NMR (500 MHz, CDCl₃) δ 6.36 (s, 1H), 3.81-3.79 (m, 9H, containing: 3.793 (s, 3H), 3.786 (s, 3H), 3.78 (s, 3H)), 3.26 (sextet, 1H, *J* = 7.0 Hz), 2.24-2.21 (m, 2H), 2.10 (s, 3H), 1.96-1.88 (m, 2H), 1.28 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 152.0, 145.0, 134.9, 119.8, 119.0, 103.2, 60.8, 60.0, 55.7, 33.1, 32.1, 21.3, 15.4, 8.7. [α]_D²⁰ +43.8 (c 3.43, CHCl₃); IR (neat) 2961, 2933, 2869, 2834, 2244, 1604, 1583, 1486, 1458, 1404, 1347, 1319, 1268, 1231, 1122, 1078, 1032, 839, 790 cm⁻¹. HRMS (ESI); *m/z* 286.1422 ([M + Na]); exact mass calculated for C₁₅H₂₁NO₃Na, 286.1414.

A 100 mL single-necked flask equipped with a magnetic stirring bar and reflux condenser fitted with a nitrogen inlet was purged with nitrogen. The flask was charged with 31 (1.440 g, 5.468 mmol) dissolved in methanol (28 mL). NaOH (10.937 g, 273.42 mmol, 50.0 equiv.) and H₂O (14 mL) were added in sequence and the flask was heated to reflux in an oil bath. The reaction mixture was allowed to reflux overnight (16 h) and then cooled to ambient temperature. Conc. HCl (~20 mL) was added until an acidic pH was achieved. The whole was poured into H_2O (50 mL) and extracted with ethyl acetate (3 x 25 mL). The organic layers were combined, dried over MgSO₄, and concentrated to give the crude acid as a pale yellow oil. The crude oil was azeotroped with benzene (20 mL) and dried overnight with a vacuum pump. Friedel-Crafts Acylation: A 100 mL three-necked flask equipped with a magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with the crude acid dissolved in anhydrous DCM (55 mL). The flask was then cooled to 0 °C in an ice/water bath and a 2.0 M solution of oxalyl chloride in DCM (3.0 mL, 6.015 mmol, 1.1 equiv.) was added dropwise. The reaction mixture was allowed to warm to ambient temperature and stir for 1 h. The flask was then re-cooled to 0 °C and AlCl₃ (1.094 g, 8.202 mmol, 1.5 equiv.) was added in a single portion and the reaction mixture was allowed to stir for 0.5 h. The reaction was quenched by the slow addition of H_2O (10 mL). The whole was poured into H_2O (50 mL) and extracted with ether (3 x 25 mL). The organic layers were combined, dried over MgSO₄, and concentrated to give the crude ketone which was purified via flash column chromatography ($R_f = 0.36$, hexanes-ethyl acetate, 4:1) to yield **32** as a pale yellow oil (1.386 g, 5.244 mmol, 96%). ¹H NMR (500 MHz, CDCl₃) δ 3.84-3.81 (m, 6H, containing: 3.84 (s, 3H), 3.81 (s, 3H)), 3.72 (s, 3H), 3.42-3.39 (m, 1H), 2.77-2.70 (m, 1H), 2.51-2.46 (m, 1H), 2.16-2.10 (m, 4H, containing: 2.13 (s, 3H)), 1.91-1.86 (m, 1H), 1.25 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) & 196.5, 156.2, 155.8, 145.6, 142.1, 125.1, 121.5, 61.0, 60.5, 59.8, 35.0, 28.4, 27.0, 19.8, 8.8.

 $[\alpha]_D^{20}$ -36.1 (*c* 1.97, CHCl₃); IR (neat) 2960, 2932, 2865, 1681, 1576, 1459, 1402, 1316, 1284, 1156, 1107, 1070, 1039, 1019 cm⁻¹. HRMS (ESI); *m/z* 287.1252 ([M + Na]); exact mass calculated for C₁₅H₂₀O₄Na, 287.1254.

A 50 mL 3-necked flask equipped with a magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 32 (728 mg, 2.754 mmol) dissolved in anhydrous THF (25 mL) and cooled to 0 °C in an ice/water bath. A 1.0 M solution of vinylmagnesium bromide (3.3 mL, 3.305 mmol, 1.2 equiv.) was added via syringe in a single portion. The reaction mixture was allowed to stir at 0 °C for 30 min. and a saturated aqueous solution of NH₄Cl (5 mL) was slowly added to quench the reaction. The whole was poured into H₂O (50 mL) and extracted with ether (3 x 15 mL). The organic layers were combined, dried over MgSO₄, filtered, concentrated, and eluted through a plug of silica (hexanes-ethyl acetate, 4:1) to give the crude alcohol which was used in the subsequent reaction without further purification. A 50 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was charged with the crude alcohol dissolved in CH₂Cl₂ (25 mL). (+/-)-Camphor-10-sulfonic acid (64 mg, 0.275 mmol, 0.10 equiv.) was added and the reaction mixture was allowed to stir at ambient temperature for 2.5 h, until TLC showed complete consumption of the alcohol. The reaction was concentrated and purified via flash column chromatography ($R_f = 0.34$, pentane-diethyl ether, 20:1) to yield **33** as a colorless oil (608 mg, 2.216 mmol, 80%). ¹H NMR (500 MHz, CDCl₃) δ 6.84 (dd, 1H, $J_{1,2}$ = 10.5, 17.0 Hz), 6.03-6.01 (m, 1H), 5.38 (dd, 1H, $J_{1,2}$ = 2.0, 17.0 Hz), 4.96 (dd, 1H, $J_{1,2}$ = 2.0, 10.5 Hz), 3.87 (s, 3H), 3.85 (s, 3H), 3.46 (s, 3H), 3.29-3.25 (m, 1H), 2.41-2.37 (m, 1H), 2.22-2.18 (m, 4H, containing: 2.19 (s, 3H)), 1.08 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 152.4, 151.2, 146.1, 139.0, 135.3, 134.5, 124.4, 123.6, 122.9, 110.6, 61.0, 60.8, 60.2, 30.2, 26.4, 18.9, 9.3. $[\alpha]_{D}^{20}$ -48.8 (c 3.18, CHCl₃); IR (neat) 2958, 2929, 2866, 2827, 1458, 1402, 1336, 1112, 1078, 1030, 899 cm⁻¹. HRMS (ESI); m/z 297.1472 ([M + Na]); exact mass calculated for C₁₇H₂₂O₃Na, 297.1461. GC (Cyclosil-B, 150 °C isotherm): $t_{\rm R} = 45.92$ (C₁:*R*), 47.92 (C₁:*S*) min.

D. Experimental Data of Scheme 6

General procedure of Ni(II)-catalyzed hydrovinylation was followed. (98%, >95% *de* as determined by NMR using complex of **L3**). Authentic diastereomeric mixture sample was obtained via complex of achiral ligand **L6**. ¹H NMR (500 MHz, CDCl₃) δ 5.85 (dd, 1H, $J_{1,2} = 1.5$, 7.0 Hz), 5.77-5.70 (m, 1H), 4.97 (dd, 1H, $J_{1,2} = 1.5$, 17.0 Hz), 4.78 (dd, 1H, $J_{1,2} = 1.5$, 10.0 Hz), 4.16-4.11 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H),

3.57 (s, 3H), 3.26-3.21 (m, 1H), 2.33-2.28 (m, 1H), 2.20 (s, 3H), 2.15-2.10 (m, 1H), 1.36 (d, 3H, J = 7.0 Hz), 1.04 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 152.3, 150.7, 145.8, 144.4, 139.6, 135.5, 123.3, 123.1, 121.2, 111.7, 60.65, 60.62, 60.0, 37.9, 30.0, 26.4, 18.7, 18.0, 9.3. $[\alpha]_D^{20}$ -102.5 (*c* 3.23, CHCl₃); IR (neat) 2960, 2931, 2869, 2830, 1462, 1454, 1402, 1362, 1336, 1108, 1079, 1020, 971 cm⁻¹. HRMS (ESI); *m/z* 325.1759 ([M + Na]); exact mass calculated for C₁₉H₂₆O₃Na, 325.1774. GC (Cyclosil-B, 150 °C isotherm): *t*_R = 50.55 (C₁₁:*R* or *S*, C₁:*R*), 52.17 (C₁₁:*R* or *S*, C₁:*S*) min.

(*S*)-4-((*R*)-but-3-en-2-yl)-5,7,8-trimethoxy-1,6-dimethyl-1,2-dihydronaphthalene (11-*epi*-34): ¹H NMR (700 MHz, CDCl₃) δ 6.11 (m, 1H,), 5.74 (d, 1H, *J* = 6.2 Hz), 5.15-5.10 (m, 2H), 4.06 (m, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.55 (s, 3H), 3.21-3.17 (m, 1H), 2.28-2.25 (m, 1H), 2.17 (s, 3H), 2.08-2.04 (m, 1H), 1.06 (d, 3H, *J* = 6.8 Hz), 1.02 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (175 MHz, CDCl₃) δ 151.83, 150.53, 145.71, 143.2, 140.44, 135.65, 123.03, 122.72, 122.15, 113.07, 60.75, 60.6, 60.0, 38.69, 29.77, 26.19, 20.79, 17.9, 9.13. HRMS (ESI); m/z 325.1728 ([M + Na]); exact mass calculated for C₁₉H₂₆O₃Na, 325.1774. GC (Cyclosil-B, 150 °C isotherm): *t_R* = 51.51 min. (C₁₁:*S*, C₁:*S*) minor; *t_R* = 58.65 min (C₁₁: *R*, C₁: *S*) major.; dr 1.3:98.7.

E. Experimental Data of Scheme 7

A 50 mL three-necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin **34** (226 mg, 0.747 mmol) dissolved in anhydrous THF (8 mL). 9-BBN dimer (365 mg, 1.494 mmol, 2.0 equiv.) was added and the reaction mixture was allowed to stir at room temperature for 3 h. The vessel was cooled to 0 °C in an ice/water bath and 4 M NaOH (1.5 mL) was added dropwise, maintaining the internal temperature of the vessel below 10 °C. A solution of ~30% H₂O₂ (1.1 mL) was then added dropwise, maintaining the internal temperature and stir for an additional 0.5 h. The vessel was then diluted with ether (10 mL) and neutralized with 10% H₂SO₄ until pH ~7 was achieved. The whole was poured into H₂O (15 mL) and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give crude **35a** which was purified via flash column chromatography (R_f = 0.29, hexanes-ethyl acetate, 3:1) to yield **35a** as

a colorless oil (226 mg, 0.715 mmol, 96%). ¹H NMR (500 MHz, CDCl₃) δ AC-6-23 5.81 (d, 1H, J = 6.0 Hz), 3.81-3.80 (m, 6H, containing: 3.81 (s, 3H), 3.80 (s, 3H)), 3.58-3.51 (m, 5H, containing: 3.51 (s, 3H), 3.43 (bs, 1H), 3.20-3.16 (m, 1H), 2.28-2.23 (m, 2H), 2.13 (s, 3H), 2.10-2.05 (m, 1H,), 1.67-1.64 (m, 1H), 1.32-1.26 (m, 1H), 1.21 (d, 3H, J = 7.0 Hz), 0.97 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 151.4, 150.7, 146.1, 141.0, 135.6, 123.4, 123.2, 120.8, 61.2, 60.7, 60.6, 60.1, 41.4, 30.5, 29.9, 26.2, 18.4, 17.9, 9.3. [α]_D²⁰ -108.3 (*c* 1.78, CHCl₃); IR (neat) 3446, 2959, 2931, 2874, 1462, 1402, 1336, 1322, 1107, 1079, 1024 cm⁻¹. HRMS (ESI); *m/z* 343.1882 ([M + Na]); exact mass calculated for C₁₉H₂₈O₄Na, 343.1880.

An oven dried 100 mL three necked flask was equipped with a magnetic stirring bar, septum, stopper, and an oven dried cold finger with an attached balloon. The flask was charged with alcohol 35a (115 mg, 0.359 mmol) dissolved in a minimal amount of 1,4-dioxane (1.5 mL). The vessel was cooled to -60 °C in a cryogenic bath and ammonia (passed through a drying tube of barium oxide) was condensed into the vessel (ca. 35 mL). Sodium metal (large pieces in kerosene) (413 mg, 17.945 mmol, 50.0 equiv.) was freshly cut and added in a single portion, resulting in the formation of a blue solution, which was stirred for an additional 2 min. at -60 °C. The reaction was slowly quenched with methanol (10 mL) resulting in a cloudy white mixture. H₂O (10 mL) was slowly added to the reaction mixture and the whole was poured into a separatory funnel and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give crude 36a which was purified via flash column chromatography ($R_f = 0.22$, hexanes-ethyl acetate, 3:1) to yield **36a** as a colorless oil (151 mg, 0.468 mmol, 83%). ¹H NMR (500 MHz, CDCl₃) & 3.85 (s, 3H), 3.80-3.74 (m, 4H, containing: 3.80 (s, 3H)), 3.65-3.61 (m, 4H, containing: 3.65 (s, 3H)), 3.20-3.15 (m, 1H), 2.89-2.86 (m, 1H), 2.17 (s, 3H), 2.10-2.05 (m, 1H), 1.99-1.90 (m, 2H), 1.84-1.74 (m, 2H), 1.60-1.52 (m, 2H), 1.50-1.45 (m, 1H), 1.13 (d, 3H, J = 7.0 Hz), 0.79 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 149.9, 147.3, 135.0, 128.5, 122.5, 61.4, 60.7, 60.6, 60.1, 38.2, 34.9, 34.6, 27.1, 26.7, 23.4, 18.6, 18.5, 9.7. $[\alpha]_D^{20}$ +19.3 (c 0.900, CHCl₃); IR (neat) 3368, 2932, 2868, 2826, 1453, 1403, 1326, 1300, 1248, 1101, 1073, 1011 cm⁻¹. HRMS (ESI); *m/z* 345.2037 ([M + Na]); exact mass calculated for C₁₉H₃₀O₄Na, 345.2036.

A 25 mL single necked flask charged with alcohol **36a** (151 mg, 0.468 mmol) was equipped with a magnetic stirring bar and nitrogen inlet. The alcohol was dissolved in DCM (12 mL) and NaHCO₃ (472 mg, 5.620 mmol, 12.0 equiv.) and DMP (397 mg, 0.937 mmol, 2.0 equiv.) were added in sequence. The flask was purged with nitrogen and the reaction mixture was allowed to stir at ambient temperature for 2.5

h until TLC showed complete consumption of starting material. The mixture was concentrated and then eluted through a plug of silica (hexanes-ethyl acetate, 4:1). The crude aldehyde was purified via flash column chromatography ($R_f = 0.34$, hexanes-ethyl acetate, 9:1) to give **36d** as a colorless oil (119 mg, 0.371 mmol, 73%). ¹H NMR (500 MHz, CDCl₃) δ 9.51 (t, 1H, J = 2.0 Hz), 3.84 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 3.61 (s, 3H), 3.17-3.11 (m, 1H), 2.78-2.76 (m, 1H), 2.41-2.27 (m, 3H), 2.17 (s, 3H), 2.04-1.97 (m, 1H), 1.84-1.79 (m, 2H), 1.51-1.48 (m, 1H), 1.15 (d, 3H, J = 7.0 Hz), 0.97 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 203.7, 152.8, 150.2, 147.7, 134.8, 127.7, 122.7, 60.7, 60.2, 60.1, 49.3, 36.6, 33.6, 27.3, 25.8, 23.4, 20.1, 19.6, 9.6. $[\alpha]_D^{20} + 23.4$ (*c* 0.950, CHCl₃); IR (neat) 2932, 2869, 2826, 2714, 1722, 1591, 1462, 1403, 1300, 1249, 1101, 1072, 1009 cm⁻¹. HRMS (ESI); *m/z* 343.1880 ([M + Na]); exact mass calculated for C₁₉H₂₈O₄Na, 343.1880. GC (Cyclosil-B, 175 °C isotherm): *t*_R = 43.78 (C₄:*R* or *S*, C₁₁:*S*, C₁:*S*), 49.68 (C₄:*R* or *S*, C₁₁:*S*, C₁:*S*) min.

F. Experimental Data of Scheme 8

A 25 mL three necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with methyltriphenylphosphonium bromide (321 mg, 0.899 mmol, 1.5 equiv.) dissolved in anhydrous THF (10 mL). A 1.0 M solution of *n*-butyllithium in hexanes (0.72 mL, 0.719 mmol, 1.2 equiv.) was added dropwise and the reaction mixture was allowed to stir at ambient temperature for 1 h. The vessel was cooled to 0 °C in an ice/water bath and a solution of **36d** (192 mg, 0.599 mmol) in anhydrous THF (2 mL) was added dropwise via syringe. The reaction mixture was allowed to stir at 0 °C for an additional 30 min. and was then concentrated and dissolved in a minimal amount of DCM and purified via flash column chromatography (R_f = 0.41, pentane-ether, 20:1) to yield **36e** as a colorless oil (154 mg, 0.484 mmol, 81%). ¹H NMR (500 MHz, CDCl₃) δ 5.83-5.76 (m, 1H), 5.01-4.95 (m, 2H), 3.85 (s, 3H), 3.80 (s, 3H), 3.63 (s, 3H), 3.19-3.15 (m, 1H), 2.88-2.85 (m, 1H), 2.17 (s, 3H), 2.11-1.92 (m, 4H), 1.80-1.75 (m, 2H), 1.49-1.45 (m, 1H), 1.14 (d, 3H, *J* = 7.0 Hz), 0.76 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.2, 149.8, 147.3, 139.2, 135.0, 128.8, 122.5, 115.2, 60.7, 60.4, 60.1, 40.2, 38.1, 35.4, 27.2, 26.7, 23.4, 18.8, 18.3, 9.6. [α]_D²⁰ +5.5 (*c* 0.655, CHCl₃); IR (neat) 2932, 2869, 2826, 1458, 1404, 1326, 1298, 1249, 1110, 1072, 1034, 1017, 908 cm⁻¹. HRMS (ESI); *m/z* 341.2084 ([M + Na]); exact mass calculated for C₂₀H₃₀O₃Na, 341.2087.

G. Experimental Data of Scheme 10

A 25 mL three-necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin **36e** (15.0 mg, 0.047 mmol) dissolved in anhydrous THF (2 mL). 9-BBN dimer (23.0 mg, 0.094 mmol, 2.0 equiv.) was added and the reaction mixture was allowed to stir at room temperature for 3 h. The vessel was cooled to 0 °C in an ice/water bath and 4 M NaOH (0.5 mL) was added dropwise, maintaining the internal temperature of the vessel below 10 °C. A solution of $\sim 30\%$ H₂O₂ (0.5 mL) was then added dropwise, maintaining the internal temperature of the vessel below 10 °C. The vessel was allowed to warm to room temperature and stir for an additional 0.5 h. The vessel was then diluted with ether (15 mL) and the whole was poured into H₂O (15 mL) and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give crude **37** which was purified via flash column chromatography (R_f = 0.25, hexanes-ethyl acetate, 4:1) to yield **37** as a colorless oil (14.0 mg, 0. 042 mmol, 90%). ¹H NMR (400 MHz, CDCl₃) & SB-07-284 3.85 (s, 3H), 3.80 (s, 3H), 3.60-3.68 (m, 5H), 3.13-3.19 (m, 1H), 2.84-2.87 (m, 1H), 2.17 (s, 3H), 1.91-2.17 (m, 2H), 1.75-1.82 (m, 2H), 1.51-1.68 (m, 4H), 1.31-1.38 (m, 2H), 1.14 (d, 3H, J = 7.0 Hz), 0.75 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 152.8, 149.6, 147.1, 134.8, 128.6, 122.2, 63.4, 60.5, 60.2, 59.9, 37.5, 35.5, 31.3, 30.7, 27.0, 26.4, 23.3, 18.6, 18.1, 9.4; $[\alpha]_D^{20}$ +1.7 (c 0.7, CHCl₃); HRMS (ESI); m/z 359.2181 ([M + Na]); exact mass calculated for C₂₀H₃₂O₄Na, 359.2193.

H. Experimental Data of Scheme 11

A 25 mL three necked flask equipped with a magnetic stirring bar, stopper, septum, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with a solution of isocrotylmagnesium bromide (303 mg, 2.247 mmol, 10.0 equiv.) in anhydrous THF (3 mL). Preparation of isocrotylmagnesium bromide: To a vial charged with magnesium turnings (137 mg, 5.618 mmol, 25.0 equiv.) was added 1-bromo-2-methyl-1-propene (230 µL, 2.247 mmol, 10.0 equiv.) and diluted with anhydrous THF (3 mL). 1,2-Dibromoethane (29 uL, 0.337 mmol, 1.5 equiv.) was added to activate the magnesium turnings and the reaction mixture was heated to 60 °C in an oil bath for 3 h, resulting in a brownish solution that was transferred to the reaction flask via cannula. A solution of aldehyde 36d (72 mg, 0.225 mmol) in anhydrous THF (2 mL) was added dropwise via syringe to the reaction flask and was allowed to stir at ambient temperature for 15 min. The reaction was quenched by the slow addition of a saturated aqueous solution of NaHCO₃ (1 mL) and the whole was poured into H₂O (15 mL) and extracted with Et₂O (3 x 10 mL). The organic layers were combined, dried over MgSO₄, and concentrated to give the crude mixture of C_{13} epimeric allylic alcohols, which were purified via flash column chromatography $(R_f = 0.26 - 0.21, \text{ hexanes-ethyl acetate, 4:1})$ to yield **38** as a colorless oil (78 mg, 0.207 mmol, 92%). ¹H NMR (500 MHz, CDCl₃) & 5.20-5.16 (m, 2H), 4.53-4.49 (m, 1H), 4.36-4.32 (m, 1H), 3.844 (s, 3H), 3.840

(s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.67 (s, 3H), 3.63 (s, 3H), 3.20-3.12 (m, 2H), 2.96-2.94 (m, 1H), 2.85-2.82 (m, 1H), 2.42 (bs, 1H), 2.16 (s, 6H), 2.09-2.04 (m, 1H), 1.99-1.92 (m, 2H), 1.83-1.79 (m, 4H), 1.73 (s, 3H), 1.71 (s, 3H), 1.68 (s, 3H), 1.67 (s, 3H), 1.61-1.55 (m, 2H), 1.41-1.36 (m, 1H), 1.25-1.20 (m, 1H), 1.14 (d, 3H, J = 6.9 Hz), 1.13 (d, 3H, J = 6.9 Hz), 0.79 (d, 3H, J = 7.1 Hz), 0.77 (d, 3H, J = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.2, 152.9, 149.84, 149.79, 147.2, 147.1, 135.0, 134.9, 134.5, 134.4, 129.0, 128.46, 128.42, 122.5, 122.4, 110.3, 67.5, 66.7, 60.7, 60.6, 60.5, 60.4, 60.03, 60.02, 44.3, 43.5, 37.2, 35.2, 34.6, 34.0, 27.2, 26.9, 26.81, 26.75, 25.94, 25.92, 23.4, 23.3, 19.2, 18.9, 18.5, 18.43, 18.35, 18.2, 9.71, 9.69. [α]_D²⁰ +1.82 (*c* 1.100, CHCl₃); IR (neat) 3443, 2932, 2868, 1462, 1454, 1403, 1098, 1074, 1030, 1009 cm⁻¹. HRMS (ESI); *m/z* 399.2503 ([M + Na]); exact mass calculated for C_{23H36}O₄Na, 399.2506.

An oven-dried 5 dram vial was equipped with a magnetic stirring bar and charged with a solution of **38** (23 mg, 0.061 dissolved in acetonitrile (2 mL). (+/-)-Camphor-10-sulfonic acid (2 mg, 0.006 mmol, 0.10 equiv.) was added and the reaction mixture was allowed to stir at ambient temperature for 30 min, until TLC showed complete consumption of the starting material. The reaction was concentrated and purified via flash column chromatography (R_f = 0.33, pentane-diethyl ether, 20:1) to yield **39** as a colorless oil (21 mg, 0.059 mmol, 96%). ¹H NMR (500 MHz, CDCl₃) δ 6.06 (dd, 1H, $J_{1,2}$ = 10.5, 15.0 Hz), 5.78 (broad d, 1H, J = 10.5 Hz), 5.65 (dd, 1H, $J_{1,2}$ = 7.5, 10.5 Hz), 4.85 (broad d, 1H, J = 7.0 Hz), 3.85 (s, 3H), 3.79 (s, 3H), 3.67 (s, 3H), 3.19-3.14 (m, 1H), 2.95-2.92 (m, 1H), 2.87-2.81 (m, 1H), 2.16 (s, 3H), 2.01-1.93 (m, 1H), 1.82-1.77 (m, 2H), 1.74 (s, 3H), 1.70 (s, 3H), 1.49-1.46 (m, 1H), 1.14 (d, 3H, J = 7.0 Hz), 0.87 (d, 3H, J = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.8, 149.8, 147.2, 138.2, 134.9, 132.6, 128.0, 125.6, 125.3, 122.5, 60.8, 60.4, 60.1, 41.7, 37.6, 27.1, 26.7, 26.1, 23.4, 19.3, 18.4, 17.6, 9.6. [α] $_D^{20}$ -20.82 (c 0.730, CHCl₃); IR (neat) 2956, 2931, 2867, 1457, 1404, 1072, 1026, 967 cm⁻¹. HRMS (ESI); *m/z* 381.2402 ([M + Na]); exact mass calculated for C₂₃H₃₄O₃Na, 381.2400.

A 25 mL three necked flask equipped with a magnetic stirring bar, stopper, thermometer, and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with **39** (24 mg, 0.067 mmol) dissolved in anhydrous DMF (3.5 mL). Sodium ethanethiolate (56 mg, 0.670 mmol, 10.0 equiv.) was added and the reaction vessel was heated to 100 °C in an oil bath and allowed to stir for 12 h. The vessel was cooled to ambient temperature, acidified with 1.0 N aq. HCl, and extracted with diethyl ether (3 x 10 mL). The organic layers were combined, washed with H₂O (10 mL) and saturated aqueous NaCl (10 mL), dried over MgSO₄, and concentrated. Purification by flash column chromatography (R_f = 0.24, pentane-diethyl ether, 10:1) gave **40** as a ~2:1 mixture of mono-demethylated

products (15 mg, 0.044 mmol, 65%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.08 (dd, 1H, $J_{1,2} =$ 7.5, 10.5 Hz), 5.79 (d, 1H, J = 10.5 Hz), 5.65 (dd, 1H, $J_{1,2} =$ 7.5, 10.5 Hz), 5.50 (s, 1H), 3.77 (s, 3H), 3.67 (s, 3H), 3.11-3.06 (m, 1H), 2.95-2.93 (m, 1H), 2.86-2.80 (m, 1H), 2.16 (s, 3H), 2.05-1.97 (m, 1H), 1.84-1.77 (m, 2H), 1.77 (s, 3H), 1.70 (s, 3H), 1.48-1.45 (m, 1H), 1.15 (d, 3H, J = 7.0 Hz), 0.88 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 154.2, 145.9, 141.2, 138.1, 133.8, 132.6, 125.6, 125.3, 123.9, 115.7, 61.6, 60.6, 41.8, 37.4, 27.5, 26.8, 26.1, 23.2, 19.5, 18.4, 17.4, 9.4 (only signals from the major product are reported). [α]_D²⁰ +1.20 (*c* 0.500, CHCl₃); IR (neat) 3533, 3418, 2931, 2868, 2830, 1608, 1454, 1416, 1291, 1250, 1099, 1056, 1021, 963 cm⁻¹. HRMS (ESI); *m/z* 367.2244 ([M + Na]); exact mass calculated for C₂₂H₃₂O₃Na, 367.2244.

(+)-nor-elisabethadione (41): A 5 dram vial equipped with a magnetic stirring bar was charged with 40 (15 mg, 0.044 mmol) dissolved in acetonitrile (4.0 mL) and cooled to 0 °C in an ice/water bath. An aqueous 0.10 M solution of cerium ammonium nitrate (1.3 mL, 0.130 mmol, 3.0 equiv.) was added and the reaction mixture was allowed to stir at 0 °C for an additional 5 min. The red reaction mixture was diluted with H₂O (5 mL) and extracted with diethyl ether (3 x 10 mL). The organic layers were combined, dried over MgSO₄, and concentrated to give the crude product, which was used in the subsequent reaction without further purification. An oven-dried 5 dram vial equipped with a magnetic stirring bar and nitrogen inlet was charged with a solution of crude dione dissolved in 2,6-lutidine (2.0 mL). Lithium iodide (17 mg, 0.130 mmol, 3.0 equiv.) was added and the reaction mixture was heated to 80 °C in an oil bath and allowed to stir for 3 h. The reaction mixture was allowed to cool to ambient temperature and poured into H₂O (15 mL) and extracted with Et₂O (3 x 10 mL). The organic layers were combined, dried over MgSO₄, and concentrated. Purification by flash column chromatography ($R_f = 0.34$, pentane-diethyl ether, 10:1) furnished **41** (6 mg, 0.020 mmol, 46% over 2 steps) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.87 (s, 1H), 5.98 (dd, 1H, $J_{1,2}$ = 10.5, 15.0 Hz), 5.68 (d, 1H, J = 10.5 Hz), 5.32 (dd, 1H, $J_{1,2}$ = 8.5, 15.0 Hz), 2.97-2.93 (m, 2H), 2.43-2.36 (m, 1H), 1.94-1.89 (m, 1H), 1.86 (s, 3H), 1.72 (s, 3H), 1.64 (s, 3H), 1.60-1.57 (m, 1H), 1.50-1.47 (m, 1H), 1.10 (d, 3H, *J* = 7.0 Hz), 1.03 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 188.6, 183.2, 150.4, 149.1, 142.0, 137.0, 133.8, 125.6, 124.9, 117.3, 41.6, 37.3, 26.3, 26.1, 25.2, 21.1, 19.2, 18.7, 18.4, 8.3. $[\alpha]_D^{20}$ +147.50 (*c* 0.080, CHCl₃); IR (neat) 3389, 2961, 2923, 2870, 1650, 1633, 1454, 1376, 1336, 1233, 1154, 1041, 962 cm⁻¹. HRMS (ESI); m/z 337.1773 ([M + Na]); exact mass calculated for C₂₀H₂₆O₃Na, 337.1774.

I. Experimental Data of Scheme 12

A 25 mL single necked flask charged with alcohol **36a** (100 mg, 0.310 mmol) was equipped with a magnetic stirring bar and nitrogen inlet. The alcohol was dissolved in 4 mL of solvent mixture of CH₃CN:H₂O (1:1). Above reaction flask was cooled down to 0 °C and CAN (561 mg, 1.023 mmol) was added. Upon the complete consumption of starting material as judged by TLC (usually within 10-15min) the reaction was poured onto brine, and was extracted with Et₂O three times. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude material was purified *via* flash column chromatography (R_f = 0.21, hexanes-ethyl acetate, 8:2) to give quinone **43a** as a viscous yellow liquid (61.6 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 4.0 (s, 3H), 3.87-3.80 (m, 1H), 3.71-3.67 (m, 1H), 3.00 (quin, *J* = 6.3 Hz, 1H), 2.87-2.85 (m, 1H), 2.35 (bs, 1H), 2.04-1.96 (m, 1H), 1.92 (s, 3H), 1.85-1.62 (m, 3H), 1.55-1.53 (m, 2H), 1.51-1.46 (m, 1H), 1.07 (d, *J* = 7 Hz, 3H), 0.83 (d, *J* = 7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.06, 183.0, 155.57, 146.46, 144.06, 128.79, 60.85, 60.67, 37.91, 33.03, 32.82, 26.16, 26.01, 20.93, 17.63, 17.21, 8.82. [α]_D²⁰ +162.4 (*c* 0.25, CHCl₃); HRMS (ESI); *m/z* 315.1563 ([M + Na]); exact mass calculated for C₁₇H₂₄O₄Na, 315.1567.

A 25 mL single necked flask charged with alcohol quinone **43a** (30 mg, 0.103 mmol) was equipped with a magnetic stirring bar and nitrogen inlet. The alcohol was dissolved in DCM (12 mL) and DMP (65.3 mg, 0.1539 mmol, 1.5 equiv.) and drop of H2O were added in sequence at 0 °C. The flask was purged with nitrogen and the reaction mixture was allowed to stir at ambient temperature for 3h until TLC showed complete consumption of starting material. The mixture was concentrated and then eluted through a plug of silica (hexanes-ethyl acetate, 4:1). The crude aldehyde was purified via flash column chromatography (Rf = 0.34, hexanes-ethyl acetate, 9:1) to give quinone aldehyde **44** as a yellow oil (19.1 mg, 0.066 mmol, 64%). ¹H NMR (600 MHz, CDCl₃) δ 9.74 (t, *J* = 2.3 Hz, 1H), 3.99 (s, 3H), 2.98 (quin, *J* = 7.0 Hz, 1H), 2.79-2.77 (m, 1H), 2.48-2.44 (m, 1H), 2.34-2.32 (m, 2H), 1.94 (s, 3H), 1.86-1.80 (m, 1H), 1.75-1.72 (m, 1H), 1.68-1.61 (m, 1H), 1.51-1.49 (m, 1H), 1.08 (d, *J* = 7 Hz, 3H), 0.93 (d, *J* = 7 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 202.32, 188.59, 183.07, 155.59, 146.69, 143.42, 128.63, 60.80, 49.85, 35.36, 31.69, 26.34, 25.80, 20.90, 18.56, 18.14, 8.83.

A 25 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was flamedried and purged with nitrogen. The flask was charged with β -methylallyltriphenylphosphonium chloride (33 mg, 0.094 mmol, 1.5 equiv.) and anhydrous THF (2.0 mL). 1.6 M n-BuLi (47 μL, 0.075 mmol, 1.2 equiv.) was added dropwise via syringe and the reaction mixture was allowed to stir at ambient temperature for 1 h. A solution of **36d** (20 mg, 0.062 mmol) dissolved in anhydrous THF was added and the reaction mixture was allowed to stir at ambient temperature for 3 h. The reaction mixture was concentrated and dissolved in a minimal amount of DCM and purified via flash column chromatography $(R_f = 0.44, \text{ pentane-ether}, 20:1)$ to yield colorless oil **44a** as a mixture of *E*- and *Z*-isomers (14 mg, 0.040) mmol, 64%). ¹H NMR (500 MHz, CDCl₃) δ 6.14 (d, 1H, J = 15.8 Hz), 5.85 (d, 1H, J = 12.0 Hz), 5.69-5.64 (m, 1H), 5.49-5.43 (m, 1H), 4.91-4.72 (m, 4H), 3.86 (s, 3H), 3.85 (s, 3H), 3.80 (bs, 3H), 3.63 (s, 3H), 3.62 (s, 3H), 3.19-3.10 (m, 2H), 2.87-2.84 (m, 2H), 2.35-2.26 (m, 1H), 2.172 (s, 3H), 2.167 (s, 3H), 2.14-1.93 (m, 6H), 1.85 (s, 3H), 1.83 (s, 3H), 1.80-1.75 (m, 4H), 1.50-1.45 (m, 2H), 1.27-1.22 (m, 2H), 1.14 (d, 6H, J = 6.9 Hz), 0.80 (d, 3H, J = 7.0 Hz), 0.77 (d, 3H, J = 6.6 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 153.2, 153.1, 149.80, 149.77, 147.3, 142.5, 142.3, 135.04, 134.97, 133.7, 132.0, 131.14, 131.10, 128.74, 128.68, 122.5, 115.3, 114.1, 60.7, 60.36, 60.34, 60.11, 60.08, 39.3, 39.0, 38.6, 35.8, 35.5, 34.5, 27.2, 26.7, 26.6, 23.6, 23.45, 23.39, 19.0, 18.8, 18.5, 18.4, 9.62, 9.60. $[\alpha]_D^{20}$ -31.60 (*c* 0.500, CHCl₃); IR (neat) 2955, 2932, 2867, 1455, 1403, 1326, 1299, 1248, 1102, 1073, 1026, 1010, 967 cm⁻¹. HRMS (ESI); *m/z* 381.2398 ([M + Na]); exact mass calculated for C₂₃H₃₄O₃Na, 381.2400.

In a glovebox, a 1 dram vial was charged with aldehyde **36d** (30 mg, 0.0936 mmol) dissolved in deuterated chloroform (1.0 mL). Trimethylsilyl iodide (40 μ L, 0.281 mmol, 3.0 equiv.) was added and the reaction mixture was transferred to an NMR tube *via* pipette and sealed from the outside environment. Upon completion of the reaction (as judged by NMR analysis after 1.5h), the whole was poured into H₂O (10 mL) and extracted with Et₂O (3 x 5 mL). The organic layers were combined, dried over MgSO₄, and concentrated. Purification by flash column chromatography (R_f = 0.26, hexanes-ethyl acetate, 4:1) furnished **46b** (12.9 mg, 0.0421 mmol, 45%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 5.67-5.63 (m, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.10-3.05 (m, 1H), 2.81 (d, *J* = 5.3 Hz, 1H), 2.68-2.66 (m, 1H), 2.20 (s, 3H), 1.89-1.83 (m, 1H), 1.76-1.59 (m, 4H), 1.54-1.5 (m, 2H), 1.19 (d, *J* = 7 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 149.74, 147.50, 145.19, 132.71, 127.62, 123.02, 93.72, 60.38, 59.92, 37.47, 37.42, 31.47, 27.38, 25.65, 21.23, 20.57, 19.46, 10.33. [α]_D²⁰ + 3.6 (*c* 0.15, CHCl₃); HRMS (ESI); *m/z* 329.1719 ([M + Na]); exact mass calculated for C₁₈H₂₆O₄Na, 329.1723.

The structure of this hemiacatal (46b) was further confirmed by its conversion to the quinone-

aldehyde 44, which was synthesized independently from the corresponding alcohol 43b (Scheme below and Scheme 12A in the paper).

A 10mL single necked flask charged with compound **46b** (10 mg, 0.0326 mmol) was equipped with a magnetic stirring bar and nitrogen inlet. The lactol **46b** was dissolved in DCM (2 mL) and DMP (20.8 mg, 0.0489 mmol, 1.5 equiv.) and drop of H₂O were added in sequence at 0 °C. The flask was purged with nitrogen and the reaction mixture was allowed to stir at ambient temperature for 2h until TLC showed complete consumption of starting material. The mixture was concentrated and then eluted through a plug of silica (hexanesethyl acetate, 4:1). The crude product was purified via flash column chromatography ($R_f =$ 0.34, hexanes-ethyl acetate, 9:1) and it was identified as compound **44** by comparison with spectra prepared by an alternate route (Scheme 12A).

J. Experimental Data of Scheme 13

Experimental procedures, 1H, 13C spectra and Gas Chromatogram data of compound 27, 46, 47, 48, 50, 51 and 52 were reported in our previous communication.²

K. Experimental Data of Scheme 15

A 50 mL three-necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin **51** (231.8 mg, 0.85 mmol) dissolved in anhydrous THF (20 mL). 9-BBN dimer (519.1 mg, 2.13 mmol, 2.5 equiv.) was added in small portions and the reaction mixture was allowed to stir at room temperature for 2 h. The vessel was cooled to 0 °C in an ice/water bath and 4 M NaOH (2.0 mL) was added dropwise, maintaining the internal temperature of the vessel below 10 °C. A solution of ~30% H₂O₂ (1.5 mL) was then added dropwise, maintaining the internal temperature and stir for an additional 0.5 h. The vessel was then diluted with ether (10 mL) and neutralized with 10% H₂SO₄ until pH ~7 was achieved. The whole was poured into water (15 mL) and

extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give crude **52** which was purified via flash column chromatography ($R_f = 0.42$, hexanesethyl acetate, 2:1) to yield **52** as a colorless oil (245.3 mg, 0.85mmol, >99%). ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 1H), 5.69 (d, 1H, J = 6.4 Hz), 3.88 (s, 3H), 3.83 (s, 3H), 3.72-3.63 (m, 2H), 3.27 (quintet, 1H, J = 6.8 Hz), 2.95 (sextet, 1H, J = 6.8 Hz), 2.42 (dd, 1H, $J_{1,2} = 6.8$, 16.8 Hz), 2.25 (s, 3H), 2.17 (dd, 1H, $J_{1,2} = 6.8$, 10.0 Hz), 1.87 (sextet, 1H, J = 6.8 Hz), 1.66 (sextet, 1H, J = 6.8 Hz), 1.22 (d, 3H, J = 6.8 Hz), 1.05 (d, 3H, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 149.7, 139.9, 133.7, 130.0, 129.0, 120.5, 119.3, 61.4, 60.8, 60.0, 39.8, 30.3, 25.2, 22.8, 20.4, 19.9, 16.2. [α]_D²⁰ -30.4 (*c* 0.63, CHCl₃). HRMS (ESI); *m/z* 313.1780 ([M + Na]); exact mass calculated for C₁₈H₂₆O₃Na, 313.1780.

An oven dried 50 mL three necked flask was equipped with a magnetic stirring bar, septum, stopper, and an oven dried cold finger with an attached balloon. The flask was charged with alcohol 52 (187.8 mg, 0.65 mmol) dissolved in a minimal amount of THF (1 mL). The vessel was cooled to -78 °C in a dry ice/acetone bath and ammonia (passed through a drying tube of barium oxide) was condensed into the vessel (ca. 20 mL). Lithium metal (40% dispersion in mineral oil) (168 mg, 9.69 mmol, 15 equiv.) was added, resulting in the formation of a blue solution, which was stirred for an additional 15 min. at -78 °C. The reaction was slowly quenched with methanol (10 mL) resulting in a cloudy white mixture. Water (10 mL) was slowly added to the reaction mixture and the whole was poured into a separatory funnel and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give crude 53-(C₄-R) which was purified via flash column chromatography ($R_f = 0.24$, hexanes-ethyl acetate, 3:1) to yield 53-(C₄-R as a colorless oil (188.3 mg, 0.64 mmol, >99%). Note: ammonia:THF ratio is critical to diastereoselectivity of the reduction. A high ammonia:THF ratio and large excess of lithium gives the best selectivities (>95% de determined by GC). ¹H NMR (500 MHz, CDCl₃) & 6.74 (s, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 3.78-3.67 (m, 2H), 3.16 (quintet, 1H, J = 6.0 Hz), 2.62 (q, 1H, J = 6.0 Hz), 2.22 (s, 3H), 2.11 (quintet, 1H, J = 6.5 Hz), 1.89-1.19 (m, 2H), 1.76-1.65 (m, 2H), 1.64-1.48 (m, 3H), 1.17 (d, 3H, J = 7.0 Hz), 0.76 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 149.2, 135.2, 135.1, 128.9, 125.8, 61.8, 60.6, 60.0, 40.4, 38.8, 35.6, 28.1, 27.5, 22.5, 18.9, 16.5, 16.0. $[\alpha]_D^{20}$ +2.51 (*c* 2.11, CHCl₃), IR (neat) 3360, 1614, 1236, 1014 cm⁻¹. HRMS (ESI); *m/z* 315.1910 ([M + Na]); exact mass calculated for $C_{18}H_{28}O_3Na$, 315.1936.

A vial containing ~ 0.5 mg sample of alcohol **52** was treated with a stir bar, 30 mol% Pd/C and MeOH (1

mL). A stream of H_2 was introduced and the vial capped. The reaction was allowed to stir overnight, then was poured into water and extracted with ether. The organic extracts were combined, dried (MgSO4) and concentrated *in vacuo* to afford the title compound with its C₄ epimer in a 97:3 ratio (1H NMR). Rf 0.30 (30:70 EtOAc:Hexanes); 1H NMR (500 MHz, CDCl3) δ H 6.84 (s, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.67-3.62 (m, 1H), 3.14-3.12 (m, 1H), 2.76-2.71 (m, 1H), 2.38-2.33 (m, 1H), 2.21 (s, 3H), 1.72-1.68 (m, 3H), 1.67-1.51 (m, 2H), 1.41-1.35 (m, 1H), 1.30-1.24 (m, 1H), 1.19 (d, 3H, *J* 7 Hz), 1.09 (d, 3H, *J* 7 Hz).

L. Experimental Data of Scheme 16

A two-necked 15 mL round bottomed flask equipped with magnetic stir bar, gas inlet and glass stopper was flame-dried, purged with nitrogen and charged with a solution of alcohol **53** (100 mg, 0.342 mmol, 92:8 at C_{11} and ~85:15 at C_4) in dry THF (3.0 mL). The solution was cooled to 0 °C and treated with triphenylphosphine (91 mg, 0.345 mmol), imidazole (47 mg, 0.684 mmol), and iodine chips (88 mg, 0.345 mmol). The reaction was warmed to rt and stirred for 1.5 h. The whole was transferred to a dry flask and the solvent removed *in vacuo*. Dry DMSO (2.0 mL) was added to the crude iodide, followed by solid NaCN (34 mg, 0.68 mmol) and a magnetic stir bar. The reaction was heated to 60 °C and stirred for 1.5 h, then poured into water and extracted with ether. The organic phases were combined, dried (MgSO₄) and concentrated to an oil. Purification *via* column chromatography (13:87 EtOAc:Hexanes) afforded nitrile **54** as an oil.

A three-necked 25 mL round bottomed flask equipped with magnetic stir bar, gas inlet, rubber septum, and thermometer adapter was flame-dried, purged with nitrogen and charged with a solution of nitrile **54** (59 mg, 0.196 mmol, 92:8 at C_{11} and ~85:15 at C_{10}) in dry THF (2.0 mL). The solution was cooled to -76 °C and treated with DIBAL-H (0.49 mL, 1.0 M in Hexanes). The reaction was warmed to 0 °C and stirred for 3.5 h, then treated with a satd. solution of NH₄Cl:HCl (6:1, 0.4 mL). The whole was warmed to rt and treated with a solution of Rochelle's salt and stirred for 20 min, then poured into water and extracted with ether. The organic phases were combined, dried (MgSO₄) and concentrated to a clear film.

A 2-necked 15 mL round bottomed flask equipped with magnetic stir bar, gas inlet and glass stopper was flame-dried, purged with nitrogen and charged with solid KHMDS (78 mg, 0.392 mmol). Dry THF (2.0 mL) was added, followed by isopropyltriphenylphosphonium iodide (169 mg, 0.392 mmol) in a single portion. The reaction was stirred for 2 h at rt, then cooled to 0 °C and treated with a solution of the aldehyde **55** prepared above in THF (2.0 mL). The reaction was warmed to rt and stirred overnight for 20.5

h. The whole was filtered through a fritté funnel and the ether rinsings/filtrate were concentrated *in vacuo* and the residue purified by column chromatography (isocratic hexanes, then 10:90 EtOAc:Hexanes) to afford alkene **56** as an oil. $R_f 0.24$ (5:95 EtOAc:Hexanes). The spectral data matched with the literature value.^{3 1}H NMR (500 MHz, CDCl₃) δ 6.73 (s, 1H), 5.18-5.14 (m, 1H, major diastereomer, 85%), 5.01 (m, 1H, minor diastereomer, 15%), 3.88 (s, 3H), 3.80 (s, 3H), 3.78-3.67 (m, 2H), 3.15 (m, 1H), 2.65-2.63 (m, 1H), 2.22 (s, 3H), 1.88-2.11 (m, 3H), 1.85-1.79 (m, 2H), 1.72 (s, 3H), 1.63 (s, 3H), 1.51-1.33 (m, 4H), 1.17 (d, 3H, J = 7.0 Hz).

M. Experimental Data of Scheme 17

Experimental procedures, ¹H, ¹³C spectra and X-ray data of compound **57** were reported in our previous communication.²

A 25 mL three-necked flask equipped with a magnetic stirring bar, septum, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with anhydrous DCM (2.0 mL) and dimethyl sulfoxide (0.03 mL) and cooled to -78 °C via dry ice/acetone bath. A 2.0 M solution of oxalyl chloride (0.13 mL) was added and allowed to stir for 15 min. A solution of alcohol 53 (70.5 mg, 0.21 mmol) in anhydrous DCM (1.0 mL) was added and allowed to stir for 30 min. Triethylamine (0.13 mL) was added and allowed to stir for 15 min. The vessel was allowed to warm to room temperature and the whole was poured into water (10 mL) and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give the crude aldehyde, which was used for the next reaction without further purification. Flash column chromatography of crude aldehyde led to the formation of a cyclized product. The crude aldehyde was dissolved in THF (1.0 mL) and t-butyl alcohol (1.0 mL) in a 5 dram vial. A solution of 1.0 M 2,3-dimethyl-2-butene in THF (1.0 mL) was added to the vial followed by a solution of NaClO₂ (65.4 mg, 0.72 mmol, 3.0 equiv.) and NaH₂PO₄ (86.7 mg, 0.72 mmol, 3.0 equiv.) dissolved in deionized water (1.0 mL). The reaction mixture was allowed to stir for 1 h then the whole was poured into water (10 mL) and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, concentrated, and azeotroped with benzene to ensure all water has been removed. A 25 mL three-necked flask equipped with a magnetic stirring bar, septum, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with crude acid dissolved in anhydrous DCM (3.0 mL) and cooled to 0 °C via ice/water bath. A 2.0 M solution of oxalyl chloride in DCM (0.14 mL, 0.29 mmol, 1.2 equiv.) was added and the vessel was allowed to warm to room temperature and stir for 1 h. The vessel was re-cooled to 0 °C and AlCl₃ (48.2 mg, 0.36 mmol, 1.5 equiv.) was added and the vessel was allowed to warm to room temperature and stir for 30 min. The vessel was re-cooled to 0 $^{\circ}$ C and the reaction was quenched by the slow addition of water (5 mL). The whole was poured into water and extracted with ether (3 x 10 mL). The organic layers were combined

and dried over MgSO₄, and concentrated to give crude ketone **57** which was purified via flash column chromatography ($R_f = 0.29$, hexanes-ethyl acetate, 9:1) to give a mixture of diastereomers as a colorless oily solid. Recrystallization with methanol afforded colorless needles as a single diastereomer of **57** (28.9 mg, 0.10 mmol, 47 %). ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 3.75 (s, 3H), 3.23 (sextet, 1H, J = 7.2 Hz), 2.62 (dd, 1H, $J_{1,2} = 3.8$, 16.4 Hz), 2.52 (s, 3H), 2.36-2.26 (m, 2H), 2.18-2.12 (m, 2H), 1.80-1.77 (m, 1H), 1.42-1.37 (m, 1H), 1.23 (d, 3H, J = 6.8 Hz), 1.13-1.09 (m, 4H containing 1.12 (d, 3H, 6.4 Hz)). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 155.3, 150.3, 142.6, 133.7, 133.2, 127.7, 60.6, 60.2, 49.3, 43.8, 35.6, 31.3, 28.6, 27.2, 23.7, 19.6, 14.0. mp = 101.5-103.5, [α]_D²⁰ +59.4 (*c* 1.33, CHCl₃), IR (neat) 1673, 1448, 1254, 1071 cm⁻¹. HRMS (ESI); *m/z* 311.1624 ([M + Na]); exact mass calculated for C₁₈H₂₄O₃Na, 311.1623.

N. Experimental Data of Scheme 18

Ketone 57 (16 mg, 0.055 mmol) was dissolved in ethanol (1.0 mL) in a 5 dram vial. NaBH₄ (6 mg, 0.165 mmol, 3.0 equiv.) was added to the reaction mixture and was allowed to stir at room temperature for 3.5 h. The whole was poured into water and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give the crude alcohol, which was used in the subsequent reaction without further purification. The crude alcohol was dissolved in anhydrous DCM (1.0 mL) in an oven-dried 5 dram vial. Camphorsulfonic acid (3.0 mg, 0.011 mmol, 0.20 equiv.) was added and the reaction was allowed to stir at room temperature for 45 min. The whole was poured into water and extracted with ether (3 x 10 mL). The organic layers were dried over MgSO₄, and concentrated to give crude vinylarene 58 which was purified via flash column chromatography ($R_f = 0.36$, hexanes-ethyl acetate, 19:1) to give **58** as a colorless oil (15 mg, 0.055 mmol, >99%). ¹H NMR (400 MHz, CDCl₃) δ 6.56 (dd, 1H, $J_{1,2} = 2.8$, 9.6 Hz), 5.75 (dd, 1H, $J_{1,2} = 2.0$, 9.6 Hz), 3.86 (s, 3H), 3.79 (s, 3H), 3.11 (sextet, 1H, J = 6.8 Hz), 2.31-2.23 (m, 4H containing 2.23 (s, 3H)), 2.14-2.02 (m, 3H), 1.39-1.26 (m, 5H containing 1.27 (d, 3H, J = 6.8 Hz)), 1.19 (d, 3H, J = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 149.7, 134.6, 133.5, 132.3, 128.3, 125.2, 123.9, 60.4, 60.3, 41.2, 34.7, 31.8, 29.4, 26.5, 22.6, 19.8, 11.4. $[\alpha]_D^{20}$ +25.9 (c 0.92, CHCl₃). HRMS (ESI); m/z 295.1692 ([M + Na]); exact mass calculated for $C_{18}H_{24}O_2Na$, 295.1674. GC (poly(dimethylsiloxane), 200 °C isotherm): $t_R = 28.44$ (C_{11} :S, C_4 :R, C_1 :S) min.

General procedure of Ni(II)-catalyzed hydrovinylation was followed. (99%, >99% *de* as determined by NMR using complex of L1). ¹H NMR (500 MHz, CDCl₃) δ 5.76 (ddd, 1H, $J_{1,2,3} = 7.5$, 10.0, 17.5 Hz), 4.95-4.91 (m, 2H), 3.86 (s, 3H), 3.78 (s, 3H), 3.65 (q, 1H, J = 8.0 Hz), 3.20 (sextet, 1H, J = 7.5 Hz), 2.16 (s, 3H), 2.09-2.02 (m, 4H), 1.38-1.34 (m, 2H), 1.29-1.24 (m, 5H containing 1.26 (d, 3H, J = 6.5 Hz)), 1.06 (d, 3H, J = 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 144.0 (2 x C), 135.6, 133.4, 132.7, 128.5, 112.9, 60.4, 60.1, 43.2, 42.0, 40.5, 34.4, 31.2, 28.7, 27.0, 24.0, 20.5, 12.8. [α]_D²⁰ +29.3 (*c* 0.75, CHCl₃). HRMS (ESI); *m/z* 323.1977 ([M + Na]); exact mass calculated for C₂₀H₂₈O₂Na, 323.1987. GC (poly(dimethylsiloxane), 200 °C isotherm): $t_R = 31.21$ (C₁₃:*S*, C₁₁:*S*, C₄:*R*, C₁:*S*) min.

A 25 mL three-necked flask equipped with a magnetic stirring bar, stoppers, and a reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin **59** (17 mg, 0.055 mmol) and 2-methyl-2-butene (5.0 mL). Grubb's 2^{nd} generation catalyst (5 mg, 0.005 mmol, 10.0%) was added and the reaction mixture was heated to reflux in an oil bath (40 °C). The reaction was allowed to stir for 6 h before cooling to ambient temperature. The whole was concentrated and eluted through a plug of silica (R_f = 0.33, hexanes-ethyl acetate, 19:1) to give **60** (14 mg, 0.045 mmol, 81%). ¹H NMR (400 MHz, CDCl₃) δ 5.37-5.34 (m, 2H), 3.86 (s, 3H), 3.78 (s, 3H), 3.61-3.55 (m, 1H), 3.25-3.15 (m, 1H), 2.15 (s, 3H), 2.08-2.01 (m, 3H), 1.75-1.73 (m, 1H), 1.64 (d, 3H, *J* = 4.1 Hz), 1.56-1.51 (m, 1H), 1.38-1.30 (m, 2H), 1.28-1.24 (m, 4H, containing 1.26 (d, 3H, *J* = 6.9 Hz), 1.04 (d, 3H, *J* = 6.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 149.4, 136.8, 135.5, 133.6, 133.3, 128.5, 123.5, 60.4, 60.1, 43.3, 41.0, 40.9, 34.5, 31.2, 28.7, 27.0, 24.0, 20.5, 18.0, 12.8.

Olefin **59** (22.2 mg, 0.074 mmol) was dissolved in anhydrous DCM (2.0 mL) in a 5 dram vial. The vessel was cooled to -78 °C via acetone/dry ice bath and ozone was introduced via bubbling through a glass pipette until a persistent blue color was observed throughout the solution. The flow of ozone was stopped and nitrogen was bubbled through the solution until the blue color was no longer observed. Dimethyl

sulfide (0.1 mL, 1.48 mmol, 20.0 equiv.) was added and the reaction mixture was allowed to warm to room temperature. The whole was poured into water (10 mL) and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give the crude aldehyde, which was eluted through a small plug of neutral alumina (pentane-ether, 19:1) to yield aldehyde **S7** (17.1 mg, 0.565 mmol, 76%). *Note*: Elution on a silica gel column resulted in significant loss of product most likely due to aldol-type processes. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (d, 1H, *J* = 3.6 Hz), 3.86 (s, 3H), 3.86-3.76 (m, 5H containing 3.79 (s, 3H)), 3.22 (sextet, 1H, *J* = 7.2 Hz), 2.16-2.04 (m, 6H containing 2.10 (s, 3H)), 2.02-1.94 (m, 2H), 1.60-1.52 (m, 2H), 1.25 (d, 3H, *J* = 6.8 Hz), 1.11 (d, 3H, *J* = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 150.8, 149.8, 136.3, 134.4, 128.8, 125.3, 60.4, 60.2, 51.4, 43.3, 33.4, 32.0, 31.0, 28.5, 27.0, 24.0, 20.2, 12.8 [α]_D²⁰ +5.0 (*c* 0.25, CHCl₃). HRMS (ESI); *m/z* 325.1761 ([M + Na]); exact mass calculated for C₁₉H₂₆O₃Na, 325.1774.

A 25 mL three-necked flask equipped with a magnetic stirring bar, septum, stopper, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with KHMDS (8.8 mg, 0.044 mmol, 1.1 equiv.) dissolved in anhydrous THF (1.0 mL). Isopropyltriphenylphosphonium bromide (23.3 mg, 0.060 mmol, 1.5 equiv.) was added and the reaction mixture was allowed to stir at room temperature for 2 h. The reaction mixture was transferred dropwise to a vessel containing aldehyde S7 (12.2 mg, 0.040 mmol) dissolved in anhydrous THF (1.0 mL) at 0 °C via cannula. The reaction mixture was allowed to stir at 0 °C for 30 min. then allowed to warm to room temperature and stir for an additional 2 h. The reaction mixture was poured into water (10 mL) and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO₄, and concentrated to give the crude olefin which was purified via flash column chromatography ($R_f = 0.32$, hexanes-ethyl acetate, 19:1) to give **9b** (10.0 mg, 0.030 mmol, 75%, 73% *de*) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.97 (d, 1H, *J* = 9.2 Hz), 3.84 (s, 3H), 3.77 (s, 3H), 3.69 (q, 1H, J = 9.2 Hz), 3.22 (sextet, 1H, J = 7.2 Hz), 2.12-2.03 (m, 6H containing 2.07 (s, 3H)), 1.98-1.93 (m, 1H), 1.73 (s, 3H), 1.68 (s, 3H), 1.40-1.31 (m, 2H), 1.25-1.19 (m, 5H containing 1.24 (d, 3H, J = 7.2 Hz)), 1.03 (d, 3H, J = 6.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 149.3, 135.5, 134.2, 133.3, 131.1, 128.8, 128.6, 60.4, 60.1, 44.2, 40.3, 37.5, 34.3, 31.5, 28.5, 27.8, 25.6, 24.6, 20.3, 17.8, 12.3. $\left[\alpha\right]_{D}^{20}$ +29.0 (c 0.55, CHCl₃). HRMS (ESI); m/z 351.2302 ([M + Na]); exact mass calculated for C₂₂H₃₂O₂Na, 351.2295.

2-Methyl-1-tri*n***-butylstannylpropene (63):** A 3-necked 25 mL round bottomed flask equipped with magnetic stir bar, gas inlet, thermometer adapter and rubber septum was flame-dried, purged with nitrogen, and charged with dry tetrahydrofuran (6.5 mL) which was cooled internally to -78 °C. *t*-BuLi (2.3 mL, 3.9

mmol, 1.7 M in pentane) was added *via* syringe, followed by isocrotyl bromide (0.20 mL, 1.95 mmol) over a temperature range of -78 °C \rightarrow -55 °C, then was allowed to recool to -78 °C. Tributyltin iodide (0.56 mL, 1.95 mmol) was added neat *via* syringe, keeping the temperature below -65 °C and forming a yellow milky color. The cooling bath was removed and the reaction warmed to rt, stirring for 23 h. The mixture was poured into water, washed with saturated KF, and extracted with ether. The organic phases were combined, dried (MgSO₄) and concentrated to an oil as stannane **63**, which was of sufficient purity to not warrant any further isolation techniques: 679.8 mg, 1.97 mmol, *ca*. 100%. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 5.43 (s, 1H), 1.90 (d, 3H, *J* 1.2 Hz), 1.77 (s, 3H), 1.51-1.47 (m, 6H), 1.35-1.27 (m, 6H), 0.94-0.88 (m, 15H).

A three-necked 25 mL round bottomed flask equipped with magnetic stir bar, gas inlet, rubber septum, and glass stopper was flame-dried, purged with nitrogen, and charged with solid potassium hexamethyldisilazide (19.3 mg, 0.097 mmol). Dry tetrahydrofuran (1.0 mL) was added via syringe, and the clear colorless solution was stirred at rt while being treated dropwise with a solution of *enantiopure* ketone 57 (19.9 mg, 0.069 mmol) in THF (1.0 mL plus 1.0 mL rinse), forming a red clear solution that was stirred for one hour. Solid N-phenylbis(triflouromethanesulfonimide) (25.9 mg, 0.073 mmol) was added under a stream of nitrogen in a single portion, causing the solution to gradually become a clear pale yellow. The reaction was stirred for one hour. Lithium chloride (5.8 mg, 0.138 mmol), triphenylarsine (2.1 mg, 10 mol%), and Pd₂dba₃•CHCl₃ (3.6 mg, 5 mol%) were added in sequence, followed by a solution of stannane 63 (39 mg, 0.113 mmol) in THF (0.5 mL plus 0.5 mL rinse). The reaction was monitored by GC (fused silica, 170 °C for one minute, then 5 °C per minute to 250 °C; t_R triflate = 16.125, t_R 1,3-diene = 17.906) and judged complete after 6.5 h at rt. The whole was treated with saturated NaF and stirred for 5 minutes, then extracted with ether. The organic extracts were combined, dried (MgSO₄) and concentrated in vacuo to a brown oil, which was purified by prep TLC (97.5:2.5 petroleum ether [30-60 °C fraction]:diethyl ether) to afford clean 1,3-diene 62: 16.6 mg, 0.051 mmol, 74% from ketone 57. Rf 0.31 (2.5:97.5 ether:petroleum ether [30-60 °C fraction]); $[\alpha]_D$ (c 1.107, +222.8, CHCl₃); UV (CHCl₃) λ_{max} 274 nm (ϵ 1543); ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.85 (s, 1H), 5.63 (s, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 3.09-3.05 (m, 1H), 2.19 (s, 3H), 2.14-2.04 (m, 3H), 1.91-1.87 (m, 1H), 1.81 (s, 3H), 1.71 (s, 3H), 1.32-1.23 (m, 1H), 1.28 (d, 3H, J7 Hz), 1.17-1.09 (m, 1H), 1.14 (d, 3H, J7 Hz); ¹³C (125 MHz, CDCl₃) δ_C 150.59, 149.88, 135.83, 135.43, 135.11, 132.62, 131.89, 131.37, 127.43, 126.68, 60.03, 59.82, 43.06, 34.32, 32.17, 29.68, 26.33, 26.01, 23.20, 19.53, 18.80, 14.06; IR (neat) 1560, 1458, 1260, 1072 cm⁻¹.

An oven-dried three-necked 25 mL round bottomed flask was equipped (under air) with a dry magnetic stir bar, oven-dried cold finger with gas inlet, a glass stopper, and a drying tube packed with barium oxide. A solution of diene 62 (16.1 mg, 0.049 mmol) in dry THF (1.0 mL plus 1.0 mL rinse) was added via pipette, and ammonia (ca. 10 mL, passed through a drying tube packed with barium oxide) was condensed into the vessel. Lithium metal (40% dispersion in mineral oil, ca. 10-fold excess) was added, forming a blue solution which was stirred for 15 minutes, then was slowly quenched with methanol until a white cloudy mixture formed. The cooling bath was removed and the mixture poured into a large beaker containing dry ether cooled by an ice bath. Excess methanol was added, and the mixture was swirled with addition of a few drops of water (CAUTION!). More water was added until all the excess lithium had been killed, leaving behind a clear colorless solution, which was poured into a separatory funnel and extracted from water with ether. The organics were combined, dried (MgSO₄) and concentrated *in vacuo* to a white oily mix, which was filtered through a column of silica gel eluting with isocratic hexane to remove the mineral oil, then with 95:5 hexane:ether to afford a mixture of semipure 8b and 9b. Purification by prep TLC (97.5:2.5 petroleum ether [30-60 °C]: diethyl ether) afforded **8b** and **9b** as a 1:2 mixture of *R*:*S* epimers at the newly created C₁₃ stereogenic center: 12.7 mg, 0.039 mmol, 80%. R_f 0.23 (97.5:2.5 petroleum ether [30-60 °C]:diethyl ether); *Diagnostic* ¹H NMR⁴ (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.97 (d, 1H, J 9.2 Hz); IR (neat) 1560, 1541, 1462, 1438, 1260, 1073 cm⁻¹; [M + Na] calc. 351.2300 meas. 351.2293.

Pseudopterosin G-J & A-F aglycones (9a and 8a)⁴ A three-necked 25 mL round bottomed flask equipped with magnetic stir bar, reflux condenser with gas inlet, rubber septum and thermometer adapter was flame-dried, purged with nitrogen and charged with sodium hydride (8.6 mg, 0.216 mmol, 60% in mineral oil). Dry dimethylformamide (1.0 mL) was added, and the grey slurry was stirred at rt. Dropwise treatment with ethanethiol (0.02 mL, 0.27 mmol) afforded a clear, colorless solution of sodium thiolate. A solution of dimethyl ethers **8b** and **9b** (1:2, 7.9 mg, 0.024 mmol, prepared *via* lithium reduction of dimet

62) in DMF (2.0 mL) was added *via* syringe, and the reaction was heated to 150 °C for 2 h, then cooled to rt. Water was added to quench the excess thiolate, and the whole was poured into water and extracted with ether. The organic phases were combined, dried (MgSO₄) and concentrated to an oil containing significant amounts of DMF. The excess DMF was removed *via* high-vacuum, and the residual film was purified by prep TLC (17:83 EtOAc:Hexanes) to afford the known title compounds as a 2:1 *S:R* mixture of C₁₃ epimers: 4.3 mg, 0.0144 mmol, 60%. R_f 0.28 (20:80 EtOAc:Hexanes); *Diagnostic* ¹H NMR⁴ (400 MHz, CDCl₃) $\delta_{\rm H}$ (G-J Aglycone) 5.05 (s, 1H), 4.94 (d, 1H, *J* 9.2 Hz), 4.79 (s, 1H), 3.73-3.67 (m, 1H), 3.15-3.10 (m, 1H); (A-F aglycone) 5.10 (d, 1H, *J* 9.2 Hz), 5.03 (s, 1H), 4.82 (s, 1H), 3.63-3.56 (br, 1H), 3.27-3.20 (m, 1H). See the attached ¹H NMR Spectra.

O. Experimental Data of Scheme 19

In a glovebox, a 1 dram vial was charged with compound **38** (30.0 mg, 0.08 mmol) dissolved in deuterated chloroform (1.0 mL). Trimethylsilyl iodide (22.7 μ L, 0.159 mmol, 2.0 equiv.) was added slowly to the above reaction mixture. Upon completion of the starting material judged by TLC the whole was poured into H₂O (10 mL) and extracted with Et₂O (3 x 10 mL). The organic layers were combined, dried over MgSO₄, and concentrated. Purification by flash column chromatography (R_f = 0.35, hexanes-ethyl acetate, 9:1) furnished **69** (16.2 mg, 0.051 mmol, 65%) as white powder. ¹H NMR (600 MHz, CDCl₃) δ 5.63 (s, 1H), 5.10 (br d, *J* = 8.3 Hz, 1H), 3.74 (s, 3H), 3.57-3.55 (m, 1H), 3.33-3.30 (m, 1H), 2.18-2.13 (m, 2H), 2.07 (s, 3H), 2.05-2.01 (m, 1H), 1.74 (s, 3H), 1.67 (s, 3H), 1.65-1.57 (m, 3H), 1.47-1.43 (m, 1H), 1.25 (d, *J* = 6.8 Hz, 3H), 1.14-1.08 (m, 1H), 1.04 (d, *J* = 5.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 144.40, 143.54, 134.13, 130.13, 129.69, 129.56, 126.37, 126.06, 60.81, 43.45, 39.51, 35.39, 30.93, 29.89, 28.20, 27.43, 25.66, 22.88, 21.01, 17.63, 11.20. [α]_D²⁰ + 27.8 (*c* 0.18, CHCl₃). HRMS (ESI); *m/z* 337.2123 ([M + Na]); exact mass calculated for C₂₁H₃₀O₂Na, 337.2138.

Also see the attached spectra. The structure was confirmed by comparison of ¹H and ¹³C spectra of this compound which was isolated during isolation from natural sources.^{12b} Further it was converted into **8b**, which has been described in the literature.¹³

In a glovebox, a 1 dram vial was charged with compound 69 (8 mg, 0.232 mmol) dissolved in DME (1.0

mL). To the resulting solution was added CH₃I (26 uL, 0.4178 mmol, 1.8 equiv.) and cooled down to 0 °C then added KH (14 mg, 0.348 mmol, 1.5 equiv.). The progress of the reaction was monitored by TLC, after 30 min TLC shows complete conversion of starting material. Above reaction was quenched using a saturated aqueous solution of NH₄Cl (5 mL), the whole was poured into H₂O (5 mL) and extracted with ether (3 x 5 mL). The organic layers were combined, dried over MgSO₄, filtered, concentrated, and purified by flash column chromatography (R_f = 0.50, hexanes-ethyl acetate, 9:1) to give **8b** (7.5 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 5.13 (br d, *J* = 9.0 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.60-3.57 (m, 1H), 3.41-3.35 (m, 1H), 2.21-2.16 (m, 1H), 2.12-2.07 (m, 1H), 2.06 (s, 3H)), 2.04-1.99 (m, 1H), 1.75 (s, 3H), 1.68 (s, 3H), 1.67-1.58 (m, 3H), 1.54-1.50 (m, 1H), 1.21 (d, *J* = 7.2 Hz, 3H), 1.16-1.09 (m, 1H), 1.04 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.15, 148.57, 133.97, 133.67, 133.38, 129.92, 129.74, 127.87, 60.49, 60.0, 42.16, 39.42, 35.7, 30.37, 29.74, 27.67, 27.08, 25.64, 23.44, 20.99, 17.64, 10.82. $[\alpha]_D^{20}$ -73.2 (*c* 0.08, CHCl₃); IR (neat) cm⁻¹. HRMS (ESI); *m/z* 351.2290 ([M + Na]); exact mass calculated for C₂₂H₃₂O₂Na, 351.2295.

3. Additional Discussion

A. Alternative routes to synthesize compound 23 from aryl iodide

We have investigated several routes to synthesize compound **23** in higher yields. Directed *ortho*-metalation and subsequent iodination to synthesize **S8** has been published by Kocienski.⁵ The crude iodide **S8** was subjected to a painstaking Ullmann-type coupling using 5 equivalents of copper cyanide in NMP at 170 °C to afford nitrile in 86% overall yield. Reduction of the cyano group with DIBAL-H afforded aldehyde in 73% yield. Wittig olefination and column chromatography finally produced clean vinylarene **23**, in 45% overall yield on a 10 gram scale (Scheme S1).

Scheme S1. Synthesis of vinylarene 23 from Kocienski iodide S8

Attempts at cross coupling iodoarene **S8** under traditional Stille⁶ (with vinyltributyltin, Eq. S1), Kumada⁷ (vinylmagnesium bromide, Eq. s2), and Heck⁸ (Hermann-Beller palladacycle with ethylene) conditions all suffered from either poor conversion or low yields.

B. Efforts on metathesis reaction to synthesize compound 9b and 60

The ruthenium-catalyzed cross-metathesis reaction was investigated to append the appropriate side chain at C_{13} . Although several reports have disclosed the efficient cross-metathesis of sterically hindered olefins,⁹ intermediate **59** failed to give acceptable results under a variety of conditions with multiple olefin partners (Table S1). Although cross-metathesis with 2-methyl-2-butene proceeded with complete conversion of substrate **59**, the product (**60**) contained the incorrect appendage as a result of the cross-metathesis of the thermodynamically less favorable fragment of the olefin (entry 1). Several attempts were made to generate the more stable product, including modification of the catalyst, increasing the reaction temperature, and employing olefinic partners that could not result in the formation of undesired disubstituted olefin **9b**.

Attempted cross-metathesis conditions with olefin 59

a na turu a	aatalwat	alafin	temp	Conv. ^b	01	60
entry	catalyst	ataryst orenn	(°C)	(%)	90	
1	S 9	2-methyl-2-butene	23 ^c	100	0	100
2	S 9	2-methyl-2-butene	36 ^d	100	0	100
3	S9	2-methyl-2-butene	60 ^e	100	0	100
4	S10	2-methyl-2-butene	23 ^c	100	0	100
5	S10	2-methyl-2-butene	36 ^d	100	0	100
6	S10	2-methyl-2-butene	60 ^e	100	0	100
7	S9	2-methylpropene	23 ^c	0	0	-
8	S9	2-methylpropene	60 ^e	0	0	-
9	S9	2-methylpropene	23 ^c	0	0	-
10	S10	2-methylpropene	60 ^e	0	0	-
11	S9	2,3-dimethyl-2-butene	23 ^c	0	0	-
12	S9	2,3-dimethyl-2-butene	73 ^d	0	0	-
13	S9	2,3-dimethyl-2-butene	85 ^e	<10	$n.d.^{\mathrm{f}}$	-
14	S10	2,3-dimethyl-2-butene	23 ^c	0	0	-
15	S10	2,3-dimethyl-2-butene	73 ^d	10	$n.d.^{\mathrm{f}}$	-
16	S10	2,3-dimethyl-2-butene	85 ^e	100	$n.d.^{\mathrm{f}}$	-

^a Reactions conducted with 10 mol% catalyst and the olefin as the solvent at the given temperature. ^b Conversion determined by GC analysis. ^c Reaction conducted at room temperature. ^d Reaction conducted in refluxing solvent. ^e Reaction conducted above the boiling point of solvent in a sealed tube. ^f Complex mixture as a result of decomposition.

Comparison of NMR spectra with known literature values 4.

Comparison of spectra of compound 36e with literature¹⁰ A.

¹ H N	JMR	¹³ C N	NMR
Davies (400 MHz)	Present Work (500 MHz) ^a	Davies (75 MHz)	Present Work (125 MHz) ^b
5.80 (m, 1H)	5.83-5.76 (m, 1H)	153.0	153.0
5.02-4.95 (m, 2H)	5.01-4.95 (m, 2H)	149.5	149.5
3.85 (s, 3H)	3.85 (s, 3H)	147.0	147.0
3.80 (s, 3H)	3.80 (s, 3H)	138.9	138.9
3.63 (s, 3H)	3.63 (s, 3H)	134.8	134.8
3.16 (m, 1H)	3.19-3.15 (m, 1H)	128.5	128.5
2.86 (m, 1H)	2.88-2.85 (m, 1H)	122.2	122.2
2.17 (s, 3H)	2.17 (s, 3H)	114.9	115.0
2.10-1.92 (m, 4H)	2.11-1.92 (m, 4H)	60.5	60.5
1.80-1.75 (m, 2H)	1.80-1.75 (m, 2H)	60.1	60.2
1.49-1.45 (m, 1H)	1.49-1.45 (m, 1H)	59.9	59.9
1.14 (d, <i>J</i> = 7.0 Hz, 3H)	1.14 (d, J = 7.0 Hz, 3H)	40.0	40.0
0.76 (d, <i>J</i> = 7.0 Hz, 3H)	0.76 (d, J = 7.0 Hz, 3H)	37.8	37.8
		35.2	35.2
		27.0	27.0
		26.5	26.5
		23.2	23.2
		18.6	18.5
		18.1	18.1
		9.4	9.4

^a Spectrum calibrated to the chloroform peak (7.26 ppm). ^b Spectrum recalibrated to the chloroform peak (77.0 ppm).

Supporting Information B. Comparison of spectra of compound 43a with literature¹¹

(See attached spectra)

¹ H NMR		¹³ C NMR	
Mulzer (400 MHz)	Present work (400 MHz) ^a	Mulzer (100 MHz)	Present work (100 MHz) ^b
4.00 (s, 3H)	4.0 (s, 3H)	189.1	189.1
3.85 (m, 1H)	3.87-3.79 (m, 1H)	183.0	183.0
3.70 (m, 1H)	3.71-3.67 (m, 1H)	155.6	155.6
3.00 (quin, <i>J</i> = 6.3 Hz, 1H)	3.00 (quin, <i>J</i> = 6.3 Hz, 1H)	146.5	146.5
2.86 (bs, 1H)	2.87-2.85 (m, 1H)	144.1	144.1
	2.34 (bs, 1H)	128.8	128.8
2.01 (qd, <i>J</i> = 11.9, 3.3 Hz, 1H)	2.04-1.96 (m, 1H)	60.9	60.8
1.93 (s, 3H)	1.92 (s, 3H)	60.7	60.7
1.72 (m, 4H)	1.85-1.62 (m, 3H)	37.9	37.9
1.56 (m, 2H)	1.55-1.53 (m, 2H)	33.0	33.0
1.49 (m, 1H)	1.51-1.46 (m, 1H)	32.8	32.8
1.07 (d, <i>J</i> =7.0 Hz, 3H)	1.07 (d, <i>J</i> = 7 Hz, 3H)	26.2	26.2
0.84 (d, <i>J</i> = 7.3 Hz, 3H)	0.83 (d, <i>J</i> = 7 Hz, 3H)	26.0	26.0
		21.0	20.9
		17.7	17.6
		17.2	17.2
		8.9	8.8

^aSpectrum calibrated to the chloroform peak (7.26 ppm).

^bSpectrum recalibrated to the chloroform peak (77.0 ppm).

C. Comparison of spectra of compound 69 with literature¹²

(From biomimetic route, Scheme 20. Also See attached spectra)

¹ H NM	¹³ C NMR	¹³ C NMR		
Literature reported (360 MHz) ^{12a}	Present work (600 MHz) ^a	Literature reported (50 MHz) ^{12b}	Present work (150 MHz) ^b	
5.65 (s, 1H) 5.10 (br d, $J = 8.2$ Hz, 1H) 3.74 (s, 3H) 3.55 (m, 1H) 3.32 (m, 1H) 2.15 (m, 1H) 2.07 (s, 3H) 2.02 (m, 1H) 1.74 (s, 3H) 1.67 (s, 3H) 1.65 (m, 1H) 1.65 (m, 1H) 1.45 (m, 1H) 1.25 (d, $J = 6.9$ Hz, 3H) 1.14 (m, 1H) 1.04 (d, $J = 5.9$ Hz, 3H)	5.63 (s, 1H) 5.10 (br d, $J = 8.3$ Hz, 1H) 3.74 (s, 3H) 3.57-3.55 (m, 1H) 3.33-3.30 (m, 1H) 2.18-2.13 (m, 2H) 2.07 (s, 3H) 2.05-2.01 (m, 1H) 1.74 (s, 3H) 1.67 (s, 3H) 1.65-1.57 (m, 3H) 1.47-1.43 (m, 1H) 1.25 (d, $J = 6.8$ Hz, 3H 1.14-1.08 (m, 1H) 1.04 (d, $J = 5.9$ Hz, 3H)	144.5 143.7 134.1 130.3 130.3 129.6 126.5 126.0 60.7 43.5 39.6 35.5 31.0 30.0 28.3 27.5 25.6 22.9 20.9 17.6 11.2	144.40 143.54 134.13 130.13 129.69 129.56 126.37 126.06 60.81 43.45 39.51 35.39 30.93 29.89 28.20 27.43 25.66 22.88 21.01 17.63 11.20	
			11.20	

^aSpectrum calibrated to the chloroform peak (7.26 ppm).

^bSpectrum recalibrated to the chloroform peak (77.0 ppm).

D. Comparison of spectra of compound 8a, 8b and 9a with literature^{4,13}

8b pseudopterosin A-F dimethyl ether

(see attached spectra)

¹ H NMR		¹³ C NMR		
Kocieñski ¹³ (500 MHz)	Present work (600 MHz) ^a	Kocieñski ¹³ (75 MHz)	Present work (100 MHz) ^b	
5.13 (dhept, <i>J</i> = 9.0, 1.5, 1H)	5.13 (br d, <i>J</i> = 9.0 Hz, 1H)	149.2	149.15	
3.84 (s, 3H)	3.85 (s, 3H)	148.7	148.57	
3.78 (s, 3H)	3.78 (s, 3H)	134.1	133.97	
3.59 (ddd, <i>J</i> = 9.4, 4.5, 2.4 Hz, 1H)	3.60-3.57 (m, 1H)	133.9	133.67	
3.43-3.34 (m, 1H)	3.41-3.35 (m, 1H)	133.6	133.38	
2.18 (ddt, <i>J</i> = 12.7, 7.3, 4.5 Hz, 1H)	2.21-2.16 (m, 1H)	130.2	129.92	
2.13-2.06 (m, 1H)	2.12-2.07 (m, 1H)	129.8	129.74	
2.06 (s, 3H)	2.06 (s, 3H))	128.1	127.87	
2.02 (dddd, <i>J</i> = 13.6, 8.4, 7.6, 4.3 Hz, 1H)	2.04-1.99 (m, 1H)	60.7	60.49	
1.75 (d, <i>J</i> = 1.5 Hz, 3H)	1.75 (s, 3H)	60.2	60.00	
1.68 (d, <i>J</i> = 1.5 Hz, 3H)	1.68 (s, 3H)	42.3	42.16	
1.67-1.60, 2H)	1.67-1.58 (m ,3H)	39.5	39.42	
1.60–1.49 (m, 2H)	1.54-1.50 (m, 1H)	35.8	35.70	
1.21 (d, <i>J</i> = 7.2 Hz, 3H)	1.21 (d, <i>J</i> = 7.2 Hz, 3H)	30.5	30.37	
1.17-1.08 (m, 1H)	1.16-1.09 (m, 1H)	29.9	29.74	
1.04 (d, <i>J</i> = 6.2 Hz, 3H)	1.04 (d, <i>J</i> = 6.2 Hz, 3H)	27.8	27.67	
		27.2	27.08	
		25.9	25.64	
		23.7	23.44	
		21.2	20.99	
		17.9	17.64	
		11.0	10.82	

^aSpectrum calibrated to the chloroform peak (7.26 ppm).

^bSpectrum recalibrated to the chloroform peak (77.0 ppm).

(see attached spectra)

G-J	Observed	Corey ⁴	A-F	Observed	Corey ⁴
Proton	shift and		Proton	shift and	
	multiplicity			multiplicity	
phenolic	5.05, s	5.05, s	phenolic	5.03, s	5.03, br s
vinyl	4.94, d,	4.94, br d,	vinyl	5.10, d,	5.11, dt,
	J 9.2 Hz	J 9.3 Hz		J 9.2 Hz	J 9.2, 1.4 Hz
phenolic	4.79, s	4.79, s	phenolic	4.82, s	4.82, br s
A.H.OH	3.73-3.67, m	3.69, m	AND OH	3.63-3.56, m	3.58, m
•Н			*H'		
H,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.15-3.10, m	3.12, m	н, Нон	3.27-3.20, m	3.22, m

5. References

- (a) Smith, C. R.; RajanBabu, T. V. Org. Lett. 2008, 10, 1657-1659. (b) Zhang, A.; RajanBabu, T. V. J. Am. Chem. Soc. 2006, 128, 54-55. (c) Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 2002, 124, 734-735. (d) Biswas, S.; Zhang, A.; Raya, B.; RajanBabu, T. V. Adv. Synth. Catal. 2014, 356, 2281-2292.
- 2. Mans, D. J.; Cox, G. A.; RajanBabu, T. V. J. Am. Chem. Soc. 2011, 133, 5776-5779
- (a) Geller, T.; Schmalz, H. G.; Bats, J. W. *Tetrahedron Lett.* 1998, *39*, 1537-1540.
 (b) Geller, T.; Jakupovic, J.; Schmalz, H. G. *Tetrahedron Lett.* 1998, *39*, 1541-1544.
- (a) Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. Org. Lett. 2000, 2, 2389-2392. (b) Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777-12782.
- Chow, R.; Kocienski, P. J.; Kuhl, A.; LeBrazidee, J.-V.; Muir, K.; Fish, P. J. Chem. Soc. Perkin Trans I 2001, 2344-2355.
- (a) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1978, 100, 3636. (b) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1979, 101, 4992. (c) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
- 7. Kumada, M.; Tamao, K.; Sumitani, K. J. Am. Chem. Soc. 1972, 94, 4374.
- (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518. (b) Heck, R. F.; Dieck, H. A. J. Am. Chem. Soc. 1974, 96, 1133. (c) Herrmann, W. A.; Böhm, V. P. W.; Reisinger, C-P. J. Orgmet. Chem. 1999, 576, 23.
- (a) Stewart, I. C.; Douglas, C. J.; Grubbs, R. H., Org. Lett. 2008, 10, 441. (b) Van, V. J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H., J. Am. Chem. Soc. 2002, 124, 4954.
- 10. Davies, H. M. L.; Dai, X. Tetrahedron, 2006, 62, 10477-10484.
- 11. Preindl, J.; Leitner, C.; Baldauf, S.; Mulzer, J. Org. Lett. 2014, 16, 4276-4279.
- (a) Look, S. A.; Fenical, W.; Matsumoto, G. K.; Clardy, J. J. Org. Chem. 1986, 51, 5140-5145. (b) Roussis, V.; Wu, Z.; Fenical, W.; Strobel, S. A.; Van Duyne, G. D.; Clardy, J. J. Org. Chem. 1990, 55, 4916-4922.
- 13. Cooksey, J. P.; Kocieński, P. J.; Schmidt, A. W.; Snaddon, T. N.; Kilner, C. A. *Synthesis* **2012**, *44*, 2779-2785..

natural product or key intermediate ^a	pseudopter- osin, R, R'	starting material	no. of steps	yield ^b	source of chirality	limiting selectivity ^c	comments	ref.
pseudopterosin A-F	Me, Me	ОН	15	1.9	racemic	$C_4 (R^*:S^*) 5:4 C_{13} (R^*:S^*) 9:1$	racemic routeefficient C-ring annulation	1
pseudopterosin A-F	-CH ₂ Ph, H	(-)-limonene	30	1.7	chiral pool	$\begin{array}{c} C_1 (R:S) \ 1:1 \\ C_{13} (R:S) \ 1.1:1.0 \end{array}$	low selectivity, right protect group (PG) for glycosylation	2
pseudopterosin A-F	Me, Me	CO ₂ H	21	<2 ^a	chiral pool	C ₄ (<i>R</i> : <i>S</i>) 58:42	low selectivity and overall yield	3
pseudopterosin A-F	Н, Н	(S)-(–)- citronellal	18	3.1	chiral pool	C ₁ (<i>R</i> : <i>S</i>) 3:97	exceptional diastereoselectivity. diastereomer synthesis (C ₁₃ , C ₁₁) likely challenging.	4,5
pseudopterosin A-F	H, H	(-)-limonene	16	6	chiral pool	C ₁₁ (<i>R</i> : <i>S</i>) 54:46	C ₁₁ via kinetic resolution	6
pseudopterosin A-F	Me, Me	OMe	20	13.5	via resolved Cr(CO) ₃ complex	 stoichiometric resolution C₁₁ diastereosel. hydroboration C₁₃ (<i>R:S</i>) 16:1 	 exceptional diastereo- selectivity synthesis of diastereomers (C₄, C₁) likely challenging 	8
pseudopterosin A-F	Me, Me	ОН	25	4.4	[3,3]- sigmatropic rearr., Pd- catalyzed allylation	C ₁ (<i>R</i> : <i>S</i>) 3:1 C ₁₃ (<i>R</i> : <i>S</i>) 15:1	erosion of C ₁ configuration during hydrogenation	10

Table S1. A. Comparison of the hydrovinylation approach (highlighted) with others for the synthesis of pseudopterosins^a

pseudopterosin A-F	-CH ₂ Ph, H	 0	12	4.4	Cu-cat enantiosel. Me ₂ Zn add	C ₁ (<i>R</i> : <i>S</i>) 5:95 C ₁₃ (<i>R</i> : <i>S</i>) 52:48	correct PG for further glycosylation	12
pseudopterosin A-F	Me, H	MeO	15	25.6	Enantiosele- ctive hydrov- inylation (HV)	$C_{13} (R:S) > 99:1$ $C_{11} (R:S) 1:99$ $C_4 (R:S) > 85:15$ $C_1 (R:S) 2:98$	 HV to install C₁₁, C₁, diastereosel. Birch (C₄), diastereosel. cycliz. (C₁₃) configurations at C₁₁, C₄, C₁ controllable correct PG for further glycosylation 	13
pseudopterosin A-F	Me, Me	MeO OMe	18	17	enantiosel. HV	$C_{13} (R:S) > 99:1$ $C_{11} (R:S) 8:92$ $C_{4} (R:S) 97:3$ $C_{1} (R:S) < 1:99$	 HV to install C₁₁, C₁ diastereosel. Birch (C₄), diastereosel. epoxide (C₁₃) configurations at C₁₁, C₄, C₁ controllable 	13,14
pseudopterosin A-F ^c	Me, Me	MeO OMe	14	21	enantiosel. (HV)	$\begin{array}{c} C_{13} \left(R:S \right) 86:14 \\ C_{11} \left(R:S \right) 8:92 \\ C_4 \left(R:S \right) 97:3 \\ C_1 \left(R:S \right) <1:99 \end{array}$	 HV to install C₁₁, C₁ diastereosel. Birch (C₄), diastereosel cycliz. (C₁₃) configurations at C₁₁, C₄, C₁ controllable 	13,1 ^d
pseudopterosin G-J	Me, Me	MeO OMe	20	13.6	enantiosel. HV	$\begin{array}{c} C_{13} \left(R:S \right) < 1:99 \\ C_{11} \left(R:S \right) 8:92 \\ C_{4} \left(R:S \right) 97:3 \\ C_{1} \left(R:S \right) < 1:99 \end{array}$	 HV to install C₁₃, C₁₁, C₁ diastereosel. Birch (C₄) configurations at C₁₁, C₄, C₁ controllable 	13,14
pseudopterosin A-F: G-J aglycones (1:2, Scheme 18) (Stille route)	Н, Н	MeO OMe	18	16.6	enantiosel. HV	$\begin{array}{c} C_{13} \left(R:S \right) 1:2 \\ C_{11} \left(R:S \right) 8:92 \\ C_{4} \left(R:S \right) 97:3 \\ C_{1} \left(R:S \right) < 1:99 \end{array}$	C ₁₃ installed by Li/NH ₃ reduction of a dihydronaphthalene	13,14

pseudopterosin G-J	-CH ₂ Ph, H	 0	12	5.5	Cu-cat enantiosel. Me ₂ Zn addition	$\begin{array}{c} C_1(R:S) \ 5:95 \\ C_{13}(R:S) \ 52:48 \end{array}$	correct PG for further glycosylation	12
<i>ent</i> -pseudopterosin G-J aglycone	Н, Н	ён	13	0.95	chiral pool	$C_{4}, C_{11} (S, R):$ diastereo- mer + two diasteromers. dr = 5:2	 shortest route use of exceptionally innovative allene chemistry need specialized high pressure reactor stoichiometric Rh used for double decarbonylation, overall low yield. 	11
<i>ent</i> -pseudopterosin G-J aglycone	Н, Н	H	15	0.51	enantiosel. hydrogen- ation	(see previous entry)	(also previous entry)	11
pseudopterosin G-J aglycone	Н, Н	(-)-limonene	15	5.5	chiral pool	C ₁₁ (<i>R</i> : <i>S</i>) 54:46 C ₁₃ (<i>R</i> : <i>S</i>) 1:8	C ₁₁ via kinetic resolution. Diastereomer synthesis (C ₄ , C ₁) may require new chemistry	6, 7
pseudopterosin A-F aglycone	Н, Н	(–)-citronellal	18	1	chiral pool	Wittig Reaction <i>E:Z</i> 9:1	diastereomer synthesis (C_4 , C_1) – see previous row	9
pseudopterosin K-L aglycone	Н, Н	(-)-isopulegol	15	5.2	chiral pool	$C_{13}(R:S)$ 1:10	diastereomer synthesis (C_4 , C_1) – see previous row	9

a. A uniform numbering for serrulatanes and amphilectanes is followed (see Figure 1 in the paper).

8a pseudopterosin A-F 9a pseudopterosin G-J ent-8a pseudopterosin K-L

b. Yields uncertain in a few cases since required data is not available. c. The lowest stereoselectivities among the reactions to reach the final target are shown, except for our work (highlighted rows), where all selectivities are shown. d. Combination of RajanBabu,^{13,14} Harrowven¹ routes (post-installation of stereogenic centers) gives the shortest (14 steps, ~ 21 %) with excellent stereoselectivity to pseudopterosins A-F aglycone, and, flexibility to make diastereomers at any of the centers.

Table S1. B. Comparison of the hydrovinylation approach (highlighted) with others for the synthesis of prototypical serrulatanes and amphilectanes^a

natural product or key intermediate ^a	starting material	number of steps	overall yield ^b	source of chirality	limiting selectivity ^c	comments	ref.
intermediate for elisabethadione (37) H_{11} H_{11} OMe H_{11} OMe OH $OMeOH$ 37	MeO MeO OMe	15	27.8	enantioselective HV	C ₁ (S:R) 98:2 C ₄ (R:S) 85:15 C ₁₁ (S:R) 99:1	$C_1(S)$ and C_{11} (S) selectivity >99:1. C_4 -isomers separated by column (>99:1 <i>R</i>). Demonstrated flexibility in diastereomer (C ₁ , C ₄ , C ₁₁) synthesis	13
intermediate for colombiasin, elisapterosin H, f = 0 H, f = 0	MeO MeO OMe	13	36 (43a)	enantioselective HV	C ₁ (S:R) 98:2 C ₄ (R:S) 85:15 C ₁₁ (S:R) 99:1	C ₁ (<i>S</i>) and C ₁₁ (S) selectivity >99:1. C ₄ -isomers separated by column (>99:1 <i>R</i>). Demonstrated flexibility in diastereomer (C ₁ , C ₄ , C ₁₁) synthesis	13
H, , , , , , , , , , , , , , , , , , ,	MeO MeO OMe	18	17.4	enantioselective HV	C ₁ (S:R) 98:2 C ₄ (R:S) 85:15 C ₁₁ (S:R) 99:1)	$C_1(S)$ and C_{11} (S) selectivity >99:1. C_4 -isomers separated by column (>99:1 <i>R</i>). Demonstrated flexibility in diastereomer (C_1 , C_4 , C_{11}) synthesis	13
Intermediate for a <i>p</i> - benzoquione natural product H, + + + + + + + + + + + + + + + + + + +	MeO MeO OMe	14	30.7	enantioselective HV	C ₁ (S:R) 98:2 C ₄ (R:S) 85:15 C ₁₁ (S:R) 99:1)	$C_1(S)$ and C_{11} (S) selectivity >99:1. C_4 -isomers separated by column (>99:1 <i>R</i>). Demonstrated flexibility in diastereomer (C_1 , C_4 , C_{11}) synthesis	13

Hundred Contractions of the seco-pseudopterosin A aglycone (56b)	MeO OMe	16	32.2	enantioselective HV	C ₁ (S:R) >99:1 C ₄ (S:R) 3:97 C ₁₁ (S:R) 92:8	• independent control of all stereogenic centers	13
helioporin D (56c)	MeO OMe	17	29.3	enantioselective HV	C ₁ (S:R) >99:1 C ₄ (S:R) 3:97 C ₁₁ (S:R) 92:8	• independent control of all stereogenic centers	13
36e	Me OMe	10	17	Rh-cat C-H insertion. Kinetic resolution	C ₁ (<i>S</i> : <i>R</i>) 96:4	 C₁ kinetic resolution (yield 41%). C₄, C₁₁ diastereomers might require new chemistry 	15, 17
37	Me OMe	8	22.8	Rh-cat C-H insertion. Kinetic resolution	C ₁ (<i>S</i> : <i>R</i>) 96:4	 C₁ kinetic resolution (yield 41%). C₄, C₁₁ diastereomers might require new chemistry 	15, 17
ent-37	MeO MeO OMe	11	8.9	enantsel. crotylation, 3,3- sigmatropic rear.	C ₁ (<i>S</i> : <i>R</i>) 1:3	 C₄, C₁₁ diastereoselective [3,3]-sigmatropic rearr. diastereomers separated by prep-HPLC. 	17
43a	OH MeO Me OH CHO	17	5	racemic	C ₁ , C ₄ config. linked through Diels-Alder dr 1.0:0.0	• C ₁₁ installed by diastereoselective hydrogeantion	19

43b	Pseudoephedri- nepropionamide	9	17	stoichiometric auxiliary assisted enolate alkylation	C ₁ , C ₄ config. linked through Diels-Alder regioisom. (1.7:1.0)	• C ₁ , C ₄ diastereomeric mixture carried through synthesis	20
H, , , , , , , , , , , , , , , , , , ,		11	15.4	Rh-cat C-H insertion. Kinetic resolution	C ₁ (<i>S</i> : <i>R</i>) 97:3	independent control of C ₄ , C ₁₁ configurations might require redesign of route	15, 16
O-methyl- <i>nor</i> -elisabethadione		12	7.8	Rh-cat C-H insertion. Kinetic resolution	C ₁ (<i>S</i> : <i>R</i>) 97:3	independent control of C ₄ , C ₁₁ configurations might require redesign of route.	15, 16
<i>seco</i> -pseudoptrosin A aglycone (56b)	OMe	18	26.3	via resolved Cr(CO) ₃ complex	• stoichiome- tric reaction to install C ₁	 exceptional diastereo- selectivity synthesis of diastereo- mers (C₄, C₁₁) challenging 	8
helioporin D (56c)	OMe	17	25.5	via resolved Cr(CO) ₃ complex	• stoichiome- tric reaction to install C ₁	 exceptional diastereo- selectivity synthesis of diastereo- mers (C₄, C₁₁) challenging 	21
helioporin E	(-)-limonene	17	0.55 ^c	chiral pool	C ₁₁ (<i>R</i> : <i>S</i>) 54:46	 C₁₁ via kinetic resolution. diastereomer synthesis 	6, 7
helioporin E	MeO OMe	17	4.5	 enantiosel. L*Cu-cat S_N2' addition of MeMgBr enantiosel. Ir- cat. hydrogen. 	C ₄ (<i>R</i> : <i>S</i>) 4:1	 efficient route potentially useful route for synthesis of various diastereomers 	25

helioporin C	MeO OMe	16	5.7	 enantiosel. L*Cu-cat S_N2' addition of MeMgBr enantiosel. Ir- cat. hydrogen. 	C ₄ (<i>R</i> : <i>S</i>) 4:1	 efficient route potentially useful route for synthesis of various diastereomers 	25
¹⁸ H ³ H ² Me ²⁰ Me ⁷ H ¹ H ¹⁰ H ¹		20	1.1	enantiosel. DA	• C ₁ ,C ₄ linked through DA dr 85:15, er 97:3 • C ₁₁ (<i>R</i> : <i>S</i>) 1:1	 first synthesis established the absolute configuration demonstrated the intramolecular DA in the last step used by others later. 	22
colombiasin A		12	11.5	• enantiosel. DA used twice	• C ₁₁ 93:7 enantsel. DA • C ₁ ,C ₄ linked through DA dr >10:1	 Exceptionally short and practical synthesis independent control of stereogenic centers could be challenging. 	23
colombiasin A	Pseudoephedri- nepropionamide	16	3.4	stoichiometric auxiliary assisted enolate alkylation	C ₁ , C ₄ config. linked through Diels-Alder dr 1.7:1.0	C ₁ , C ₄ Diastereomeric mixture carried through synthesis	20
colombiasin A	(–)- dihydrocarvone	12	1.1	chiral pool, [(-)-ipc] ₂ BH	C ₁ ,C ₄ config. linked- di- hydrocarvone)	C ₁₁ Configuration by stoichiometric asymmetric hydroboration	24
colombiasin A		14	5.3	kinetic resolution by Rh-cat. C-H insertion	$C_1(S:R)$ 98:2	C ₁ kinetic resolution (yield 41%). C ₄ , C ₁₁ configurations tied to that of C ₁ . Practical synthesis	15

$\begin{array}{c} & & & \text{NC} \\ & & & & & \\ & &$		9	6.4	racemic	$C_1 S_N 1$ with retention dr 88:12. C_4, C_{10}, C_{11} linked thru Diels-Alder dr >10:1	C ₅ , C ₉ config. installed via diastereosel. protonation. C ₁₃ config. Cu-catalyzed 1,4-addition. Shortest route (spectacularly so!) to the most complex amphilectane to-date. Racemic synthesis. Making specific diastereomers challenging.	30
---	--	---	-----	---------	---	---	----

a. Carbon numbering

b. Yields uncertain in a few cases since required data is not available. c. The lowest stereoselectivities among the reactions to reach the final target are shown, except for our work (highlighted rows), where all selectivities are shown. d. Formation of the methylenedioxy derivative (last step) has been reported (ref 21) to give a better yield (83%) than 10% reported in ref. 7.

References

- 1. Harrowven, D. C.; Tyte, M. J. "Total synthesis of (+/-)-pseudopterosin A-F and K-L aglycone", *Tetrahedron Lett.* 2004, 45, 2089-2091.
- 2. Broka, C. A.; Chan, S.; Peterson, B. "Total Synthesis of Pseudopterosin A", J. Org. Chem. 1988, 53, 1584.
- 3. Buszek, K. R.; Bixby, D. L. "Total Synthesis of Pseudopterosins A and E Aglycon", Tetrahedron Lett. 1995, 36, 9129-9132.
- 4. Corey, E. J.; Carpino, P. "A New Enantiospecific Route to the Pseudopterosins", Tetrahedron Lett. 1990, 31, 3857-3858.
- 5. Corey, E. J.; Carpino, P. "Enantiospecific total synthesis of pseudopterosins A and E", J. Am. Chem. Soc. 1989, 111, 5472-5474.
- 6. Corey, E. J.; Lazerwith, S. E. "A direct and efficient stereocontrolled synthetic route to the pseudopterosins, potent marine antiinflammatory agents", *J. Am. Chem. Soc.* **1998**, *120*, 12777-12782.
- 7. Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. "Syntheses and stereochemical revision of pseudopterosin G-J aglycon and helioporin E", *Org. Lett.* **2000**, *2*, 2389-2392.
- 8. Majdalani, A.; Schmalz, H.-G. "Enantioselective Synthesis of the Aglycones of Pseudopterosin and *seco*-Pseudopterosin via a Common Synthetic Intermediate", *Synlett* **1997**, 1303-1305.
- 9. Kocienski, P. J.; Pontiroli, A.; Qun, L. "Enantiospecific syntheses of pseudopterosin aglycones. Part 2. Synthesis of pseudopterosins K-L aglycone and pseudopterosins A-F via an B->BA->BAC annulation strategy", J. Chem. Soc., Perkin Trans 1 2001, 2356-2366.
- 10. Cooksey, J. P.; Kocieński, P. J.; Schmidt, A. W.; Snaddon, T. N.; Kilner, C. A. "A Synthesis of the Pseudopterosin A–F Aglycone", *Synthesis* **2012**, *44*, 2779-2785.
- 11. Newton, C. G.; Drew, S. L.; Lawrence, A. L.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. "Pseudopterosin synthesis from a chiral crossconjugated hydrocarbon through a series of cycloadditions", *Nature Chemistry* **2015**, *7*, 82-86.
- 12. Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. "Enantioselective Total Syntheses of Various Amphilectane and Serrulatane Diterpenoids via Cope Rearrangements", *J. Am. Chem. Soc.* **2016**, *138*, 6261-6270.
- Tenneti, S.; Biswas, S.; Cox, G.; Mans, D.; Lim, H. J.; RajanBabu, T. V. "Broadly Applicable Stereoselective Syntheses of Serrulatane, Amphilectane Diterpenes and Their Diastereoisomeric Congeners using Asymmetric Hydrovinylation for Absolute Stereochemical Control", J. Am. Chem. Soc. 2018, 140, xxxx-xxxx.
- 14. Mans, D. J.; Cox, G. A.; RajanBabu, T. V. "Ethylene in Organic Synthesis. Repetitive Hydrovinylation of Alkenes for Highly Enantioselective Syntheses of Pseudopterosins", J. Am. Chem. Soc. 2011, 133, 5776-5779
- 15. Davies, H. M. L.; Dal, X.; Long, M. S. "Combined C-H activation/cope rearrangement as a strategic reaction in organic synthesis: Total synthesis of (-)-colombiasin A and (-)-elisapterosin B", *J. Am. Chem. Soc.* **2006**, *128*, 2485-2490.
- 16. Dai, X.; Wan, Z. L.; Kerr, R. G.; Davies, H. M. L. "Synthetic and isolation studies related to the marine natural products (+)-elisabethadione and (+)-elisabethamine", *J. Org. Chem.* 2007, *72*, 1895-1900.
- 17. Davies, H. M. L.; Dai, X. "Application of the combined C-H activation/Cope rearrangement as a key step in the total syntheses of the assigned structure of (+)-elisabethadione and a (+) p-benzoquinone natural product", *Tetrahedron* **2006**, *62*, 10477-10484.
- 18. O'Hora, P. S.; Incerti-Pradillos, C. A.; Kabeshov, M. A.; Shipilovskikh, S. A.; Rubtsov, A. E.; Elsegood, M. R. J.; Malkov, A. V. "Catalytic

Asymmetric Crotylation of Aldehydes: Application in Total Synthesis of (-)-Elisabethadione", Chem. Eur. J. 2015, 21, 4551-4555.

- 19. Preindl, J.; Leitner, C.; Baldauf, S.; Mulzer, J. "A Short Access to the Skeleton of Elisabethin A and Formal Syntheses of Elisapterosin B and Colombiasin A", *Org. Lett.* **2014**, *16*, 4276-4279.
- 20. Kim, A. I.; Rychnovsky, S. D. "Unified strategy for the synthesis of (-)-elisapterosin B and (-)-colombiasin A", *Angew. Chem. Int. Ed.* 2003, 42, 1267-1270.
- 21. Geller, T.; Jakupovic, J.; Schmalz, H. G. "Preparation of helioporin D from the seco-pseudopterosin aglycone: Revision of the stereostructure of helioporin D", *Tetrahedron Lett.* **1998**, *39*, 1541-1544.
- 22. Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. "Total synthesis of colombiasin A and determination of its absolute configuration", *Chem. Eur. J.* **2001**, *7*, 5359-5371.
- 23. Boezio, A. A.; Jarvo, E. R.; Lawrence, B. M.; Jacobsen, E. N. "Efficient total syntheses of (-)-colombiasin A and (-)-elisapterosin B: Application of the Cr-catalyzed asymmetric quinone Diels-Alder reaction", *Angew. Chem. Int. Ed.* **2005**, *44*, 6046-6050.
- 24. Harrowven, D. C.; Pascoe, D. D.; Demurtas, D.; Bourne, H. O. "Total synthesis of (-)-colombiasin A and (-)-elisapterosin B", *Angew. Chem. Int. Ed.* 2005, 44, 1221-1222.

25. Lölsberg, W.; Werle, S.; Neudörfl, J.-M.; Schmalz, H.-G. "An Enantioselective Total Synthesis of Helioporins C and E", *Org. Lett.* **2012**, *14*, 5996-5999.

Other notable examples of syntheses of serrulatanes and amphilectanes

The examples cited in **Table S1A** and **Table S1B** list only molecules and intermediates whose syntheses *closely* map a possible hydrovinylation approach. There are many other notable molecules in these classes of compounds that will be helped by this approach. The following references provide a partial list of some of the most notable syntheses in the area.

- 26. Yang, M.; Yang, X. W.; Sun, H. B.; Li, A. "Total Synthesis of Ileabethoxazole, Pseudopteroxazole, and seco-Pseudopteroxazole", *Angew. Chem. Int. Ed.* 2016, *55*, 2851-2855.
- Incerti-Pradillos, C. A.; Kabeshov, M. A.; O'Hora, P. S.; Shipilovskikh, S. A.; Rubtsov, A. E.; Drobkova, V. A.; Balandina, S. Y.; Malkov, A. V. "Asymmetric Total Synthesis of (-)-Erogorgiaene and Its C-11 Epimer and Investigation of Their Antimycobacterial Activity", *Chem. Eur. J.* 2016, *22*, 14390-14396.
- 28. Williams, D. R.; Shah, A. A. "Total Synthesis of (+)-Ileabethoxazole via an Iron-Mediated Pauson–Khand [2 + 2 + 1] Carbocyclization", *J. Am. Chem. Soc.* 2014, *136*, 8829-8836.
- 29. Lu, J. M. H.; Perkins, M. V.; Griesser, H. J. "Total synthesis and structural confirmation of the antibacterial diterpene leubethanol", *Tetrahedron* **2013**, *69*, 6468-6473.
- 30. Pronin, S. V.; Shenvi, R. A. "Synthesis of a Potent Antimalarial Amphilectene", J. Am. Chem. Soc. 2012, 134, 19604-19606.
- 31. Elford, T. G.; Nave, S.; Sonawane, R. P.; Aggarwal, V. K. "Total Synthesis of (+)-Erogorgiaene Using Lithiation-Borylation Methodology, and Stereoselective Synthesis of Each of Its Diastereoisomers", *J. Am. Chem. Soc.* **2011**, *133*, 16798-16801. This approach allows the synthesis of all diastereomers of this simple serrulatane.
- 32. Esteban, G.; Rincon, R.; Csaky, A. G.; Plumet, J. "A convenient synthesis of the central core of helioporins, seco-pseudopterosins and pseudopterosins via BCA-annulation sequence", *Natural Product Communications* **2008**, *3*, 495-504.
- 33. Harmata, M.; Hong, X. "Benzothiazines in Synthesis. A Total Synthesis of Pseudopteroxazole", Org. Lett. 2005, 7, 3581-3583.
- 34. Cesati III, R. R.; de Armas, J.; Hoveyda, A. H. "Enantioselctive total synthesis of erogorgiaene: Application of Cu-catalyzed conjugate additions of alkylzincs to acyclic enones", J. Am. Chem. Soc. 2004, 126, 96-101.
- 35. Waizumi, N.; Stankovic, A. R.; Rawal, V. H. "A general strategy to elisabethane diterpenes: Stereocontrolled synthesis of elisapterosin B via oxidative cyclization of an elisabethin precursor", *J. Am. Chem. Soc.* **2003**, *125*, 13022-13023.
- 36. Davidson, J. P.; Corey, E. J. "First enantiospecific total synthesis of the antitubercular marine natural product pseudopteroxazole: Revision of assigned stereochemistry", J. Am. Chem. Soc. 2003, 125, 13486-13489.
- 37. McCombie, S. W.; Cox, B.; Ganguly, A. K. "Controlling Benzylic Functionality and Stereochemistry. 2. Synthesis of the Pseudopterosin Aglycone", *Tetrahedron Lett.* **1991**, *32*, 2087-2090.

S67

:

Current Data Parameters 8-2**6**5 NAME EXPNO 9 PROCNO 1 F2 - Acquisition Parameters Date_ 20071015 Time^{_} 12.49 INSTRUM spect PROBHD 5 mm QNP 1H/13 PULPROG zg30 TD 65536 CDC13 SOLVENT 16 NS DS 2 SWH 8278.146 Hz 0.126314 Hz 3.9584243 sec FIDRES AQ 128 RG 60.400 usec DW DE 6.00 usec 0.0 K 1.00000000 sec 0.00000000 sec TED1 MCREST 0.01500000 sec MCWRK ====== CHANNEL f1 ======= NUC1 **1**H 13.00 usec Ρ1 PL10.00 dB 400.1324710 MHz SF01 F2 - Processing parameters SI 32768 400.1300101 MHz SF ΕM WDW 0 SSB 0.30 Hz LB GB 0 1.00 PC

ppm

Compound 25

	Carlo and a strend						
Acq. Operator :	Adam Cox			Seq. Line	: 1		
Acq. Instrument :	Babu	1 1.10.15 0		Location	: Vial 201		
injection Date :	12/9/201	1 1140110 11		Inj Volume	: 1 01		
Acg. Method :	C:\CHEM3	2\1\DATA\GA	C\1_CHIRAL	2011-12-09	13-47-13\AC	HV_1_CHIRAL.	8
East changed :	12/9/201	1 1:47:13 PM	M by Adam C	Tox			
Analysis Method :	C:\CHEM3	2\1\METHODS	JP_CHIRALI	TETRALONE, M			
Last changed :	1/20/201 Imodifie	d after load	ding)	i rage			
A 1			Ţ	501-5#			
20-		~	_~ 0				
18-		ΥΫ́	0				
16-							
12-							
12-							
12-							
12-							
12-		1 20	30		40.		
12-	1 - 10	20	30		40.	50	
	λ	20 rea Percent	30 Report		4a.		
	À	20 rea Percent	30 Report		40.	ŝi, i	
Sorted By	λ	20 rea Percent	30 Report		40	- - 	
Sorted By Multiplier:	, ,	20 rea Percent Signal	30 Report 1.0000		40.	ŝ	
Sorted By Multiplier: Dilutioni	, ,	20 rea Percent Signal t	30 Report 1.0000 1.0000		40.	50	
Sorted By Multiplier: Dilutioni Use Multiplier &	A 1 Dilution	20 rea Percent Signal i Factor with	30 Report 1.0000 1.0000 ISTD#		40.	50	
Sorted By Multiplier: Dilutioni Use Multiplier &	A ; Dilution	20 rea Percent Signal t Factor with	30 Report 1.0000 1.0000 ISTDs		40.	50	
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FIDI B,	A ; Dilution Back Sig	20 rea Percent Signal t Factor with nal	30 Report 1.0000 1.0000 ISTDs		40.	50	
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type	A ; Dilution Back Sig Width	rea Fercent Signal 1 Factor with nal Area	30 Report 1.0000 15TDs Height	Area	40	50	
Sorted By Multiplier: Dllution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type f [min]	A ; Dilution Back Sig (min)	20 rea Forcent : : Factor with nal Atea [pA*s]	30 Report 1.0000 1.0000 1STDs Baight 1pA1	Area	40.	\$0	
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type f [min] 1 32.405 BB	i pilution Back Sig width [min] 0.2216	20 rea Percent signal i Factor with nal Area [pA*s] 184.66386	30 Report 1.0000 1.0000 ISTDs Beight [PA] 13.14775	Area	40.	50	
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type f [min] 1 32.405 BB Totals :	i pilution Back Sig width [min] 0.2216	20 rea Percent signal i Factor with nal Area [pA*s] 184.06386	30 Report 1.0000 1.0000 1STDs Beight [PA] 13.14775 13.14775	Area	40.	50	

Racemic 28 and Enantioenriched 28

Data File C:\CHEMIXI\\DATA\GAC\1_CHIRAL 2010-10-13 14-49-57\NC-5-129-C,D Bample Name: AC-5-T29-C

Racemic 33 and Enantioenriched 33

Acq, Operator : Acq, Instrument : Injection Date :	Adam Cog Beru 9/6/2010 10:00:01 1	AH:	Seq. Line Location Inj (nt Police	i 1 Vial 701 i 1	
Ang, Hetand : Last changed : Analysis Method : Last changed :	C:\CREMINIADATA\CD 9/1/2010 Bt34:13 AD C:\CREM52.14METHED 1/20/2017 9:55:15 / (mpdified after in:	ACVI_CHIMAL N by Jordan SVJP_CHIMAL AM by Jordan ading)	1010-00-06 Page IgyRALOME-M n Fage	10-31+35\AC	HV 1_CHTRAL.N
FID1 B, Back Big	NEL (GAC\1_CHIRAL 2010-09-06	10-31-35WC-4-29	n-C D)	92.2 6	1.000
70				E.	
60-				11-	11-
40					
30					
30 - 20 -					
30 - 20 - 10 -					
30 20 10 	20	20		40	
30- 30- 10- 10-	Pros Parcen	80 t Report		40	<i>x</i> ò
20- 30- 10- 10- 20- 10- 10- 10- 10- 10- 10- 10- 1	ž0 From Fercen : Signel : 1 31Jotico Factor vili	20 t Report 1.0000 1.0000 b 13736		40	30
Sorted By Moltplact User Multplact User Multplact User Multplact	20 Rece Percent : Bigani : Jiotico Factor with Back Bignal	1.0000 1.0000 1.0000 1.0000		40	50
Jorted By Moltipliert Unitions Use Moltipliert 4 Distingues 11 FIDI D. Signed 11 FIDI D. Signed Faction D.	20 Rece Percent : Signal : Silotios Ferter with Rack Signal Mid25 Area [min] (p5*9)	t Rosport 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	Ana	42	50
Sorted By Molitalist Molitalist District Started By Molitalist Started By Molitalist Started By Past Sertime Type (ban) T 40.519 BB 2 48.505 BB	20 Reas Percent : Signal : : Slotico Factor with Ract Signal High5 Area (Mara) : : : : : : : : : : : : : : : : : : :	20000 1.0000 1.0000 1.070s 1051 00.77857 5.3.3740	Ania 5 (9, 10075 50, 20925	•	50

Date File C:\CHEMG211LDNTA\GAC\1_CHERA: 2010+11-02 16-10-67\AC-8-179-0.D Smplo Name: AC-5-179-C

Acq. Operat	States 1 and all shares						
Acq. Instra	oc 1 wass	loz		Seq: Line	1 1		
	ment t Babu	and areas in a		Locarias	r r Vial IDI		
ralancersit of	ACD I IIAN	TOTO ALTERON 1	TR.	Tel Middled	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Res. Saturd	A CINCH	ENGLATING ATANGA	CAL CHIRAL	2010-11-03	10-10-47\AC	NV T CRIEAL.M	
Last change	d : 9/30/	loto Brabers i	94 by Adams C	92			
Analyuli Be	thod 1 C1\CH	ENDINTERNAL AND THIODS	A JE DHERALS	TITRALINE.F	51		
Last change	1 1/20/	2012 9:59:55 8	M my Jordan	Eage			
	(med)	fied after los	(dlag)				
FID1	3 Back Signal (GAC)	CHIRAL 2010-11-02	16-10-47/4C-8-17	HC(D)			
10.71						104	
80						Im	
1.1.1						000	
70-							
80							
50							
11 CR							
40							
30					~		
20-					LL'		
1.24				1 de 19	III.		
30					0.4.0. 4	11	
	10	-20	30		40	50	n
torbed By		Aren Percent	Report				
Multiplier:	1.000	1	1.0000				
Dilutions		1.1.1	1.0000				
Nam Maltipl	iet & Diluti	on Eactor with	1.5700				
Sional 11 F	ID1 8. Back	Signal					
		1.00					
Fank Bottin	n Type Widt	h Acea	1001.gh1	Rena			
# InisT	[nlp	[[pA*#]]	[pN]	19			
1 45,88	9 88 0.32	12 40,62892	1,99155	2,25604			
2 49,13	1 80 0.33	16 17M2.77020	78.29953	97.78396			
		1833,39918	80.20100				
Totals :							
Totals :							
Totals :				Constant of			
Totals :		···· Ena of	Peport ***				
Totals :		•••• Ena of	Peport ***				
iorbad By Ialtiplier: Mintion; am Maltipl Signal is P Teak Rettin	iet & Diluth ID1 8, Back e Type Width	Signal T i on Factor wit? Signal h Acea	1.0000 1.0000 15T0e	Acea			

Hydrovinylation of Racemic and Enantioenriched 34

Data File C:\CHEM32\...OLD GROUP MEMBERS\GAC\AC_HV_1_CHIRAL 2011-04-06 10-36-32\AC-6-205.D Sample Name: AC-6-205

Page 1 of 2

Diastereomeric (C₄) mixture 36d

				inexperiences	
Acq. Operator :	Adam Cox		Seq. Line	1	
Acq. Instrument :	Babu		Location	Vial 201	
Injection Date :	10/13/2011 2:19	1:59 PM	Inj	: 1	
			Inj Volume :	: 1 µl	
Acq. Method : Last changed :	ume irom sequenc C:\CHEM32\1\DAT M. 10/10/2011 5:14	ACTUAL AAGACAAC REDUC	TICN 2011-10- Con	-13 14-10-55\	AC_RESOLUTION_CH
Analysis Mechod : Last changed :	1/20/2012 10:20 (modified after):15 AM by Jord : loading)	an Page		
FID1 B, Back S	gnal (GACVAC_REDUCTIO	N 2011-10-13 14-18-55V	AC-7-291 D)		
pA					H.
14-					* **
LABA AN			, H,		OHC O
13 -			·····	TO T	
			OHC O	0	
12			-		
14					
11-					
10-					
10					
10-					
10 - 9 -					
9					
9	20			40	50
9 8 10 10	20			40	50
10 9 8 	20 Area Per	30 rcent Report		40	50
10-9-8-1-10-10	20 Area Per	30 Toent Report		40	50
10 9 8 10 10	20 Area Per : Sign	30 cent Report		40	50
10 9 8 10 10 10	20 Area Per : Sign :	30 cent Report 11.0000		40	50
Sorted By Multiplier: Dilution:	20 Area Per : Sign ;	30 ccent Report 1.0000 1.0000		40	50
Sorted By Multiplier: Dilution: Use Multiplier &	20 Arem Per : Sign : : Dilution Factor	30 ccent Report ial i.0000 i.0000 with ISTDa		40	50
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FID1 B,	Zo Area Per : Sign j Dilution Factor Back Signal	scent Report 1.0000 1.0000 with ISTDs		40	50
Sorted By Multiplier; Dilution: Use Multiplier & Signal 1: PID1 B,	29 Area Per : Sign ! Dilution Factor Back Signal Width &	scent Report 1.0000 1.0000 with ISTDs		40	50
Sortad By Multiplier: Dilution: Use Maltiplier & Signal 1: FIDI B, Peak RetTime Type # finin	20 Area Per : Sign : Dilution Factor Back Signal Midth Area [min] [pA*8]	30 cent Report 1.0000 1.0000 with ISTDs Height IDA	Arsa	40	20
Sorted By Multiplier: Diution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type # [min]	20 Area Per : Sign : Dilution Factor Back Signal Width Area [min] [pA*s]	30 reent Report 1.0000 1.0000 with ISTDs A Height IPAJ	Arma B	40	50
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type # [min] 1 43,441 BB	20 Area Per : Sign : Dilution Factor Back Signal Width Area [min] [pA*a] (30 ccent Report 1.0000 1.0000 with ISTDs Height IPAJ 1003 4.75941	Arsau 4 (40	50
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FIDI B, Peak RetTime Type # [min] 1 43,441 88 2 49,446 BB	20 Area Per : Sign : Dilution Factor Back Signal Midth Area [min] [pA*s] 0.302 91,12 0.3384 127.41	30 ccent Report 1.0000 1.0000 with ISTDs Height IPAJ 2803 4.75941 734 5.89898	Atrea * (40	50
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: FID1 B, Peak RetTime Type # [min] 1 43,441 BB 2 49,446 BB	20 Area Per : Sign : Dilution Factor Back Signal Midth Area [min] [pA*s] 0,3002 91,12 0,3384 127.41	30 ccent Report 1.0000 1.0000 with ISTDs Height IPAJ 734 5.89898	Aryaa * (11,69753 59.30247	40	50
Norted By Multiplier: Dilution: Use Multiplier & Signal 1: FID1 B, Peak RetTime Type # [min] 1 43.441 BB 2 49.446 BB Totals :	29 Area Per : Sign : Dilution Factor Back Signal Width Areas [min] [pA*a] 0,3002 91,12 0,3364 127.41 218.54	30 cent Report 1.0000 1.0000 with ISTDs Height IPA1 1734 5.89898 1537 10.65839	Aryau % 1 (1,69753 58.30247	40	20

36d (C₄-*R*) and **36d** (C₄-*S*)

Data File C:\CHEM32\1\DATA\GAC\AC_REDOCTION 2013-10-13 12-17-39\AC-8-43.D Sample Name: AC-8-43 Ang, Openator : Adme Cor. Ang, Instrument : Babu Iwjecelon Dwbe : 10/13/2011 12:18:35 VM Acq. Operator 1 Addes Dot. 134q. Line 1 1 Acq. Instrument 1 Bala. 1anation 1 Mini 201 Injection Date 1 30/13/2011 32114125 W(Inj 1 I Di Yolamen 1 Mini 201 Different inj Yolamen 1 and 1 Johnson 1 Mini Acq. Herood 1 Different injection 2 and Acq. Herood 1 Different 1 Johnson 2 and Ministra Herood 1 Different 2 and 1 Johnson 2 and Ministra Herood 1 Different 2 and 2 and I Johnson 2 and 2 and 2 and 2 and I Johnson 2 and 2 and 2 and 2 and 2 and I Johnson 2 and 2 and 2 and 2 and 2 and I Johnson 2 and 2 and 2 and 2 and 2 and 2 and I Johnson 2 and 2 and 2 and 2 and 2 and 2 and I Johnson 2 and I Johnson 2 and I Johnson 2 and I Different 2 and 2 8Å 45 40 35-30 25 20 15 10 10 20 50 40 50 Acoa Percent Report Sorted By : Signal Huitipiler: : 1.0000 Dilution: : 1.0000 Use Huitipiler & Dilution Factor with ISTOs Signal 1: FIDI 8, Back Signal 870,92209 36,98273 TOTALS I *** End of Report ***

Compound 58 and Hydrovinylated Product 59