Supporting Information
Broadly Applicable Stereoselective Syntheses of Serrulatane, Amphilectane Diterpenes and TheirDiastereoisomeric Congeners using Asymmetric Hydrovinylation for Absolute StereochemicalControl
Srinivasarao Tenneti, Souvagya Biswas, Glen Adam Cox, Daniel J. Mans, Hwan Jung Lim, T. V. RajanBabu*
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States e-mail: rajanbabu.1@osu.edu
Table of Contents

1. General Information S3
2. Experimental Procedure and Characterization of the Key Compounds
A. Experimental Data of Scheme 2 S3
B. Experimental Data of Scheme 3 S7
C. Experimental Data of Scheme 5 S8
D. Experimental Data of Scheme 6 S11
E. Experimental Data of Scheme 7 S12
F. Experimental Data of Scheme 8 S14
G. Experimental Data of Scheme 10 S14
H. Experimental Data of Scheme 11 S15
I. Experimental Data of Scheme 12 S17
J. Experimental Data of Scheme 13 S20
K. Experimental Data of Scheme 15 S20
L. Experimental Data of Scheme 16 S22
M. Experimental Data of Scheme 17 S23
N. Experimental Data of Scheme 18 S24
O. Experimental Data of Scheme 19 S29
3. Additional Discussion
A. Alternative routes to synthesize compound $\mathbf{2 3}$ from aryl iodide S31
B. Efforts on metathesis reaction to synthesize compound 60 a and $\mathbf{6 0 b}$ S31
4. Comparison of NMR Spectra with Known Literature Values
A. Comparison of spectra of compound $\mathbf{3 6 e}$ with literature S32
B. Comparison of spectra of compound $43 \mathbf{a}$ with literature S34
C. Comparison of spectra of compound 69 with literature S35
D. Comparison of spectra of compound $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{9 a}$ with literature S36
5. References S38
6. TABLE 1A. Comparison of the Hydrovinylation approach with others for the synthesis of Pseudopterosins S39
Supporting Information
B. TABLE 1B. Comparison of the Hydrovinylation approach with others for the synthesis of prototypical serrulatanes and amphilectanes S43
7. NMR Spectra S51.
8. Gas Chromatograms of crude products showing selectivities S95

Supporting Information

1. General Information

Unless otherwise noted, reagents were purchased from commercial suppliers and used without further purification. Air-sensitive reactions were conducted under an inert atmosphere of argon using Schlenk techniques or a Vacuum Atmospheres glovebox. Solvents were distilled from the appropriate drying agents under nitrogen. Ethylene (99.5\%) was purchased from Matheson, Inc., and passed through Drierite ${ }^{\circledR}$ and potassium hydroxide before use. Analytical TLC was performed on E. Merck pre-coated (0.25 mm) silical gel 60 F254 plates. Flash column chromatography was carried out on silica gel 40 (Sorbtech Chemicals), gas chromatographic analysis was conducted on an Agilent 7820A using hydrogen as the carrier gas, equipped with a methyl silicone column ($30 \mathrm{mX} 0.32 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$ film thickness). Enantiomeric excess of chiral compounds were determined by chiral stationary phase gas chromatographic (CSP GC) analysis, which was performed on an Agilent 7820A using hydrogen as the carrier gas, equipped with a Cyclosil-B ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$ film thickness), capillary GC columns purchased from Agilent. Each GC was equipped with FID detectors and integrators or a computer. Optical rotations were recorded on a Rudolph 21CFR 11 polarimeter at the sodium D line in chloroform or dichloromethane on solutions filtered through a 45 micron nylon filter.

2. Experimental Procedure and Characterization of the Key Compounds

A. Experimental Data of Scheme 2

22

A three-necked 1 L round bottomed flask equipped with magnetic stir bar, glass stoppers and reflux condenser with gas inlet was flame-dried, purged with nitrogen and charged with solid KHMDS (19.15 g, $96.0 \mathrm{mmol})$. Dry THF (400 mL) was added, and the solution was stirred at rt. Methyltriphenylphosphonium bromide (34.30 g , 96.0 mmol) was added in portions over 10 min , causing a yellow solution to form. This solution was stirred for 3 h at rt , then was treated portionwise with solid 2,3dimethoxybenzaldehyde ($13.30 \mathrm{~g}, 80.0 \mathrm{mmol}$, Alfa Aesar). The reaction was heated to reflux and stirred for 18 h , then cooled to rt and diluted with water $(100 \mathrm{~mL})$. The whole was transferred to a separatory funnel containing water (300 mL) and was extracted with ether ($3 \times 300 \mathrm{~mL}$). The organic extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to a clear pale yellow oil, which was kept warm via heat gun, then purified by vacuum distillation $\left(75^{\circ} \mathrm{C}\right.$ at 3 torr) to afford pure styrene $\mathbf{2 2}$ as a clear colorless oil that solidified upon standing to a white solid: $9.34 \mathrm{~g}, 57.0 \mathrm{mmol}, 72 \% \mathrm{R}_{\mathrm{f}} 0.30$ ($5: 95 \mathrm{EtOAc}:$ Hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.13(\mathrm{~d}, 1 \mathrm{H}, J 6.4 \mathrm{~Hz}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J 10.8 \mathrm{~Hz}, 6.8 \mathrm{~Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J 8.4$ $\mathrm{Hz}), 5.77(\mathrm{dd}, 1 \mathrm{H}, J 17.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 5.31(\mathrm{dd}, 1 \mathrm{H}, 10.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 152.86,146.61,131.62,131.07,123.84,117.68,114.94,111.46,60.67,55.61$; IR (neat) $1628,1576,1475,1298,1223,1070 \mathrm{~cm}^{-1} ;[\mathrm{M}+\mathrm{Na}]$ Calc. 165.0915 Meas. 165.0914.

Supporting Information

S1
$\left[\mathrm{Ph}_{3} \mathrm{P}-\mathrm{CH}_{3}\right]^{+} \mathrm{Br}^{-}, \mathrm{KHMDS}, \mathrm{THF}$, rt to reflux, 16 h

s
A 500 mL three-necked flask equipped with a magnetic stirring bar, stopper, addition funnel and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 2,3-dimethoxytoluene (10.0 $\mathrm{mL}, 67.35 \mathrm{mmol}$) and freshly distilled TMEDA ($2.52 \mathrm{~mL}, 16.84 \mathrm{mmol}, 0.25$ equiv.) dissolved in anhydrous hexanes (200 mL). A 1.7 M solution of t-butyl lithium in pentane ($47.5 \mathrm{~mL}, 80.82 \mathrm{mmol}, 1.2$ equiv.) was added dropwise via addition funnel over 30 min . The resulting cloudy yellow solution was allowed to stir at room temperature overnight $(16 \mathrm{~h})$. The reaction vessel was cooled to $0^{\circ} \mathrm{C}$ and freshly distilled, degassed, anhydrous DMF ($10.4 \mathrm{~mL}, 134.70 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over 10 min . The reaction vessel was warmed to room temperature and allowed to stir for 1 h . The reaction was quenched by the slow addition of water (20 mL) followed by the addition of 2 N HCl until the pH of the solution was neutral. The reaction mixture was poured into water (200 mL) and extracted with ether (3 x 50 mL). The organic layers were combined and dried over MgSO_{4}, filtered, and evaporated to give the crude aldehyde which was purified via flash column chromatography ($\mathrm{R}_{f}=0.40$, hexanes-ethyl acetate, 9:1) to yield ($\mathbf{S 1}$) as a pale yellow oil $(8.95 \mathrm{~g}, 49.68 \mathrm{mmol}, 74 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.32$ (s, $1 \mathrm{H}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.8,156.4,151.7,140.6,128.6,126.3,123.0,62.2,60.4,16.7$. IR (neat) 2855 , $2743,1688,1596,1464,1257,1253,1071,1023 \mathrm{~cm}^{-1}$.

23
A 500 mL three-necked flask equipped with magnetic stirring bar, stoppers and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with KHMDS ($5.486 \mathrm{~g}, 27.50 \mathrm{mmol}, 1.2$ equiv.) dissolved in anhydrous THF (170 mL). Methyltriphenylphosphonium bromide ($9.824 \mathrm{~g}, 27.50 \mathrm{mmol}, 1.2$ equiv.) was added in small portions and the reaction mixture was allowed to stir for 1 h . A solution of ($\mathbf{S 1}$) $(4.130 \mathrm{~g}, 22.92 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$ was added dropwise via syringe and then heated to reflux in an oil bath. The reaction was allowed to reflux overnight (16 h). The vessel was allowed to cool to room temperature, then the reaction mixture was diluted with pentane $(150 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ to induce precipitation of triphenylphosphine oxide. The reaction mixture was then passed through a plug of Celite, followed by rinsing of the reaction vessel

Supporting Information

with pentane ($3 \times 50 \mathrm{~mL}$). The crude styrene was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.36\right.$, hexanes-ethyl acetate, 19:1) to yield (23) as a colorless oil ($3.78 \mathrm{~g}, 20.98 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=10.8,17.7 \mathrm{~Hz}\right), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.72$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=1.4,17.7 \mathrm{~Hz}\right), 5.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=1.4,10.8 \mathrm{~Hz}\right), 3.84(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,150.9,132.1,131.4,130.2,126.0,120.8,114.4,61.0,60.4,16.1$. IR (neat) 1824 , 1625, 1601, 1567, 1284, 1222, 1066, $1024 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 201.0898$ ([M + Na]); exact mass calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$, 201.0891. $\mathrm{GC}\left(\right.$ Cyclodex- $\beta, 85^{\circ} \mathrm{C}$ isotherm $): t_{\mathrm{R}}=61.41 \mathrm{~mm}$.

S2

A 250 mL 3-necked flask equipped with a magnetic stirring bar, thermometer, stopper, and a reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with anhydrous DMF ($22.4 \mathrm{~mL}, 289.11 \mathrm{mmol}, 1.1$ equiv.) and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath. POCl_{3} ($28.9 \mathrm{~mL}, 315.40 \mathrm{mmol}, 1.2$ equiv.) was added dropwise via syringe over 15 min . 2,6-Dimethoxytoluene $(40.00 \mathrm{~g}, 262.83 \mathrm{mmol})$ was added in a single portion and the flask was placed in an oil bath pre-heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $110{ }^{\circ} \mathrm{C}$ for 16 h , then cooled to ambient temperature and slowly quenched with excess $4 \mathrm{M} \mathrm{NaOH}(75 \mathrm{~mL})$. The whole was poured into $\mathrm{H}_{2} \mathrm{O}(1500 \mathrm{~mL})$ and extracted with DCM (4 x 200 mL). The organic layers were combined and dried over MgSO_{4}, filtered, and concentrated to give the crude aldehyde, which was purified by passing through a plug of silica $\left(\mathrm{R}_{f}=\right.$ 0.26 , pentane-diethyl ether, $4: 1$) to yield $\mathbf{S} 2$ as pale yellow solid ($41.68 \mathrm{~g}, 231.30 \mathrm{mmol}, 88 \%$). M.P.: 48$50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.07(1 \mathrm{H}, \mathrm{s}), 7.57(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $3.76(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8,163.8,162.4,127.8,122.6$, 119.9, 106.4, 62.9, 55.7, 8.3. IR (neat) 2948, 1670, 1594, 1458, 1388, 1281, 1260, 1108, 1002, 962. HRMS (ESI); $m / z 203.0680([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}$, 203.0679.

Supporting Information

S3

A 2 L 3-necked flask equipped with a magnetic stirring bar, stoppers, and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with $70-75 \% \mathrm{w} / \mathrm{w} \mathrm{m}$ CPBA ($85.53 \mathrm{~g}, 346.95 \mathrm{mmol}, 1.5$ equiv.) in DCM (750 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. A solution of $\mathbf{S 2}(41.68 \mathrm{~g}, 231.30 \mathrm{mmol})$ in $\mathrm{DCM}(175 \mathrm{~mL})$ was added slowly and the flask was allowed to warm to ambient temperatures before refluxing in an oil bath for 16 h . The flask was then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with sat. aq. NaHCO_{3} with vigorously stirring until bubbling ceased. The whole was poured into a separatory funnel and the organic layer was drained. The aqueous layer was extracted with DCM ($5 \times 50 \mathrm{~mL}$) and the organic layers were combined and concentrated. The crude formate ester was dissolved in methanol (500 mL), $\mathrm{KOH}(129.78 \mathrm{~g}, 2.313 \mathrm{~mol}, 10.0$ equiv.) was added, and the reaction mixture was allowed to stir at ambient temperatures for 6 h . The reaction was quenched by slow addition of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ until acidic pH was achieved. The whole was poured into $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$ and extracted with DCM ($5 \times 100 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, and concentrated to give $\mathbf{S 3}$ $(30.95 \mathrm{~g}, 184.02 \mathrm{mmol}, 80 \%)$ which was used in the subsequent reaction without further purification.

S4
A 1 L 3-necked flask equipped with a magnetic stirring bar, stopper, thermometer, and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with MgCl_{2} ($26.28 \mathrm{~g}, 276.03 \mathrm{mmol}, 1.5$ equiv.) and paraformaldehyde ($28.74 \mathrm{~g}, 956.90 \mathrm{mmol}, 5.2$ equiv.). A solution of $\mathbf{S 3}(30.95 \mathrm{~g}, 184.02 \mathrm{mmol})$ in anhydrous acetonitrile $(370 \mathrm{~mL})$ was added via syringe, followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$ ($102.6 \mathrm{~mL}, 736.08 \mathrm{mmol}, 4.0$ equiv.). The reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$ and allowed to stir for 16 h . CAUTION: A strong exotherm is observed when the reaction mixture reaches $\sim 85-90{ }^{\circ} \mathrm{C}$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and slowly quenched with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ until acidic pH was achieved. The whole was extracted with $\mathrm{DCM}(5 \times 50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated to give a crude mixture of $\mathbf{S 4}$ and a demethylated product. The mixture was used in the subsequent reaction without further purification.

S5
A 2 L 3-necked flask equipped with a magnetic stirring bar, stoppers and reflux condenser fitted with a nitrogen inlet was purged with nitrogen. The flask was charged with $\mathrm{K}_{2} \mathrm{CO}_{3}(129.65 \mathrm{~g}, 938.07 \mathrm{mmol}, 9.0$ equiv.) and a solution of $\mathbf{S 4}$ (mixture) (20.45 g) dissolved in acetone (695 mL). MeI ($97.3 \mathrm{~mL}, 1.563 \mathrm{~mol}$,

Supporting Information

15.0 equiv.) was added via syringe and the reaction mixture was heated to reflux in an oil bath and allowed to stir for 16 h . The flask was then cooled to ambient temperature, poured into $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$, and extracted with DCM ($5 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated to give the crude aldehyde which was purified via flash column chromatography ($\mathrm{R}_{f}=0.26$, hexanes-ethyl acetate, $9: 1$) to give $\mathbf{S 5}(25.275 \mathrm{~g}, 120.23 \mathrm{mmol}, 65 \%$ over 2 steps $) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.27$ $(\mathrm{s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $189.3,154.6,152.2,151.4,129.7,127.2,102.2,62.5,60.5,55.8,9.7$. IR (neat) 2999, 2939, 2856, 1684, 1598, 1466, 1407, 1387, 1332, 1283, 1207, 1133, 1084, $1030 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 233.0782$ ([M + $\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}, 233.0784$.

25
A 100 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was flamedried and purged with nitrogen. The flask was charged with methyltriphenylphosphonium bromide ($1.026 \mathrm{~g}, 2.872 \mathrm{mmol}, 1.2$ equiv.) and anhydrous THF (13 mL). $2.5 \mathrm{M} \mathrm{n}-\mathrm{BuLi}(1.05 \mathrm{~mL}, 2.632 \mathrm{mmol}$, 1.1 equiv.) was added dropwise via syringe and the reaction mixture was allowed to stir at ambient temperatures for 1 h , then was cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. A solution of $\mathbf{S 5}(503 \mathrm{mg}, 2.393$ mmol) in anhydrous THF (10 mL) was added via syringe and the reaction mixture was allowed to warm to ambient temperature and stir for 1 h . The reaction mixture was concentrated and dissolved in a minimal amount of DCM and purified via flash column chromatography $\left(\mathrm{R}_{f}=0.36\right.$, pentane-ether, 20:1) to yield $\mathbf{2 5}$ as a colorless oil ($452 \mathrm{mg}, 2.170 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=11.0\right.$, $17.5 \mathrm{~Hz}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.72\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=1.0,17.5 \mathrm{~Hz}\right), 5.28\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=1.0,11.0 \mathrm{~Hz}\right), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,152.3,145.2,131.6,128.8$, $121.1,114.1,102.2,61.2,60.6,55.9,9.2$. IR (neat) 2959, 2933, 1487, 1461, 1400, 1272, 1224, 1072, 1024, 904, $820 \mathrm{~cm}^{-1}$. HRMS (ESI); m/z 231.0987 ([M + Na]); exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}$, 231.0992. GC (Cyclosil-B, $125^{\circ} \mathrm{C}$ isotherm): $t_{\mathrm{R}}=32.59 \mathrm{~min}$.

B. Experimental Data of Scheme 3

General Procedure of Ni(II)-Catalyzed Asymmetric Hydrovinylation: Precatalyst preparation: In a glovebox, NaBARF ($0.0586 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$), ligand ($0.0586 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$), and [(allyl)NiBr] ${ }_{2}$ ($0.0293 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) were weighed into separate glass vials. The ligand was dissolved in anhydrous DCM $(1.0 \mathrm{~mL})$ and transferred to the vial containing [(allyl)NiBr $]_{2}$, followed by 1.0 mL rinsing of the source vial. The resulting yellow solution of phosphoramidite ligand and $[(\mathrm{allyl}) \mathrm{NiBr}]_{2}$ was transferred to the vial containing NaBARF, followed by 1.0 mL rinsing of the source vial. The resulting orange-yellow solution was allowed to stand for 1.5 h . Asymmetric hydrovinylation: A 100 mL three-necked flask equipped with a rubber septum, flow-controlled nitrogen inlet, thermometer, and magnetic stirring bar was flame-dried and purged with nitrogen. The catalyst solution prepared above was transferred to the reaction

Supporting Information

vessel via cannula, followed by 1.0 mL rinsing of the source vial. The system was closed at the flowcontrolled stopcock and cooled to desired temperature in a cryogenic bath, creating a small vacuum. A strong flow of dry ethylene was introduced via needle through the septum to relieve the vacuum and then the atmosphere of the vessel was evacuated three times via syringe to remove any remaining nitrogen. The flow of ethylene was adjusted to maintain a pressure of 1 atm by releasing excess gas through an oil bubbler. A solution of the Vinyl-styrene substrate (5.858 mmol) in anhydrous DCM (6 mL), followed by 2.0 mL rinsing of the source vial was introduced via syringe as to not increase the reaction temperature above the desired maintained temperature. The reaction mixture was allowed to stir at the desired temp for desired time (reaction progress was monitored by GC-FID analysis). The ethylene needle was then removed and the reaction was exposed to air and $\mathrm{NH}_{4} \mathrm{OH}(1.0 \mathrm{~mL})$ was added to quench the reaction. The resulting mixture was poured into $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 15 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated to give the crude hydrovinylation product, which was then eluted through a plug of silica with pentane-ether (20:1) to remove any nickel salts. The eluent was concentrated to yield the pure hydrovinylated product.

Ligands (L1, L2, L3, L4, L5, L6, L7) ${ }^{1}$ were synthesized following literature procedures. Hydrovinylated product $\mathbf{2 6}^{1 \mathrm{a}}$ and $\mathbf{2 7}^{2}$ was previously reported from our research group.

General procedure of $\mathrm{Ni}(\mathrm{II})$-catalyzed hydrovinylation was followed. ($99 \%, 96 \%$ ee using complex of $\mathbf{L 3}$). Authentic racemic sample was obtained via complex of achiral ligand L6.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.10-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.69$ (quintet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.86-3.81(\mathrm{~m}, 9 \mathrm{H}$, containing: $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$), $2.16(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.4,152.1,144.7,143.4,136.3,118.8,113.2$, 104.4, 61.1, 60.3, 55.9, 36.0, 20.6, 8.9. $[\alpha]_{\mathrm{D}}{ }^{20}-16.8$ (c $3.00, \mathrm{CHCl}_{3}$); IR (neat) 2962, 2934, 2832, 1604, 1584, 1484, 1464, 1403, 1224, 1190, 1130, 1060, 1035, $917 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 259.1306([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$, 259.1305. GC (Cyclosil-B, $125{ }^{\circ} \mathrm{C}$ isotherm): $t_{\mathrm{R}}=40.66(R), 41.62(S) \mathrm{min}$.

C. Experimental Data of Scheme 5

30
A 100 mL 3-necked flask equipped with a magnetic stirring bar, thermometer, stopper, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 9-BBN dimer ($1.289 \mathrm{~g}, 5.281$ mmol, 1.0 equiv.) and a solution of $28(1.248 \mathrm{~g}, 5.281 \mathrm{mmol})$ in anhydrous THF (50 mL) was added via

Supporting Information

syringe. The reaction mixture was allowed to stir at ambient temperature for 2 h , then cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath. $4 \mathrm{M} \mathrm{NaOH}(10.6 \mathrm{~mL})$ was added dropwise, maintaining the internal temperature below $10{ }^{\circ} \mathrm{C}$. A solution of $\sim 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(7.9 \mathrm{~mL})$ was added dropwise, maintaining the internal temperature below $10{ }^{\circ} \mathrm{C}$. CAUTION: A strong exotherm is observed upon the initial addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ Once addition was complete, the reaction mixture was allowed to warm to ambient temperature, poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and extracted with ether $(3 \times 25 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated. The crude alcohol was purified via flash column chromatography $\left(\mathrm{R}_{f}\right.$ $=0.12$, hexanes-ethyl acetate, 4:1) to give 30 as a colorless oil ($1.341 \mathrm{~g}, 5.273 \mathrm{mmol},>99 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.31(\mathrm{~m}$, $2 \mathrm{H}), 2.47(\mathrm{bs}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,151.8,144.8,136.6,118.7,103.4,61.4,61.1,60.5,55.9,41.4,28.2,21.8$, 8.9. $[\alpha]_{\mathrm{D}}{ }^{20}+47.3\left(c 2.73, \mathrm{CHCl}_{3}\right)$; IR (neat) $3427,2932,2869,2833,1738,1605,1583,1485,1462,1403$, 1230, 1127, $1042 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 277.1417$ ($[\mathrm{M}+\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$, 277.1410.

S6
A 100 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was flamedried and purged with nitrogen. The flask was charged with $\mathbf{3 0}(1.341 \mathrm{~g}, 5.273 \mathrm{mmol})$ in anhydrous THF (55 mL). Imidazole ($718 \mathrm{mg}, 10.546 \mathrm{mmol}, 2.0$ equiv.) and triphenylphosphine ($1.521 \mathrm{~g}, 5.800 \mathrm{mmol}$, 1.1 equiv.) were added to the flask and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath. Iodine crystals ($1.472 \mathrm{~g}, 5.800 \mathrm{mmol}, 1.1$ equiv.) were added in small portions until a red solution persisted, then the reaction mixture was allowed to warm to ambient temperature. The reaction mixture was concentrated and the crude mixture was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.40\right.$, hexanesethyl acetate, 19:1) to give $\mathbf{S 6}(1.894 \mathrm{~g}, 5.200 \mathrm{mmol}, 99 \%)$ as a white chalky oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 9 \mathrm{H}$, containing: $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$), 3.27 (sextet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 5 \mathrm{H}$, containing: $2.12(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 154.5,152.2,145.2,136.0,119.0,103.8,61.2,60.4,56.0,41.8,34.2,21.4$, 9.0, 4.9. $[\alpha]_{\mathrm{D}}{ }^{20}+26.8\left(c 3.16, \mathrm{CHCl}_{3}\right)$; IR (neat) 2957, 2930, 2867, 2831, 1604, 1583, 1485, 1462, 1403, 1227, 1189, 1130, 1035, 837, $486 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 387.0420([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{IO}_{3} \mathrm{Na}, 387.0428$.

31
A 100 mL single-necked flask equipped a magnetic stirring bar and a reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with NaCN (463 mg ,

Supporting Information

9.445 mmol , 2.0 equiv.) and a solution of $\mathbf{S 6}(1.720 \mathrm{~g}, 4.722 \mathrm{mmol})$ in anhydrous DMSO $(24 \mathrm{~mL})$. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ in an oil bath and allowed to stir for 2 h . The flask was then cooled to ambient temperature and the whole was poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with ether ($3 \times 25 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated to give the crude nitrile which was eluted through a plug of silica $\left(\mathrm{R}_{f}=0.35\right.$, hexanes-ethyl acetate, $\left.4: 1\right)$ to yield $\mathbf{3 1}$ as a colorless oil ($1.242 \mathrm{~g}, 4.716 \mathrm{mmol},>99 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 9 \mathrm{H}$, containing: $3.793(\mathrm{~s}, 3 \mathrm{H}), 3.786(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$), 3.26 (sextet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 2.24-2.21 (m, 2H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,152.0$, $145.0,134.9,119.8,119.0,103.2,60.8,60.0,55.7,33.1,32.1,21.3,15.4,8.7 .[\alpha]_{\mathrm{D}}{ }^{20}+43.8$ (c 3.43, CHCl_{3}); IR (neat) 2961, 2933, 2869, 2834, 2244, 1604, 1583, 1486, 1458, 1404, 1347, 1319, 1268, 1231, 1122, 1078, 1032, 839, $790 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 286.1422$ ($[\mathrm{M}+\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}$, 286.1414.

32
A 100 mL single-necked flask equipped with a magnetic stirring bar and reflux condenser fitted with a nitrogen inlet was purged with nitrogen. The flask was charged with $31(1.440 \mathrm{~g}, 5.468 \mathrm{mmol})$ dissolved in methanol (28 mL). $\mathrm{NaOH}\left(10.937 \mathrm{~g}, 273.42 \mathrm{mmol}, 50.0\right.$ equiv.) and $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$ were added in sequence and the flask was heated to reflux in an oil bath. The reaction mixture was allowed to reflux overnight (16 h) and then cooled to ambient temperature. Conc. $\mathrm{HCl}(\sim 20 \mathrm{~mL})$ was added until an acidic pH was achieved. The whole was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, and concentrated to give the crude acid as a pale yellow oil. The crude oil was azeotroped with benzene $(20 \mathrm{~mL})$ and dried overnight with a vacuum pump. Friedel-Crafts Acylation: A 100 mL three-necked flask equipped with a magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with the crude acid dissolved in anhydrous DCM (55 mL). The flask was then cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath and a 2.0 M solution of oxalyl chloride in $\mathrm{DCM}(3.0 \mathrm{~mL}, 6.015 \mathrm{mmol}, 1.1$ equiv.) was added dropwise. The reaction mixture was allowed to warm to ambient temperature and stir for 1 h . The flask was then re-cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{AlCl}_{3}(1.094 \mathrm{~g}, 8.202 \mathrm{mmol}, 1.5$ equiv.) was added in a single portion and the reaction mixture was allowed to stir for 0.5 h . The reaction was quenched by the slow addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The whole was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with ether ($3 \times 25 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, and concentrated to give the crude ketone which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.36\right.$, hexanes-ethyl acetate, 4:1) to yield 32 as a pale yellow oil ($1.386 \mathrm{~g}, 5.244 \mathrm{mmol}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.84-3.81(\mathrm{~m}, 6 \mathrm{H}$, containing: $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.16-$ $2.10\left(\mathrm{~m}, 4 \mathrm{H}\right.$, containing: $2.13(\mathrm{~s}, 3 \mathrm{H})$), $1.91-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.5,156.2,155.8,145.6,142.1,125.1,121.5,61.0,60.5,59.8,35.0,28.4,27.0,19.8,8.8$.

Supporting Information

$[\alpha]_{\mathrm{D}}{ }^{20}-36.1\left(c 1.97, \mathrm{CHCl}_{3}\right)$; IR (neat) 2960, 2932, 2865, 1681, 1576, 1459, 1402, 1316, 1284, 1156, 1107, 1070, 1039, $1019 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 287.1252([M+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$, 287.1254.

33
A 50 mL 3-necked flask equipped with a magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 32 ($728 \mathrm{mg}, 2.754 \mathrm{mmol}$) dissolved in anhydrous THF (25 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. A 1.0 M solution of vinylmagnesium bromide ($3.3 \mathrm{~mL}, 3.305 \mathrm{mmol}, 1.2$ equiv.) was added via syringe in a single portion. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min . and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5$ mL) was slowly added to quench the reaction. The whole was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with ether ($3 \times 15 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered, concentrated, and eluted through a plug of silica (hexanes-ethyl acetate, $4: 1$) to give the crude alcohol which was used in the subsequent reaction without further purification. A 50 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was charged with the crude alcohol dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ (+/-)-Camphor-10-sulfonic acid ($64 \mathrm{mg}, 0.275 \mathrm{mmol}, 0.10$ equiv.) was added and the reaction mixture was allowed to stir at ambient temperature for 2.5 h , until TLC showed complete consumption of the alcohol. The reaction was concentrated and purified via flash column chromatography ($\mathrm{R}_{f}=0.34$, pentane-diethyl ether, 20:1) to yield 33 as a colorless oil ($608 \mathrm{mg}, 2.216 \mathrm{mmol}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=10.5,17.0 \mathrm{~Hz}\right), 6.03-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=2.0,17.0 \mathrm{~Hz}\right), 4.96\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}\right.$ $=2.0,10.5 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.18$ $\left(\mathrm{m}, 4 \mathrm{H}\right.$, containing: $2.19(\mathrm{~s}, 3 \mathrm{H})$), $1.08(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,151.2$, $146.1,139.0,135.3,134.5,124.4,123.6,122.9,110.6,61.0,60.8,60.2,30.2,26.4,18.9,9.3 .[\alpha]_{\mathrm{D}}{ }^{20}-48.8$ (c $3.18, \mathrm{CHCl}_{3}$); IR (neat) 2958, 2929, 2866, 2827, 1458, 1402, 1336, 1112, 1078, 1030, $899 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ (ESI); $m / z 297.1472([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}, 297.1461$. GC (Cyclosil-B, 150 ${ }^{\circ} \mathrm{C}$ isotherm): $t_{\mathrm{R}}=45.92\left(\mathrm{C}_{1}: R\right), 47.92\left(\mathrm{C}_{1}: S\right) \mathrm{min}$.

D. Experimental Data of Scheme 6

34
General procedure of $\mathrm{Ni}(\mathrm{II})$-catalyzed hydrovinylation was followed. ($98 \%,>95 \%$ de as determined by NMR using complex of L3). Authentic diastereomeric mixture sample was obtained via complex of achiral ligand L6. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=1.5,7.0 \mathrm{~Hz}\right), 5.77-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{l, 2}=1.5,17.0 \mathrm{~Hz}\right), 4.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=1.5,10.0 \mathrm{~Hz}\right), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$,

Supporting Information

$3.57(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,150.7,145.8,144.4,139.6,135.5$, $123.3,123.1,121.2,111.7,60.65,60.62,60.0,37.9,30.0,26.4,18.7,18.0,9.3 .[\alpha]_{\mathrm{D}}{ }^{20}-102.5$ (c 3.23, CHCl_{3}); IR (neat) 2960, 2931, 2869, 2830, 1462, 1454, 1402, 1362, 1336, 1108, 1079, 1020, $971 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 325.1759$ ([M + Na]); exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 325.1774$. GC (Cyclosil$\mathrm{B}, 150{ }^{\circ} \mathrm{C}$ isotherm $): t_{\mathrm{R}}=50.55\left(\mathrm{C}_{11}: R\right.$ or $\left.S, \mathrm{C}_{1}: R\right), 52.17\left(\mathrm{C}_{11}: R\right.$ or $\left.S, \mathrm{C}_{1}: S\right) \mathrm{min}$.

(S)-4-((R)-but-3-en-2-yl)-5,7,8-trimethoxy-1,6-dimethyl-1,2-dihydronaphthalene (11-epi-34): ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.11(\mathrm{~m}, 1 \mathrm{H}),, 5.74(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 5.15-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.04$ $(\mathrm{m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.83$, $150.53,145.71,143.2,140.44,135.65,123.03,122.72,122.15,113.07,60.75,60.6,60.0,38.69,29.77$, 26.19, 20.79, 17.9, 9.13. HRMS (ESI); m/z 325.1728 ($[\mathrm{M}+\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 325.1774$. GC (Cyclosil- $\mathrm{B}, 150{ }^{\circ} \mathrm{C}$ isotherm): $t_{R}=51.51 \mathrm{~min} .\left(\mathrm{C}_{11}: S, \mathrm{C}_{1}: S\right)$ minor; $t_{\mathrm{R}}=$ $58.65 \min \left(\mathrm{C}_{11}: R, \mathrm{C}_{1}: S\right)$ major.; dr 1.3:98.7.

E. Experimental Data of Scheme 7

A 50 mL three-necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin 34 ($226 \mathrm{mg}, 0.747 \mathrm{mmol}$) dissolved in anhydrous THF (8 mL). 9-BBN dimer ($365 \mathrm{mg}, 1.494 \mathrm{mmol}, 2.0$ equiv.) was added and the reaction mixture was allowed to stir at room temperature for 3 h . The vessel was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath and $4 \mathrm{M} \mathrm{NaOH}(1.5 \mathrm{~mL})$ was added dropwise, maintaining the internal temperature of the vessel below $10{ }^{\circ} \mathrm{C}$. A solution of $\sim 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.1 \mathrm{~mL})$ was then added dropwise, maintaining the internal temperature of the vessel below $10^{\circ} \mathrm{C}$. The vessel was allowed to warm to room temperature and stir for an additional 0.5 h . The vessel was then diluted with ether (10 mL) and neutralized with 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ until $\mathrm{pH} \sim 7$ was achieved. The whole was poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with ether $(3 \mathrm{x}$ 10 mL). The organic layers were combined and dried over MgSO_{4}, and concentrated to give crude 35a which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.29\right.$, hexanes-ethyl acetate, $\left.3: 1\right)$ to yield $\mathbf{3 5 a}$ as

Supporting Information

a colorless oil ($226 \mathrm{mg}, 0.715 \mathrm{mmol}, 96 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{AC}-6-235.81(\mathrm{~d}, 1 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 3.81-3.80(\mathrm{~m}, 6 \mathrm{H}$, containing: $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})), 3.58-3.51(\mathrm{~m}, 5 \mathrm{H}$, containing: $3.51(\mathrm{~s}, 3 \mathrm{H})$, $3.43(\mathrm{bs}, 1 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}),, 1.67-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.4,150.7,146.1,141.0,135.6,123.4,123.2,120.8,61.2,60.7,60.6,60.1,41.4,30.5,29.9,26.2,18.4$, 17.9, 9.3. $[\alpha]_{\mathrm{D}}{ }^{20}-108.3\left(c 1.78, \mathrm{CHCl}_{3}\right)$; IR (neat) 3446, 2959, 2931, 2874, 1462, 1402, 1336, 1322, 1107, 1079, $1024 \mathrm{~cm}^{-1}$. HRMS (ESI); m/z $343.1882([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$, 343.1880.

36a
An oven dried 100 mL three necked flask was equipped with a magnetic stirring bar, septum, stopper, and an oven dried cold finger with an attached balloon. The flask was charged with alcohol 35a (115 mg , $0.359 \mathrm{mmol})$ dissolved in a minimal amount of 1,4-dioxane $(1.5 \mathrm{~mL})$. The vessel was cooled to $-60{ }^{\circ} \mathrm{C}$ in a cryogenic bath and ammonia (passed through a drying tube of barium oxide) was condensed into the vessel (ca. 35 mL). Sodium metal (large pieces in kerosene) ($413 \mathrm{mg}, 17.945 \mathrm{mmol}, 50.0$ equiv.) was freshly cut and added in a single portion, resulting in the formation of a blue solution, which was stirred for an additional 2 min . at $-60^{\circ} \mathrm{C}$. The reaction was slowly quenched with methanol $(10 \mathrm{~mL})$ resulting in a cloudy white mixture. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was slowly added to the reaction mixture and the whole was poured into a separatory funnel and extracted with ether $(3 \times 10 \mathrm{~mL})$. The organic layers were combined and dried over MgSO_{4}, and concentrated to give crude $\mathbf{3 6 a}$ which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.22\right.$, hexanes-ethyl acetate, 3:1) to yield 36a as a colorless oil ($151 \mathrm{mg}, 0.468 \mathrm{mmol}$, $83 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 4 \mathrm{H}$, containing: 3.80(s,3H)), 3.65-3.61 $(\mathrm{m}, 4 \mathrm{H}$, containing: $3.65(\mathrm{~s}, 3 \mathrm{H})$), 3.20-3.15 (m, 1 H$), 2.89-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.79$ $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9$, 149.9, 147.3, 135.0, 128.5, 122.5, 61.4, 60.7, $60.6,60.1,38.2,34.9,34.6,27.1,26.7,23.4,18.6,18.5,9.7 .[\alpha]_{D}{ }^{20}+19.3\left(c 0.900, \mathrm{CHCl}_{3}\right)$; IR (neat) 3368, 2932, 2868, 2826, 1453, 1403, 1326, 1300, 1248, 1101, 1073, $1011 \mathrm{~cm}^{-1}$. HRMS (ESI); m/z $345.2037([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}, 345.2036$.

A 25 mL single necked flask charged with alcohol $\mathbf{3 6 a}(151 \mathrm{mg}, 0.468 \mathrm{mmol})$ was equipped with a magnetic stirring bar and nitrogen inlet. The alcohol was dissolved in DCM (12 mL) and $\mathrm{NaHCO}_{3}(472$ $\mathrm{mg}, 5.620 \mathrm{mmol}, 12.0$ equiv.) and DMP ($397 \mathrm{mg}, 0.937 \mathrm{mmol}, 2.0$ equiv.) were added in sequence. The flask was purged with nitrogen and the reaction mixture was allowed to stir at ambient temperature for 2.5

Supporting Information

h until TLC showed complete consumption of starting material. The mixture was concentrated and then eluted through a plug of silica (hexanes-ethyl acetate, 4:1). The crude aldehyde was purified via flash column chromatography ($\mathrm{R}_{f}=0.34$, hexanes-ethyl acetate, $9: 1$) to give $\mathbf{3 6 d}$ as a colorless oil $(119 \mathrm{mg}$, $0.371 \mathrm{mmol}, 73 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,152.8,150.2,147.7,134.8,127.7,122.7,60.7,60.2,60.1,49.3,36.6$, $33.6,27.3,25.8,23.4,20.1,19.6,9.6 .[\alpha]_{\mathrm{D}}{ }^{20}+23.4\left(c 0.950, \mathrm{CHCl}_{3}\right)$; IR (neat) 2932, 2869, 2826, 2714, 1722, 1591, 1462, 1403, 1300, 1249, 1101, 1072, $1009 \mathrm{~cm}^{-1} . \operatorname{HRMS}(\mathrm{ESI}) ; m / z 343.1880([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}, 343.1880$. GC (Cyclosil-B, $175^{\circ} \mathrm{C}$ isotherm): $t_{\mathrm{R}}=43.78\left(\mathrm{C}_{4}: R\right.$ or S, $\left.\mathrm{C}_{11}: S, \mathrm{C}_{1}: S\right), 49.68\left(\mathrm{C}_{4}: R\right.$ or $\left.S, \mathrm{C}_{11}: S, \mathrm{C}_{1}: S\right) \mathrm{min}$.

F. Experimental Data of Scheme 8

36e
A 25 mL three necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with methyltriphenylphosphonium bromide ($321 \mathrm{mg}, 0.899 \mathrm{mmol}, 1.5$ equiv.) dissolved in anhydrous THF (10 mL). A 1.0 M solution of n butyllithium in hexanes $(0.72 \mathrm{~mL}, 0.719 \mathrm{mmol}, 1.2$ equiv.) was added dropwise and the reaction mixture was allowed to stir at ambient temperature for 1 h . The vessel was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath and a solution of $\mathbf{3 6 d}(192 \mathrm{mg}, 0.599 \mathrm{mmol})$ in anhydrous THF (2 mL) was added dropwise via syringe. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for an additional 30 min . and was then concentrated and dissolved in a minimal amount of DCM and purified via flash column chromatography $\left(\mathrm{R}_{f}=0.41\right.$, pentaneether, 20:1) to yield 36e as a colorless oil ($154 \mathrm{mg}, 0.484 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.83-5.76 (m, 1H), 5.01-4.95 (m, 2H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.85$ $(\mathrm{m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $0.76(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,149.8,147.3,139.2,135.0,128.8,122.5$, $115.2,60.7,60.4,60.1,40.2,38.1,35.4,27.2,26.7,23.4,18.8,18.3,9.6 .[\alpha]_{\mathrm{D}}{ }^{20}+5.5\left(c 0.655, \mathrm{CHCl}_{3}\right)$; IR (neat) 2932, 2869, 2826, 1458, 1404, 1326, 1298, 1249, 1110, 1072, 1034, 1017, $908 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 341.2084([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$, 341.2087.

G. Experimental Data of Scheme 10

37

Supporting Information

A 25 mL three-necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin $\mathbf{3 6 e}(15.0 \mathrm{mg}, 0.047 \mathrm{mmol})$ dissolved in anhydrous THF (2 mL). 9-BBN dimer ($23.0 \mathrm{mg}, 0.094 \mathrm{mmol}, 2.0$ equiv.) was added and the reaction mixture was allowed to stir at room temperature for 3 h . The vessel was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath and $4 \mathrm{M} \mathrm{NaOH}(0.5 \mathrm{~mL})$ was added dropwise, maintaining the internal temperature of the vessel below $10{ }^{\circ} \mathrm{C}$. A solution of $\sim 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ was then added dropwise, maintaining the internal temperature of the vessel below $10^{\circ} \mathrm{C}$. The vessel was allowed to warm to room temperature and stir for an additional 0.5 h . The vessel was then diluted with ether (15 mL) and the whole was poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO_{4}, and concentrated to give crude 37 which was purified via flash column chromatography $\left(\mathrm{R}_{f}=\right.$ 0.25 , hexanes-ethyl acetate, $4: 1$) to yield 37 as a colorless oil ($14.0 \mathrm{mg}, 0.042 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ SB-07-284 $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.68(\mathrm{~m}, 5 \mathrm{H}), 3.13-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.84-$ $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}),, 1.91-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.38(\mathrm{~m}, 2 \mathrm{H})$, $1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.75(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 152.8,149.6,147.1$, $134.8,128.6,122.2,63.4,60.5,60.2,59.9,37.5,35.5,31.3,30.7,27.0,26.4,23.3,18.6,18.1,9.4 ;[\alpha]_{\mathrm{D}}{ }^{20}$ +1.7 (c 0.7, CHCl_{3}); HRMS (ESI); $m / z 359.2181([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}$, 359.2193.

H. Experimental Data of Scheme 11

A 25 mL three necked flask equipped with a magnetic stirring bar, stopper, septum, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with a solution of isocrotylmagnesium bromide ($303 \mathrm{mg}, 2.247 \mathrm{mmol}, 10.0$ equiv.) in anhydrous THF (3 mL). Preparation of isocrotylmagnesium bromide: To a vial charged with magnesium turnings ($137 \mathrm{mg}, 5.618 \mathrm{mmol}, 25.0$ equiv.) was added 1-bromo-2-methyl-1-propene ($230 \mu \mathrm{~L}, 2.247 \mathrm{mmol}, 10.0$ equiv.) and diluted with anhydrous THF (3 mL). 1,2-Dibromoethane ($29 \mu \mathrm{~L}, 0.337 \mathrm{mmol}, 1.5$ equiv.) was added to activate the magnesium turnings and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ in an oil bath for 3 h , resulting in a brownish solution that was transferred to the reaction flask via cannula. A solution of aldehyde 36d (72 $\mathrm{mg}, 0.225 \mathrm{mmol}$) in anhydrous THF (2 mL) was added dropwise via syringe to the reaction flask and was allowed to stir at ambient temperature for 15 min . The reaction was quenched by the slow addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and the whole was poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated to give the crude mixture of C_{13} epimeric allylic alcohols, which were purified via flash column chromatography $\left(\mathrm{R}_{f}=0.26-0.21\right.$, hexanes-ethyl acetate, $\left.4: 1\right)$ to yield 38 as a colorless oil ($78 \mathrm{mg}, 0.207 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 5.20-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.844(\mathrm{~s}, 3 \mathrm{H}), 3.840$

Supporting Information

$(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.85-$ $2.82(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{bs}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.14$ $(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.79(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.77(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,152.9,149.84,149.79,147.2,147.1,135.0,134.9,134.5,134.4,129.0,128.46$, $128.42,122.5,122.4,110.3,67.5,66.7,60.7,60.6,60.5,60.4,60.03,60.02,44.3,43.5,37.2,35.2,34.6$, $34.0,27.2,26.9,26.81,26.75,25.94,25.92,23.4,23.3,19.2,18.9,18.5,18.43,18.35,18.2,9.71,9.69$. $[\alpha]_{\mathrm{D}}{ }^{20}+1.82\left(c 1.100, \mathrm{CHCl}_{3}\right)$; IR (neat) $3443,2932,2868,1462,1454,1403,1098,1074,1030,1009 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 399.2503$ ([M + Na]); exact mass calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}, 399.2506$.

An oven-dried 5 dram vial was equipped with a magnetic stirring bar and charged with a solution of $\mathbf{3 8}$ (23 $\mathrm{mg}, 0.061$ dissolved in acetonitrile $(2 \mathrm{~mL}) .(+/-)$-Camphor-10-sulfonic acid ($2 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.10$ equiv.) was added and the reaction mixture was allowed to stir at ambient temperature for 30 min , until TLC showed complete consumption of the starting material. The reaction was concentrated and purified via flash column chromatography $\left(\mathrm{R}_{f}=0.33\right.$, pentane-diethyl ether, 20:1) to yield 39 as a colorless oil (21 $\mathrm{mg}, 0.059 \mathrm{mmol}, 96 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.06\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=10.5,15.0 \mathrm{~Hz}\right), 5.78(\mathrm{broad} \mathrm{d}$, $1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=7.5,10.5 \mathrm{~Hz}\right), 4.85(\mathrm{broad} \mathrm{d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.8,149.8,147.2,138.2,134.9,132.6,128.0,125.6,125.3$, $122.5,60.8,60.4,60.1,41.7,37.6,27.1,26.7,26.1,23.4,19.3,18.4,17.6,9.6 .[\alpha]_{\mathrm{D}}{ }^{20}-20.82(c 0.730$, CHCl_{3}); IR (neat) 2956, 2931, 2867, 1457, 1404, 1072, 1026, $967 \mathrm{~cm}^{-1} . \operatorname{HRMS}$ (ESI); m/z 381.2402 ([M $+\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}, 381.2400$.

A 25 mL three necked flask equipped with a magnetic stirring bar, stopper, thermometer, and reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with 39 ($24 \mathrm{mg}, 0.067 \mathrm{mmol}$) dissolved in anhydrous DMF $(3.5 \mathrm{~mL})$. Sodium ethanethiolate (56 mg , $0.670 \mathrm{mmol}, 10.0$ equiv.) was added and the reaction vessel was heated to $100{ }^{\circ} \mathrm{C}$ in an oil bath and allowed to stir for 12 h . The vessel was cooled to ambient temperature, acidified with $1.0 \mathrm{~N} \mathrm{aq} . \mathrm{HCl}$, and extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. Purification by flash column chromatography $\left(\mathrm{R}_{f}=0.24\right.$, pentane-diethyl ether, $10: 1$) gave 40 as a $\sim 2: 1$ mixture of mono-demethylated

Supporting Information

products $(15 \mathrm{mg}, 0.044 \mathrm{mmol}, 65 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.08\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=\right.$ $7.5,10.5 \mathrm{~Hz}), 5.79(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=7.5,10.5 \mathrm{~Hz}\right), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2,145.9,141.2,138.1,133.8,132.6,125.6,125.3,123.9,115.7$, $61.6,60.6,41.8,37.4,27.5,26.8,26.1,23.2,19.5,18.4,17.4,9.4$ (only signals from the major product are reported). $[\alpha]_{\mathrm{D}}{ }^{20}+1.20\left(c 0.500, \mathrm{CHCl}_{3}\right)$; IR (neat) 3533, 3418, 2931, 2868, 2830, 1608, 1454, 1416, 1291, 1250, 1099, 1056, 1021, $963 \mathrm{~cm}^{-1}$. HRMS (ESI); $m / z 367.2244$ ([M +Na$]$); exact mass calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}, 367.2244$.

(+)-nor-elisabethadione (41): A 5 dram vial equipped with a magnetic stirring bar was charged with 40 $(15 \mathrm{mg}, 0.044 \mathrm{mmol})$ dissolved in acetonitrile $(4.0 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. An aqueous 0.10 M solution of cerium ammonium nitrate ($1.3 \mathrm{~mL}, 0.130 \mathrm{mmol}, 3.0$ equiv.) was added and the reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for an additional 5 min . The red reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, and concentrated to give the crude product, which was used in the subsequent reaction without further purification. An oven-dried 5 dram vial equipped with a magnetic stirring bar and nitrogen inlet was charged with a solution of crude dione dissolved in 2,6-lutidine (2.0 mL). Lithium iodide ($17 \mathrm{mg}, 0.130 \mathrm{mmol}, 3.0$ equiv.) was added and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ in an oil bath and allowed to stir for 3 h . The reaction mixture was allowed to cool to ambient temperature and poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated. Purification by flash column chromatography $\left(\mathrm{R}_{f}=0.34\right.$, pentane-diethyl ether, $10: 1$) furnished 41 ($6 \mathrm{mg}, 0.020 \mathrm{mmol}, 46 \%$ over 2 steps) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 1 \mathrm{H}), 5.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=10.5,15.0 \mathrm{~Hz}\right), 5.68(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=\right.$ $8.5,15.0 \mathrm{~Hz}), 2.97-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.6,183.2,150.4,149.1,142.0,137.0,133.8,125.6,124.9,117.3,41.6,37.3,26.3$, 26.1, 25.2, 21.1, 19.2, 18.7, 18.4, 8.3. $[\alpha]_{D}{ }^{20}+147.50\left(c 0.080, \mathrm{CHCl}_{3}\right)$; IR (neat) 3389, 2961, 2923, 2870, 1650, 1633, 1454, 1376, 1336, 1233, 1154, 1041, $962 \mathrm{~cm}^{-1} . \operatorname{HRMS}(\mathrm{ESI}) ; m / z 337.1773$ ([M + Na]); exact mass calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 337.1774$.

I. Experimental Data of Scheme 12

Supporting Information

43a
A 25 mL single necked flask charged with alcohol $\mathbf{3 6 a}(100 \mathrm{mg}, 0.310 \mathrm{mmol})$ was equipped with a magnetic stirring bar and nitrogen inlet. The alcohol was dissolved in 4 mL of solvent mixture of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1)$. Above reaction flask was cooled down to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{CAN}(561 \mathrm{mg}, 1.023 \mathrm{mmol}$) was added. Upon the complete consumption of starting material as judged by TLC (usually within $10-15 \mathrm{~min}$) the reaction was poured onto brine, and was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified via flash column chromatography ($\mathrm{R}_{f}=0.21$, hexanes-ethyl acetate, 8:2) to give quinone 43a as a viscous yellow liquid ($61.6 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.0(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H})$, 3.00 (quin, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87-2.85 (m, 1H), $2.35(\mathrm{bs}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.62$ $(\mathrm{m}, 3 \mathrm{H}), 1.55-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.06,183.0,155.57,146.46,144.06,128.79,60.85,60.67,37.91,33.03,32.82$, 26.16, 26.01, 20.93, 17.63, 17.21, 8.82. $[\alpha]_{\mathrm{D}}{ }^{20}+162.4\left(c 0.25, \mathrm{CHCl}_{3}\right) ;$ HRMS (ESI); $m / z 315.1563([\mathrm{M}+$ $\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}, 315.1567$.

44
A 25 mL single necked flask charged with alcohol quinone $\mathbf{4 3 a}$ ($30 \mathrm{mg}, 0.103 \mathrm{mmol}$) was equipped with a magnetic stirring bar and nitrogen inlet. The alcohol was dissolved in DCM (12 mL) and DMP (65.3 mg , $0.1539 \mathrm{mmol}, 1.5$ equiv.) and drop of H 2 O were added in sequence at $0{ }^{\circ} \mathrm{C}$. The flask was purged with nitrogen and the reaction mixture was allowed to stir at ambient temperature for 3 h until TLC showed complete consumption of starting material. The mixture was concentrated and then eluted through a plug of silica (hexanes-ethyl acetate, $4: 1$). The crude aldehyde was purified via flash column chromatography $(\mathrm{Rf}=0.34$, hexanes-ethyl acetate, $9: 1)$ to give quinone aldehyde 44 as a yellow oil ($19.1 \mathrm{mg}, 0.066 \mathrm{mmol}$, 64%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.98$ (quin, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79-2.77 (m, 1H), 2.48-2.44 (m, 1H), 2.34-2.32 (m, 2H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.32,188.59,183.07,155.59,146.69,143.42,128.63,60.80,49.85,35.36,31.69,26.34$, 25.80, 20.90, 18.56, 18.14, 8.83.

Supporting Information

A 25 mL 3-necked flask equipped with a magnetic stirring bar, stoppers, and a nitrogen inlet was flamedried and purged with nitrogen. The flask was charged with β-methylallyltriphenylphosphonium chloride ($33 \mathrm{mg}, 0.094 \mathrm{mmol}, 1.5$ equiv.) and anhydrous THF (2.0 mL) . $1.6 \mathrm{M} \mathrm{n}-\mathrm{BuLi}(47 \mu \mathrm{~L}, 0.075 \mathrm{mmol}, 1.2$ equiv.) was added dropwise via syringe and the reaction mixture was allowed to stir at ambient temperature for 1 h . A solution of $\mathbf{3 6 d}(20 \mathrm{mg}, 0.062 \mathrm{mmol})$ dissolved in anhydrous THF was added and the reaction mixture was allowed to stir at ambient temperature for 3 h . The reaction mixture was concentrated and dissolved in a minimal amount of DCM and purified via flash column chromatography $\left(\mathrm{R}_{f}=0.44\right.$, pentane-ether, 20:1) to yield colorless oil 44a as a mixture of E - and Z-isomers ($14 \mathrm{mg}, 0.040$ $\mathrm{mmol}, 64 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.69-$ $5.64(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.72(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{bs}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.172(\mathrm{~s}, 3 \mathrm{H}), 2.167(\mathrm{~s}, 3 \mathrm{H}), 2.14-$ $1.93(\mathrm{~m}, 6 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}$, $6 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.80(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.77(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2$, $153.1,149.80,149.77,147.3,142.5,142.3,135.04,134.97,133.7,132.0,131.14,131.10,128.74,128.68$, $122.5,115.3,114.1,60.7,60.36,60.34,60.11,60.08,39.3,39.0,38.6,35.8,35.5,34.5,27.2,26.7,26.6$, $23.6,23.45,23.39,19.0,18.8,18.5,18.4,9.62,9.60 .[\alpha]_{D}{ }^{20}-31.60\left(c 0.500, \mathrm{CHCl}_{3}\right)$; IR (neat) 2955, 2932, 2867, 1455, 1403, 1326, 1299, 1248, 1102, 1073, 1026, 1010, $967 \mathrm{~cm}^{-1}$. HRMS (ESI); m/z $381.2398([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}, 381.2400$.

In a glovebox, a 1 dram vial was charged with aldehyde $\mathbf{3 6 d}(30 \mathrm{mg}, 0.0936 \mathrm{mmol})$ dissolved in deuterated chloroform (1.0 mL). Trimethylsilyl iodide ($40 \mu \mathrm{~L}, 0.281 \mathrm{mmol}, 3.0$ equiv.) was added and the reaction mixture was transferred to an NMR tube via pipette and sealed from the outside environment. Upon completion of the reaction (as judged by NMR analysis after 1.5 h), the whole was poured into $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated. Purification by flash column chromatography $\left(\mathrm{R}_{f}=0.26\right.$, hexanes-ethyl acetate, 4:1) furnished 46b ($12.9 \mathrm{mg}, 0.0421 \mathrm{mmol}, 45 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67-5.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.74,147.50,145.19,132.71,127.62,123.02,93.72,60.38,59.92,37.47,37.42,31.47,27.38$, 25.65, 21.23, 20.57, 19.46, 10.33. $[\alpha]_{\mathrm{D}}{ }^{20}+3.6\left(c 0.15, \mathrm{CHCl}_{3}\right) ;$ HRMS (ESI); $m / z 329.1719([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}, 329.1723$.

The structure of this hemiacatal (46b) was further confirmed by its conversion to the quinone-

Supporting Information

aldehyde 44, which was synthesized independently from the corresponding alcohol 43b (Scheme below and Scheme 12 A in the paper).

A 10 mL single necked flask charged with compound $\mathbf{4 6 b}$ ($10 \mathrm{mg}, 0.0326 \mathrm{mmol}$) was equipped with a magnetic stirring bar and nitrogen inlet. The lactol $\mathbf{4 6 b}$ was dissolved in DCM (2 mL) and DMP ($20.8 \mathrm{mg}, 0.0489 \mathrm{mmol}, 1.5$ equiv.) and drop of $\mathrm{H}_{2} \mathrm{O}$ were added in sequence at $0{ }^{\circ} \mathrm{C}$. The flask was purged with nitrogen and the reaction mixture was allowed to stir at ambient temperature for 2 h until TLC showed complete consumption of starting material. The mixture was concentrated and then eluted through a plug of silica (hexanesethyl acetate, $4: 1$). The crude product was purified via flash column chromatography ($\mathrm{R}_{f}=$ 0.34 , hexanes-ethyl acetate, $9: 1$) and it was identified as compound $\mathbf{4 4}$ by comparison with spectra prepared by an alternate route (Scheme 12A).

J. Experimental Data of Scheme 13

Experimental procedures, $1 \mathrm{H}, 13 \mathrm{C}$ spectra and Gas Chromatogram data of compound 27, 46, 47, 48, 50, 51 and 52 were reported in our previous communication. ${ }^{2}$

K. Experimental Data of Scheme 15

52
A 50 mL three-necked flask equipped with magnetic stirring bar, stopper, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin $51(231.8 \mathrm{mg}, 0.85 \mathrm{mmol})$ dissolved in anhydrous THF (20 mL). 9-BBN dimer ($519.1 \mathrm{mg}, 2.13 \mathrm{mmol}, 2.5$ equiv.) was added in small portions and the reaction mixture was allowed to stir at room temperature for 2 h . The vessel was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath and $4 \mathrm{M} \mathrm{NaOH}(2.0 \mathrm{~mL})$ was added dropwise, maintaining the internal temperature of the vessel below $10{ }^{\circ} \mathrm{C}$. A solution of $\sim 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{~mL})$ was then added dropwise, maintaining the internal temperature of the vessel below $10^{\circ} \mathrm{C}$. The vessel was allowed to warm to room temperature and stir for an additional 0.5 h . The vessel was then diluted with ether (10 mL) and neutralized with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ until $\mathrm{pH} \sim 7$ was achieved. The whole was poured into water (15 mL) and

Supporting Information

extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}, and concentrated to give crude 52 which was purified via flash column chromatography ($\mathrm{R}_{f}=0.42$, hexanesethyl acetate, 2:1) to yield $\mathbf{5 2}$ as a colorless oil ($245.3 \mathrm{mg}, 0.85 \mathrm{mmol},>99 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.27$ (quintet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.95($ sextet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=6.8,16.8 \mathrm{~Hz}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, 1 \mathrm{H}$, $J_{l, 2}=6.8,10.0 \mathrm{~Hz}$), 1.87 (sextet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 1.66 (sextet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.22(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.05(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3,149.7,139.9,133.7,130.0,129.0,120.5$, $119.3,61.4,60.8,60.0,39.8,30.3,25.2,22.8,20.4,19.9,16.2 .[\alpha]_{D}{ }^{20}-30.4\left(c 0.63, \mathrm{CHCl}_{3}\right)$. HRMS $(\mathrm{ESI}) ; m / z 313.1780([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 313.1780$.

An oven dried 50 mL three necked flask was equipped with a magnetic stirring bar, septum, stopper, and an oven dried cold finger with an attached balloon. The flask was charged with alcohol $52(187.8 \mathrm{mg}$, 0.65 mmol) dissolved in a minimal amount of THF (1 mL). The vessel was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath and ammonia (passed through a drying tube of barium oxide) was condensed into the vessel (ca. 20 mL). Lithium metal (40% dispersion in mineral oil) ($168 \mathrm{mg}, 9.69 \mathrm{mmol}, 15$ equiv.) was added, resulting in the formation of a blue solution, which was stirred for an additional 15 min . at $-78{ }^{\circ} \mathrm{C}$. The reaction was slowly quenched with methanol $(10 \mathrm{~mL})$ resulting in a cloudy white mixture. Water (10 mL) was slowly added to the reaction mixture and the whole was poured into a separatory funnel and extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}, and concentrated to give crude $\mathbf{5 3}-\left(\mathbf{C}_{4} \mathbf{-} \boldsymbol{R}\right)$ which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.24\right.$, hexanes-ethyl acetate, 3:1) to yield $\mathbf{5 3 - (\mathbf { C } _ { 4 } - \mathbf { R }}$ as a colorless oil $(188.3 \mathrm{mg}, 0.64 \mathrm{mmol},>99 \%)$. Note: ammonia:THF ratio is critical to diastereoselectivity of the reduction. A high ammonia:THF ratio and large excess of lithium gives the best selectivities ($>95 \%$ de determined by GC). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.16$ (quintet, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $2.62(\mathrm{q}$, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $2.22(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (quintet, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}$), 1.89-1.19 (m, 2H), 1.76-1.65 (m, 2H), 1.64$1.48(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.76(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7$, $149.2,135.2,135.1,128.9,125.8,61.8,60.6,60.0,40.4,38.8,35.6,28.1,27.5,22.5,18.9,16.5,16.0$. $[\alpha]_{\mathrm{D}}{ }^{20}+2.51\left(c 2.11, \mathrm{CHCl}_{3}\right)$, IR (neat) $3360,1614,1236,1014 \mathrm{~cm}^{-1} . \quad$ HRMS (ESI); $m / z 315.1910([\mathrm{M}+$ $\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}, 315.1936$.

$53-\mathrm{C}_{4}(S)$
A vial containing $\sim 0.5 \mathrm{mg}$ sample of alcohol 52 was treated with a stir bar, $30 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}$ and $\mathrm{MeOH}(1$

Supporting Information

$\mathrm{mL})$. A stream of H_{2} was introduced and the vial capped. The reaction was allowed to stir overnight, then was poured into water and extracted with ether. The organic extracts were combined, dried (MgSO 4$)$ and concentrated in vacuo to afford the title compound with its C_{4} epimer in a 97:3 ratio (1 H NMR). Rf 0.30 (30:70 EtOAc:Hexanes); 1H NMR (500 MHz, CDCl3) $\delta \mathrm{H} 6.84$ (s, 1H), 3.88 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $1.72-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J 7 \mathrm{~Hz}), 1.09(\mathrm{~d}$, $3 \mathrm{H}, J 7 \mathrm{~Hz}$).

L. Experimental Data of Scheme 16

A two-necked 15 mL round bottomed flask equipped with magnetic stir bar, gas inlet and glass stopper was flame-dried, purged with nitrogen and charged with a solution of alcohol $53(100 \mathrm{mg}, 0.342 \mathrm{mmol}$, 92:8 at C_{11} and $\sim 85: 15$ at C_{4}) in dry THF (3.0 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with triphenylphosphine ($91 \mathrm{mg}, 0.345 \mathrm{mmol}$), imidazole ($47 \mathrm{mg}, 0.684 \mathrm{mmol}$), and iodine chips ($88 \mathrm{mg}, 0.345$ $\mathrm{mmol})$. The reaction was warmed to rt and stirred for 1.5 h . The whole was transferred to a dry flask and the solvent removed in vacuo. Dry DMSO (2.0 mL) was added to the crude iodide, followed by solid $\mathrm{NaCN}(34 \mathrm{mg}, 0.68 \mathrm{mmol})$ and a magnetic stir bar. The reaction was heated to $60^{\circ} \mathrm{C}$ and stirred for 1.5 h , then poured into water and extracted with ether. The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to an oil. Purification via column chromatography (13:87 EtOAc:Hexanes) afforded nitrile 54 as an oil.

A three-necked 25 mL round bottomed flask equipped with magnetic stir bar, gas inlet, rubber septum, and thermometer adapter was flame-dried, purged with nitrogen and charged with a solution of nitrile $54\left(59 \mathrm{mg}, 0.196 \mathrm{mmol}, 92: 8\right.$ at C_{11} and $\sim 85: 15$ at $\left.\mathrm{C}_{10}\right)$ in dry THF (2.0 mL). The solution was cooled to $-76{ }^{\circ} \mathrm{C}$ and treated with DIBAL-H ($0.49 \mathrm{~mL}, 1.0 \mathrm{M}$ in Hexanes). The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 3.5 h , then treated with a satd. solution of $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{HCl}(6: 1,0.4 \mathrm{~mL})$. The whole was warmed to rt and treated with a solution of Rochelle's salt and stirred for 20 min , then poured into water and extracted with ether. The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a clear film.

A 2-necked 15 mL round bottomed flask equipped with magnetic stir bar, gas inlet and glass stopper was flame-dried, purged with nitrogen and charged with solid KHMDS ($78 \mathrm{mg}, 0.392 \mathrm{mmol}$). Dry THF (2.0 mL) was added, followed by isopropyltriphenylphosphonium iodide ($169 \mathrm{mg}, 0.392 \mathrm{mmol}$) in a single portion. The reaction was stirred for 2 h at rt , then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of the aldehyde 55 prepared above in THF $(2.0 \mathrm{~mL})$. The reaction was warmed to rt and stirred overnight for 20.5

Supporting Information

h. The whole was filtered through a fritté funnel and the ether rinsings/filtrate were concentrated in vacuo and the residue purified by column chromatography (isocratic hexanes, then 10:90 EtOAc:Hexanes) to afford alkene 56 as an oil. $\mathrm{R}_{\mathrm{f}} 0.24$ (5:95 EtOAc:Hexanes). The spectral data matched with the literature value. ${ }^{31}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 1 \mathrm{H}$, major diastereomer, $85 \%), 5.01(\mathrm{~m}$, 1 H , minor diastereomer, 15%), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.63(\mathrm{~m}$, $1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.88-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.17$ $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.72(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.

M. Experimental Data of Scheme 17

Experimental procedures, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra and X-ray data of compound $\mathbf{5 7}$ were reported in our previous communication. ${ }^{2}$

A 25 mL three-necked flask equipped with a magnetic stirring bar, septum, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with anhydrous DCM (2.0 mL) and dimethyl sulfoxide $(0.03 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$ via dry ice/acetone bath. A 2.0 M solution of oxalyl chloride $(0.13 \mathrm{~mL})$ was added and allowed to stir for 15 min . A solution of alcohol $53(70.5 \mathrm{mg}$, $0.21 \mathrm{mmol})$ in anhydrous DCM (1.0 mL) was added and allowed to stir for 30 min . Triethylamine (0.13 mL) was added and allowed to stir for 15 min . The vessel was allowed to warm to room temperature and the whole was poured into water $(10 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The organic layers were combined and dried over MgSO_{4}, and concentrated to give the crude aldehyde, which was used for the next reaction without further purification. Flash column chromatography of crude aldehyde led to the formation of a cyclized product. The crude aldehyde was dissolved in THF (1.0 mL) and t-butyl alcohol $(1.0 \mathrm{~mL})$ in a 5 dram vial. A solution of 1.0 M 2,3-dimethyl-2-butene in THF (1.0 mL) was added to the vial followed by a solution of $\mathrm{NaClO}_{2}\left(65.4 \mathrm{mg}, 0.72 \mathrm{mmol}, 3.0\right.$ equiv.) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(86.7 \mathrm{mg}, 0.72$ $\mathrm{mmol}, 3.0$ equiv.) dissolved in deionized water $(1.0 \mathrm{~mL})$. The reaction mixture was allowed to stir for 1 h then the whole was poured into water $(10 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The organic layers were combined and dried over MgSO_{4}, concentrated, and azeotroped with benzene to ensure all water has been removed. A 25 mL three-necked flask equipped with a magnetic stirring bar, septum, thermometer, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with crude acid dissolved in anhydrous DCM (3.0 mL) and cooled to $0{ }^{\circ} \mathrm{C}$ via ice/water bath. A 2.0 M solution of oxalyl chloride in DCM ($0.14 \mathrm{~mL}, 0.29 \mathrm{mmol}, 1.2$ equiv.) was added and the vessel was allowed to warm to room temperature and stir for 1 h . The vessel was re-cooled to $0{ }^{\circ} \mathrm{C}$ and AlCl_{3} ($48.2 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.5$ equiv.) was added and the vessel was allowed to warm to room temperature and stir for 30 min . The vessel was re-cooled to $0{ }^{\circ} \mathrm{C}$ and the reaction was quenched by the slow addition of water $(5 \mathrm{~mL})$. The whole was poured into water and extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined

Supporting Information

and dried over MgSO_{4}, and concentrated to give crude ketone 57 which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.29\right.$, hexanes-ethyl acetate, $\left.9: 1\right)$ to give a mixture of diastereomers as a colorless oily solid. Recrystallization with methanol afforded colorless needles as a single diastereomer of 57 (28.9 $\mathrm{mg}, 0.10 \mathrm{mmol}, 47 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.23$ (sextet, $1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 2.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=3.8,16.4 \mathrm{~Hz}\right), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.13-1.09(\mathrm{~m}, 4 \mathrm{H}$ containing $1.12(\mathrm{~d}, 3 \mathrm{H}, 6.4 \mathrm{~Hz})) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 200.2,155.3,150.3,142.6,133.7,133.2,127.7,60.6,60.2,49.3,43.8,35.6$, $31.3,28.6,27.2,23.7,19.6,14.0 . \quad \mathrm{mp}=101.5-103.5,[\alpha]_{\mathrm{D}}{ }^{20}+59.4\left(c 1.33, \mathrm{CHCl}_{3}\right)$, IR (neat) 1673,1448 , $1254,1071 \mathrm{~cm}^{-1}$. HRMS (ESI); m/z $311.1624([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}$, 311.1623.

N. Experimental Data of Scheme 18

58

Ketone $57(16 \mathrm{mg}, 0.055 \mathrm{mmol})$ was dissolved in ethanol $(1.0 \mathrm{~mL})$ in a 5 dram vial. $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.165$ mmol, 3.0 equiv.) was added to the reaction mixture and was allowed to stir at room temperature for 3.5 h . The whole was poured into water and extracted with ether (3 x 10 mL). The organic layers were combined and dried over MgSO_{4}, and concentrated to give the crude alcohol, which was used in the subsequent reaction without further purification. The crude alcohol was dissolved in anhydrous DCM $(1.0 \mathrm{~mL})$ in an oven-dried 5 dram vial. Camphorsulfonic acid ($3.0 \mathrm{mg}, 0.011 \mathrm{mmol}, 0.20$ equiv.) was added and the reaction was allowed to stir at room temperature for 45 min . The whole was poured into water and extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were dried over MgSO_{4}, and concentrated to give crude vinylarene 58 which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.36\right.$, hexanes-ethyl acetate, 19:1) to give 58 as a colorless oil ($15 \mathrm{mg}, 0.055 \mathrm{mmol},>99 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.56\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=2.8,9.6 \mathrm{~Hz}\right), 5.75\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=2.0,9.6 \mathrm{~Hz}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (sextet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.31-2.23(\mathrm{~m}, 4 \mathrm{H}$ containing $2.23(\mathrm{~s}, 3 \mathrm{H})$), 2.14-2.02 (m, 3 H$), 1.39-1.26(\mathrm{~m}, 5 \mathrm{H}$ containing $1.27(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $1.19(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8$, $149.7,134.6,133.5,132.3,128.3,125.2,123.9,60.4,60.3,41.2,34.7,31.8,29.4,26.5,22.6,19.8,11.4$. $[\alpha]_{\mathrm{D}}{ }^{20}+25.9\left(c \quad 0.92, \mathrm{CHCl}_{3}\right)$. HRMS (ESI); m/z $295.1692([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$, 295.1674. GC (poly(dimethylsiloxane), $200{ }^{\circ} \mathrm{C}$ isotherm) : $t_{\mathrm{R}}=28.44\left(\mathrm{C}_{11}: S, \mathrm{C}_{4}: R, \mathrm{C}_{1}: S\right.$) \min.

59

Supporting Information

General procedure of $\mathrm{Ni}(\mathrm{II})$-catalyzed hydrovinylation was followed. ($99 \%,>99 \%$ de as determined by NMR using complex of L1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76$ (ddd, $1 \mathrm{H}, J_{l, 2,3}=7.5,10.0,17.5 \mathrm{~Hz}$), 4.95-4.91 (m, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{q}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.20($ sextet, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.16$ $(\mathrm{s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 5 \mathrm{H}$ containing $1.26(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})), 1.06$ $(\mathrm{d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,144.0(2 \times \mathrm{C}), 135.6,133.4,132.7,128.5,112.9$, $60.4,60.1,43.2,42.0,40.5,34.4,31.2,28.7,27.0,24.0,20.5,12.8 .[\alpha]_{\mathrm{D}}{ }^{20}+29.3\left(c 0.75, \mathrm{CHCl}_{3}\right)$. HRMS (ESI); m/z 323.1977 ([M + Na]); exact mass calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}$, 323.1987. GC (poly(dimethylsiloxane), $200^{\circ} \mathrm{C}$ isotherm): $t_{\mathrm{R}}=31.21\left(\mathrm{C}_{13}: S, \mathrm{C}_{11}: S, \mathrm{C}_{4}: R, \mathrm{C}_{1}: S\right)$ min.

60

A 25 mL three-necked flask equipped with a magnetic stirring bar, stoppers, and a reflux condenser fitted with a nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with olefin 59 (17 $\mathrm{mg}, 0.055 \mathrm{mmol}$) and 2-methyl-2-butene (5.0 mL). Grubb's $2^{\text {nd }}$ generation catalyst ($5 \mathrm{mg}, 0.005 \mathrm{mmol}$, 10.0%) was added and the reaction mixture was heated to reflux in an oil bath $\left(40^{\circ} \mathrm{C}\right)$. The reaction was allowed to stir for 6 h before cooling to ambient temperature. The whole was concentrated and eluted through a plug of silica $\left(\mathrm{R}_{f}=0.33\right.$, hexanes-ethyl acetate, 19:1) to give $\mathbf{6 0}(14 \mathrm{mg}, 0.045 \mathrm{mmol}, 81 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.37-5.34 (m, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.15(\mathrm{~m}$, $1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, 3 \mathrm{H}, J=4.1 \mathrm{~Hz}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.38-$ $1.30(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.24\left(\mathrm{~m}, 4 \mathrm{H}\right.$, containing $1.26(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.5,149.4,136.8,135.5,133.6,133.3,128.5,123.5,60.4,60.1,43.3,41.0,40.9$, $34.5,31.2,28.7,27.0,24.0,20.5,18.0,12.8$.

S7
Olefin $59(22.2 \mathrm{mg}, 0.074 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{DCM}(2.0 \mathrm{~mL})$ in a 5 dram vial. The vessel was cooled to $-78{ }^{\circ} \mathrm{C}$ via acetone/dry ice bath and ozone was introduced via bubbling through a glass pipette until a persistent blue color was observed throughout the solution. The flow of ozone was stopped and nitrogen was bubbled through the solution until the blue color was no longer observed. Dimethyl

Supporting Information

sulfide ($0.1 \mathrm{~mL}, 1.48 \mathrm{mmol}, 20.0$ equiv.) was added and the reaction mixture was allowed to warm to room temperature. The whole was poured into water $(10 \mathrm{~mL})$ and extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}, and concentrated to give the crude aldehyde, which was eluted through a small plug of neutral alumina (pentane-ether, 19:1) to yield aldehyde $\mathbf{S 7}$ (17.1 mg , $0.565 \mathrm{mmol}, 76 \%$). Note: Elution on a silica gel column resulted in significant loss of product most likely due to aldol-type processes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.33(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 3.86-3.76 (m, 5H containing $3.79(\mathrm{~s}, 3 \mathrm{H})$), $3.22($ sextet, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 2.16-2.04 ($\mathrm{m}, 6 \mathrm{H}$ containing 2.10 $(\mathrm{s}, 3 \mathrm{H})), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 201.3,150.8,149.8,136.3,134.4,128.8,125.3,60.4,60.2,51.4,43.3,33.4$, 32.0, 31.0, 28.5, 27.0, 24.0, 20.2, 12.8. $[\alpha]_{\mathrm{D}}{ }^{20}+5.0\left(c 0.25, \mathrm{CHCl}_{3}\right) . \quad$ HRMS (ESI); $m / z 325.1761([\mathrm{M}+$ $\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 325.1774$.

A 25 mL three-necked flask equipped with a magnetic stirring bar, septum, stopper, and nitrogen inlet was flame-dried and purged with nitrogen. The flask was charged with KHMDS $(8.8 \mathrm{mg}, 0.044 \mathrm{mmol}, 1.1$ equiv.) dissolved in anhydrous THF (1.0 mL). Isopropyltriphenylphosphonium bromide ($23.3 \mathrm{mg}, 0.060$ mmol, 1.5 equiv.) was added and the reaction mixture was allowed to stir at room temperature for 2 h . The reaction mixture was transferred dropwise to a vessel containing aldehyde $\mathbf{S} 7(12.2 \mathrm{mg}, 0.040 \mathrm{mmol})$ dissolved in anhydrous THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ via cannula. The reaction mixture was allowed to stir at 0 ${ }^{\circ} \mathrm{C}$ for 30 min . then allowed to warm to room temperature and stir for an additional 2 h . The reaction mixture was poured into water $(10 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The organic layers were combined and dried over MgSO_{4}, and concentrated to give the crude olefin which was purified via flash column chromatography $\left(\mathrm{R}_{f}=0.32\right.$, hexanes-ethyl acetate, 19:1) to give $\mathbf{9 b}(10.0 \mathrm{mg}, 0.030 \mathrm{mmol}, 75 \%$, $73 \% \mathrm{de})$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.97(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.69(\mathrm{q}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.22($ sextet, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.12-2.03(\mathrm{~m}, 6 \mathrm{H}$ containing $2.07(\mathrm{~s}, 3 \mathrm{H})$), 1.98-1.93 (m, 1H), $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 5 \mathrm{H}$ containing $1.24(\mathrm{~d}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz})$), $1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6,149.3,135.5,134.2,133.3$, $131.1,128.8,128.6,60.4,60.1,44.2,40.3,37.5,34.3,31.5,28.5,27.8,25.6,24.6,20.3,17.8,12.3 . \quad[\alpha]_{\mathrm{D}}{ }^{20}$ $+29.0\left(c 0.55, \mathrm{CHCl}_{3}\right)$. HRMS (ESI); m/z $351.2302([\mathrm{M}+\mathrm{Na}])$; exact mass calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}$, 351.2295.

63
2-Methyl-1-tri-n-butylstannylpropene (63): A 3-necked 25 mL round bottomed flask equipped with magnetic stir bar, gas inlet, thermometer adapter and rubber septum was flame-dried, purged with nitrogen, and charged with dry tetrahydrofuran $(6.5 \mathrm{~mL})$ which was cooled internally to $-78^{\circ} \mathrm{C}$. t - $\mathrm{BuLi}(2.3 \mathrm{~mL}, 3.9$

Supporting Information

mmol, 1.7 M in pentane) was added via syringe, followed by isocrotyl bromide ($0.20 \mathrm{~mL}, 1.95 \mathrm{mmol}$) over a temperature range of $-78{ }^{\circ} \mathrm{C} \rightarrow-55^{\circ} \mathrm{C}$, then was allowed to recool to $-78^{\circ} \mathrm{C}$. Tributyltin iodide $(0.56 \mathrm{~mL}$, 1.95 mmol) was added neat via syringe, keeping the temperature below $-65^{\circ} \mathrm{C}$ and forming a yellow milky color. The cooling bath was removed and the reaction warmed to rt , stirring for 23 h . The mixture was poured into water, washed with saturated KF, and extracted with ether. The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to an oil as stannane 63 , which was of sufficient purity to not warrant any further isolation techniques: $679.8 \mathrm{mg}, 1.97 \mathrm{mmol}, c a .100 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.43(\mathrm{~s}, 1 \mathrm{H})$, $1.90(\mathrm{~d}, 3 \mathrm{H}, J 1.2 \mathrm{~Hz}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 15 \mathrm{H})$.

A three-necked 25 mL round bottomed flask equipped with magnetic stir bar, gas inlet, rubber septum, and glass stopper was flame-dried, purged with nitrogen, and charged with solid potassium hexamethyldisilazide ($19.3 \mathrm{mg}, 0.097 \mathrm{mmol}$). Dry tetrahydrofuran $(1.0 \mathrm{~mL})$ was added via syringe, and the clear colorless solution was stirred at rt while being treated dropwise with a solution of enantiopure ketone $57(19.9 \mathrm{mg}, 0.069 \mathrm{mmol})$ in THF (1.0 mL plus 1.0 mL rinse), forming a red clear solution that was stirred for one hour. Solid N-phenylbis(triflouromethanesulfonimide) $(25.9 \mathrm{mg}, 0.073 \mathrm{mmol})$ was added under a stream of nitrogen in a single portion, causing the solution to gradually become a clear pale yellow. The reaction was stirred for one hour. Lithium chloride $(5.8 \mathrm{mg}, 0.138 \mathrm{mmol})$, triphenylarsine $(2.1 \mathrm{mg}, 10$ $\mathrm{mol} \%$), and $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(3.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) were added in sequence, followed by a solution of stannane 63 ($39 \mathrm{mg}, 0.113 \mathrm{mmol}$) in THF (0.5 mL plus 0.5 mL rinse). The reaction was monitored by GC (fused silica, $170^{\circ} \mathrm{C}$ for one minute, then $5^{\circ} \mathrm{C}$ per minute to $250^{\circ} \mathrm{C}$; t_{R} triflate $=16.125, \mathrm{t}_{\mathrm{R}} 1,3$-diene $=17.906$) and judged complete after 6.5 h at rt . The whole was treated with saturated NaF and stirred for 5 minutes, then extracted with ether. The organic extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to a brown oil, which was purified by prep TLC (97.5:2.5 petroleum ether [30-60 ${ }^{\circ} \mathrm{C}$ fraction]:diethyl ether) to afford clean 1,3-diene 62: $16.6 \mathrm{mg}, 0.051 \mathrm{mmol}, 74 \%$ from ketone $57 . \mathrm{R}_{\mathrm{f}} 0.31$ (2.5:97.5 ether:petroleum ether $\left[30-60{ }^{\circ} \mathrm{C}\right.$ fraction $\left.]\right) ;[\alpha]_{\mathrm{D}}\left(c 1.107,+222.8, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 274 \mathrm{~nm}(\varepsilon$ 1543); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.05(\mathrm{~m}$, $1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.28$ $(\mathrm{d}, 3 \mathrm{H}, J 7 \mathrm{~Hz}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J 7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 150.59,149.88,135.83$, $135.43,135.11,132.62,131.89,131.37,127.43,126.68,60.03,59.82,43.06,34.32,32.17,29.68,26.33$, 26.01, 23.20, 19.53, 18.80, 14.06; IR (neat) $1560,1458,1260,1072 \mathrm{~cm}^{-1}$.

Supporting Information

An oven-dried three-necked 25 mL round bottomed flask was equipped (under air) with a dry magnetic stir bar, oven-dried cold finger with gas inlet, a glass stopper, and a drying tube packed with barium oxide. A solution of diene $62(16.1 \mathrm{mg}, 0.049 \mathrm{mmol})$ in dry THF (1.0 mL plus 1.0 mL rinse) was added via pipette, and ammonia (ca. 10 mL , passed through a drying tube packed with barium oxide) was condensed into the vessel. Lithium metal (40% dispersion in mineral oil, ca. 10 -fold excess) was added, forming a blue solution which was stirred for 15 minutes, then was slowly quenched with methanol until a white cloudy mixture formed. The cooling bath was removed and the mixture poured into a large beaker containing dry ether cooled by an ice bath. Excess methanol was added, and the mixture was swirled with addition of a few drops of water (CAUTION!). More water was added until all the excess lithium had been killed, leaving behind a clear colorless solution, which was poured into a separatory funnel and extracted from water with ether. The organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to a white oily mix, which was filtered through a column of silica gel eluting with isocratic hexane to remove the mineral oil, then with $95: 5$ hexane:ether to afford a mixture of semipure $\mathbf{8 b}$ and $\mathbf{9 b}$. Purification by prep TLC (97.5:2.5 petroleum ether [$\left.30-60^{\circ} \mathrm{C}\right]$:diethyl ether) afforded $\mathbf{8 b}$ and $\mathbf{9 b}$ as a $1: 2$ mixture of $R: S$ epimers at the newly created C_{13} stereogenic center: $12.7 \mathrm{mg}, 0.039 \mathrm{mmol}, 80 \% \mathrm{R}_{\mathrm{f}} 0.23$ (97.5:2.5 petroleum ether [30-60 ${ }^{\circ} \mathrm{C}$]:diethyl ether); Diagnostic ${ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.97$ (d, 1H, J 9.2 Hz); IR (neat) $1560,1541,1462,1438,1260,1073 \mathrm{~cm}^{-1} ;[\mathrm{M}+\mathrm{Na}]$ calc. 351.2300 meas. 351.2293.

Pseudopterosin G-J \& A-F aglycones (9a and 8a) ${ }^{4}$ A three-necked 25 mL round bottomed flask equipped with magnetic stir bar, reflux condenser with gas inlet, rubber septum and thermometer adapter was flame-dried, purged with nitrogen and charged with sodium hydride $(8.6 \mathrm{mg}, 0.216 \mathrm{mmol}, 60 \%$ in mineral oil). Dry dimethylformamide (1.0 mL) was added, and the grey slurry was stirred at rt . Dropwise treatment with ethanethiol $(0.02 \mathrm{~mL}, 0.27 \mathrm{mmol})$ afforded a clear, colorless solution of sodium thiolate. A solution of dimethyl ethers $\mathbf{8 b}$ and $\mathbf{9 b}(1: 2,7.9 \mathrm{mg}, 0.024 \mathrm{mmol}$, prepared via lithium reduction of diene

Supporting Information

62) in DMF (2.0 mL) was added via syringe, and the reaction was heated to $150^{\circ} \mathrm{C}$ for 2 h , then cooled to rt. Water was added to quench the excess thiolate, and the whole was poured into water and extracted with ether. The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to an oil containing significant amounts of DMF. The excess DMF was removed via high-vacuum, and the residual film was purified by prep TLC (17:83 EtOAc:Hexanes) to afford the known title compounds as a $2: 1 S: R$ mixture of C_{13} epimers: $4.3 \mathrm{mg}, 0.0144 \mathrm{mmol}, 60 \% \mathrm{R}_{\mathrm{f}} 0.28$ (20:80 EtOAc:Hexanes); Diagnostic ${ }^{1} \mathrm{H} \mathrm{NMR}^{4}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{G}-\mathrm{J}$ Aglycone) $5.05(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J 9.2 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.10$ (m, 1H); (A-F aglycone) $5.10(\mathrm{~d}, 1 \mathrm{H}, J 9.2 \mathrm{~Hz}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.56(\mathrm{br}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}$, 1H). See the attached ${ }^{1} \mathrm{H}$ NMR Spectra.

O. Experimental Data of Scheme 19

69

In a glovebox, a 1 dram vial was charged with compound $\mathbf{3 8}(30.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ dissolved in deuterated chloroform (1.0 mL). Trimethylsilyl iodide ($22.7 \mu \mathrm{~L}, 0.159 \mathrm{mmol}, 2.0$ equiv.) was added slowly to the above reaction mixture. Upon completion of the starting material judged by TLC the whole was poured into $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated. Purification by flash column chromatography ($\mathrm{R}_{f}=0.35$, hexanes-ethyl acetate, $9: 1$) furnished $69(16.2 \mathrm{mg}, 0.051 \mathrm{mmol}, 65 \%)$ as white powder. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.63(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}$, $2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.25$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.40$, $143.54,134.13,130.13,129.69,129.56,126.37,126.06,60.81,43.45,39.51,35.39,30.93,29.89,28.20$, 27.43, 25.66, 22.88, 21.01, 17.63, 11.20. $[\alpha]_{\mathrm{D}}{ }^{20}+27.8\left(c 0.18, \mathrm{CHCl}_{3}\right)$. HRMS (ESI); $m / z 337.2123([\mathrm{M}+$ $\mathrm{Na}]$); exact mass calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}, 337.2138$.

Also see the attached spectra. The structure was confirmed by comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of this compound which was isolated during isolation from natural sources. ${ }^{12 b}$ Further it was converted into $\mathbf{8 b}$, which has been described in the literature. ${ }^{13}$

8b

In a glovebox, a 1 dram vial was charged with compound $69(8 \mathrm{mg}, 0.232 \mathrm{mmol})$ dissolved in DME (1.0

Supporting Information

$\mathrm{mL})$. To the resulting solution was added $\mathrm{CH}_{3} \mathrm{I}\left(26 \mathrm{uL}, 0.4178 \mathrm{mmol}, 1.8\right.$ equiv.) and cooled down to $0{ }^{\circ} \mathrm{C}$ then added $\mathrm{KH}(14 \mathrm{mg}, 0.348 \mathrm{mmol}, 1.5$ equiv.). The progress of the reaction was monitored by TLC, after 30 min TLC shows complete conversion of starting material. Above reaction was quenched using a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, the whole was poured into $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with ether ($3 \times 5 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered, concentrated, and purified by flash column chromatography $\left(\mathrm{R}_{f}=0.50\right.$, hexanes-ethyl acetate, $\left.9: 1\right)$ to give $\mathbf{8 b}(7.5 \mathrm{mg}, 90 \%)$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.13(\mathrm{br} \mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H})$, 3.41-3.35 (m, 1H), 2.21-2.16 (m, 1H), 2.12-2.07 (m, 1H), 2.06 (s, 3H)), 2.04-1.99 (m, 1H), $1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 149.15,148.57,133.97,133.67,133.38,129.92,129.74$, $127.87,60.49,60.0,42.16,39.42,35.7,30.37,29.74,27.67,27.08,25.64,23.44,20.99,17.64,10.82$. $[\alpha]_{\mathrm{D}}{ }^{20}-73.2\left(c \quad 0.08, \mathrm{CHCl}_{3}\right)$; IR (neat) cm^{-1}. HRMS (ESI); m/z 351.2290 ([M +Na$]$); exact mass calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}, 351.2295$.

Supporting Information

3. Additional Discussion

A. Alternative routes to synthesize compound $\mathbf{2 3}$ from aryl iodide

We have investigated several routes to synthesize compound $\mathbf{2 3}$ in higher yields. Directed ortho-metalation and subsequent iodination to synthesize $\mathbf{S 8}$ has been published by Kocienski. ${ }^{5}$ The crude iodide $\mathbf{S 8}$ was subjected to a painstaking Ullmann-type coupling using 5 equivalents of copper cyanide in NMP at $170^{\circ} \mathrm{C}$ to afford nitrile in 86% overall yield. Reduction of the cyano group with DIBAL-H afforded aldehyde in 73% yield. Wittig olefination and column chromatography finally produced clean vinylarene 23, in 45\% overall yield on a 10 gram scale (Scheme S1).

Scheme S1. Synthesis of vinylarene 23 from Kocienski iodide S8

Attempts at cross coupling iodoarene S8 under traditional Stille ${ }^{6}$ (with vinyltributyltin, Eq. S1), Kumada ${ }^{7}$ (vinylmagnesium bromide, Eq. s2), and Heck^{8} (Hermann-Beller palladacycle with ethylene) conditions all suffered from either poor conversion or low yields.

B. Efforts on metathesis reaction to synthesize compound 9b and 60

The ruthenium-catalyzed cross-metathesis reaction was investigated to append the appropriate side chain at C_{13}. Although several reports have disclosed the efficient cross-metathesis of sterically hindered olefins, ${ }^{9}$ intermediate 59 failed to give acceptable results under a variety of conditions with multiple olefin partners (Table S1). Although cross-metathesis with 2-methyl-2-butene proceeded with complete conversion of substrate 59, the product (60) contained the incorrect appendage as a result of the cross-metathesis of the thermodynamically less favorable fragment of the olefin (entry 1). Several attempts were made to generate the more stable product, including modification of the catalyst, increasing the reaction temperature, and employing olefinic partners that could not result in the formation of undesired disubstituted olefin 9b.

Supporting Information

Attempted cross-metathesis conditions with olefin 59

entry $^{\mathrm{a}}$	catalyst	olefin	temp $\left({ }^{\circ} \mathrm{C}\right)$	Conv. $^{\mathrm{b}}$ $(\%)$	$\mathbf{9 b}$	$\mathbf{6 0}$
1	$\mathbf{S 9}$	2-methyl-2-butene	23^{c}	100	0	100
2	$\mathbf{S 9}$	2-methyl-2-butene	36^{d}	100	0	100
3	$\mathbf{S 9}$	2-methyl-2-butene	60^{e}	100	0	100
4	$\mathbf{S 1 0}$	2-methyl-2-butene	23^{c}	100	0	100
5	$\mathbf{S 1 0}$	2-methyl-2-butene	36^{d}	100	0	100
6	$\mathbf{S 1 0}$	2-methyl-2-butene	60^{e}	100	0	100
7	$\mathbf{S 9}$	2-methylpropene	23^{c}	0	0	-
8	$\mathbf{S 9}$	2-methylpropene	60^{e}	0	0	-
9	$\mathbf{S 9}$	2-methylpropene	23^{c}	0	0	-
10	$\mathbf{S 1 0}$	2-methylpropene	60^{e}	0	0	-
11	$\mathbf{S 9}$	2,3-dimethyl-2-butene	23^{c}	0	0	-
12	$\mathbf{S 9}$	2,3-dimethyl-2-butene	73^{d}	0	0	-
13	$\mathbf{S 9}$	2,3-dimethyl-2-butene	85^{e}	<10	n.d. ${ }^{\mathrm{f}}$	-
14	$\mathbf{S 1 0}$	2,3-dimethyl-2-butene	23^{c}	0	0	-
15	$\mathbf{S 1 0}$	2,3-dimethyl-2-butene	73^{d}	10	n.d. ${ }^{\mathrm{f}}$	-
16	$\mathbf{S 1 0}$	2,3-dimethyl-2-butene	85^{e}	100	n.d. ${ }^{\mathrm{f}}$	-

${ }^{\text {a }}$ Reactions conducted with $10 \mathrm{~mol} \%$ catalyst and the olefin as the solvent at the given temperature. Conversion determined by GC analysis. ${ }^{\text {c }}$ Reaction conducted at room temperature. ${ }^{d}$ Reaction conducted in refluxing solvent. ${ }^{\mathrm{e}}$ Reaction conducted above the boiling point of solvent in a sealed tube. ${ }^{\mathrm{f}}$ Complex mixture as a result of decomposition.

4. Comparison of NMR spectra with known literature values

A. Comparison of spectra of compound $36 e$ with literature ${ }^{10}$

(See attached spectra)

Supporting Information

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Davies $(400 \mathrm{MHz})$	Present Work $(500$ MHz) ${ }^{\mathrm{a}}$	Davies $(75$ MHz $)$	Present Work $(125 \mathrm{MHz})^{b}$
$5.80(\mathrm{~m}, 1 \mathrm{H})$	$5.83-5.76(\mathrm{~m}, 1 \mathrm{H})$	153.0	153.0
$5.02-4.95(\mathrm{~m}, 2 \mathrm{H})$	$5.01-4.95(\mathrm{~m}, 2 \mathrm{H})$	149.5	149.5
$3.85(\mathrm{~s}, 3 \mathrm{H})$	$3.85(\mathrm{~s}, 3 \mathrm{H})$	147.0	147.0
$3.80(\mathrm{~s}, 3 \mathrm{H})$	$3.80(\mathrm{~s}, 3 \mathrm{H})$	138.9	138.9
$3.63(\mathrm{~s}, 3 \mathrm{H})$	$3.63(\mathrm{~s}, 3 \mathrm{H})$	134.8	134.8
$3.16(\mathrm{~m}, 1 \mathrm{H})$	$3.19-3.15(\mathrm{~m}, 1 \mathrm{H})$	128.5	128.5
$2.86(\mathrm{~m}, 1 \mathrm{H})$	$2.88-2.85(\mathrm{~m}, 1 \mathrm{H})$	122.2	122.2
$2.17(\mathrm{~s}, 3 \mathrm{H})$	$2.17(\mathrm{~s}, 3 \mathrm{H})$	114.9	115.0
$2.10-1.92(\mathrm{~m}, 4 \mathrm{H})$	$2.11-1.92(\mathrm{~m}, 4 \mathrm{H})$	60.5	60.5
$1.80-1.75(\mathrm{~m}, 2 \mathrm{H})$	$1.80-1.75(\mathrm{~m}, 2 \mathrm{H})$	60.1	60.2
$1.49-1.45(\mathrm{~m}, 1 \mathrm{H})$	$1.49-1.45(\mathrm{~m}, 1 \mathrm{H})$	59.9	59.9
$1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$	$1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$	40.0	40.0
$0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$	$0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$	37.8	37.8
		35.2	35.2
		27.0	27.0
		26.5	26.5
		23.2	23.2
		18.6	18.5

${ }^{\text {a }}$ Spectrum calibrated to the chloroform peak (7.26 ppm). ${ }^{\mathrm{b}}$ Spectrum recalibrated to the chloroform peak (77.0 ppm).

Supporting Information

B. Comparison of spectra of compound 43a with literature ${ }^{11}$

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Mulzer (400 MHz)	Present work (400 MHz$)^{\text {a }}$	Mulzer (100 MHz)	Present work $(100 \mathrm{MHz})^{\mathrm{b}}$
4.00 (s, 3H)	4.0 (s, 3H)	189.1	189.1
3.85 (m, 1H)	3.87-3.79 (m, 1H)	183.0	183.0
3.70 (m, 1H)	3.71-3.67 (m, 1H)	155.6	155.6
3.00 (quin, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$)	3.00 (quin, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$)	146.5	146.5
2.86 (bs, 1H)	2.87-2.85 (m, 1H)	144.1	144.1
	2.34 (bs, 1H)	128.8	128.8
2.01 (qd, $J=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H})$	2.04-1.96 (m, 1H)	60.9	60.8
1.93 (s, 3H)	1.92 (s, 3H)	60.7	60.7
1.72 (m, 4H)	1.85-1.62 (m, 3H)	37.9	37.9
1.56 (m, 2H)	1.55-1.53 (m, 2H)	33.0	33.0
1.49 (m, 1H)	1.51-1.46 (m, 1H)	32.8	32.8
1.07 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H})$	1.07 (d, J = $7 \mathrm{~Hz}, 3 \mathrm{H}$)	26.2	26.2
$0.84(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$	0.83 (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H})$	26.0	26.0
		21.0	20.9
		17.7	17.6
		17.2	17.2
		8.9	8.8

[^0]
Supporting Information

C. Comparison of spectra of compound 69 with literature ${ }^{12}$

69 (From biomimetic route, Scheme 20. Also See attached spectra)

[^1]
Supporting Information

D. Comparison of spectra of compound $8 \mathrm{a}, \mathbf{8 b}$ and 9 a with literature ${ }^{4,13}$

8b pseudopterosin A-F dimethyl ether (see attached spectra)

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Kocieñski ${ }^{13}$ (500 MHz)	Present work (600 MHz ${ }^{\text {a }}$	Kocieñski ${ }^{13}$ (75 MHz)	Present work $(100 \mathrm{MHz})^{\mathrm{b}}$
5.13 (dhept, $J=9.0,1.5,1 \mathrm{H}$)	5.13 (br d, J = 9.0 Hz, 1H)	149.2	149.15
3.84 (s, 3H)	3.85 (s, 3H)	148.7	148.57
3.78 (s, 3H)	3.78 (s, 3H)	134.1	133.97
3.59 (ddd, $J=9.4,4.5,2.4 \mathrm{~Hz}, 1 \mathrm{H})$	3.60-3.57 (m, 1H)	133.9	133.67
3.43-3.34 (m, 1H)	3.41-3.35 (m, 1H)	133.6	133.38
2.18 (ddt, $J=12.7,7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H})$	2.21-2.16 (m, 1H)	130.2	129.92
2.13-2.06 (m, 1H)	2.12-2.07 (m, 1H)	129.8	129.74
2.06 (s, 3H)	2.06 (s, 3H))	128.1	127.87
2.02 (dddd, $J=13.6,8.4,7.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$	2.04-1.99 (m, 1H)	60.7	60.49
1.75 (d, J = $1.5 \mathrm{~Hz}, 3 \mathrm{H})$	1.75 (s, 3H)	60.2	60.00
1.68 (d, J = $1.5 \mathrm{~Hz}, 3 \mathrm{H}$)	1.68 (s, 3H)	42.3	42.16
1.67-1.60, 2H)	1.67-1.58 (m, 3H)	39.5	39.42
1.60-1.49 (m, 2H)	1.54-1.50 (m, 1H)	35.8	35.70
1.21 (d, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$)	1.21 (d, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H})$	30.5	30.37
1.17-1.08 (m, 1H)	1.16-1.09 (m, 1H)	29.9	29.74
1.04 (d, J = 6.2 Hz, 3H)	1.04 (d, J = 6.2 Hz, 3H)	27.8	27.67
		27.2	27.08
		25.9	25.64
		23.7	23.44
		21.2	20.99
		17.9	17.64
		11.0	10.82

[^2]
Supporting Information

(see attached spectra)

G-J Proton	Observed shift and multiplicity	Corey ${ }^{4}$	A-F Proton	Observed shift and multiplicity	Corey ${ }^{4}$
phenolic	5.05, s	5.05, s	phenolic	5.03, s	5.03, br s
vinyl	$4.94, \mathrm{~d}$ $J 9.2 \mathrm{~Hz}$	4.94, br d, $J 9.3 \mathrm{~Hz}$	vinyl	$\begin{gathered} \text { 5.10, d, } \\ J 9.2 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 5.11, \mathrm{dt} \\ J 9.2,1.4 \mathrm{~Hz} \end{gathered}$
phenolic	4.79, s	4.79, s	phenolic	4.82, s	4.82 , br s
	3.73-3.67, m	3.69, m		3.63-3.56, m	3.58 , m
	3.15-3.10, m	3.12, m		3.27-3.20, m	3.22, m

Supporting Information

5. References

1. (a) Smith, C. R.; RajanBabu, T. V. Org. Lett. 2008, 10, 1657-1659. (b) Zhang, A.; RajanBabu, T. V. J. Am. Chem. Soc. 2006, 128, 54-55. (c) Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 2002, 124, 734735. (d) Biswas, S.; Zhang, A.; Raya, B.; RajanBabu, T. V. Adv. Synth. Catal. 2014, 356, 2281-2292.
2. Mans, D. J.; Cox, G. A.; RajanBabu, T. V. J. Am. Chem. Soc. 2011, 133, 5776-5779
3. (a) Geller, T.; Schmalz, H. G.; Bats, J. W. Tetrahedron Lett. 1998, 39, 1537-1540. (b) Geller, T.; Jakupovic, J.; Schmalz, H. G. Tetrahedron Lett. 1998, 39, 1541-1544.
4. (a) Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. Org. Lett. 2000, 2, 2389-2392. (b) Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777-12782.
5. Chow, R.; Kocienski, P. J.; Kuhl, A.; LeBrazidee, J.-V.; Muir, K.; Fish, P. J. Chem. Soc. Perkin Trans I 2001, 2344-2355.
6. (a) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1978, 100, 3636. (b) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1979, 101, 4992. (c) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
7. Kumada, M.; Tamao, K.; Sumitani, K. J. Am. Chem. Soc. 1972, 94, 4374.
8. (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518. (b) Heck, R. F.; Dieck, H. A. J. Am. Chem. Soc. 1974, 96, 1133. (c) Herrmann, W. A.; Böhm, V. P. W.; Reisinger, C-P. J. Orgmet. Chem. 1999, 576, 23.
9. (a) Stewart, I. C.; Douglas, C. J.; Grubbs, R. H., Org. Lett. 2008, 10, 441 . (b) Van, V. J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H., J. Am. Chem. Soc. 2002, 124, 4954.
10. Davies, H. M. L.; Dai, X. Tetrahedron, 2006, 62, 10477-10484.
11. Preindl, J.; Leitner, C.; Baldauf, S.; Mulzer, J. Org. Lett. 2014, 16, 4276-4279.
12. (a) Look, S. A.; Fenical, W.; Matsumoto, G. K.; Clardy, J. J. Org. Chem. 1986, 51, 5140-5145. (b) Roussis, V.; Wu, Z.; Fenical, W.; Strobel, S. A.; Van Duyne, G. D.; Clardy, J. J. Org. Chem. 1990, 55, 4916-4922.
13. Cooksey, J. P.; Kocieński, P. J.; Schmidt, A. W.; Snaddon, T. N.; Kilner, C. A. Synthesis 2012, 44, 2779-2785..

Table S1. A. Comparison of the hydrovinylation approach (highlighted) with others for the synthesis of pseudopterosins ${ }^{\text {a }}$

natural product or key intermediate ${ }^{\text {a }}$	pseudopterosin, R, R'	starting material	no. of steps	yield ${ }^{\text {b }}$	source of chirality	limiting selectivity ${ }^{\text {c }}$	comments	ref.
pseudopterosin A-F	Me, Me		15	1.9	racemic	$\begin{aligned} & \mathrm{C}_{4}\left(R^{*}: S^{*}\right) 5: 4 \\ & \mathrm{C}_{13}\left(R^{*}: S^{*}\right) 9: 1 \end{aligned}$	- racemic route - efficient C-ring annulation	1
pseudopterosin A-F	- $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}$	(-)-limonene	30	1.7	chiral pool	$\begin{aligned} & \mathrm{C}_{1}(R: S) 1: 1 \\ & \mathrm{C}_{13}(R: S) 1.1: 1.0 \end{aligned}$	low selectivity, right protect group (PG) for glycosylation	2
pseudopterosin A-F	Me, Me		21	$<2^{\text {a }}$	chiral pool	$\mathrm{C}_{4}(\mathrm{R}: S)$ 58:42	low selectivity and overall yield	3
pseudopterosin A-F	H, H	$(S)-(-)-$ citronellal	18	3.1	chiral pool	$\mathrm{C}_{1}(R: S)$ 3:97	exceptional diastereoselectivity. diastereomer synthesis (C_{13}, C_{11}) likely challenging.	4,5
pseudopterosin A-F	H, H	(-)-limonene	16	6	chiral pool	$\mathrm{C}_{11}(R: S)$ 54:46	C_{11} via kinetic resolution	6
pseudopterosin A-F	Me, Me		20	13.5	via resolved $\mathrm{Cr}(\mathrm{CO})_{3}$ complex	- stoichiometric resolution - C_{11} diastereosel. hydroboration - $\mathrm{C}_{13}(R: S)$ 16:1	- exceptional diastereoselectivity - synthesis of diastereomers ($\mathrm{C}_{4}, \mathrm{C}_{1}$) likely challenging	8
pseudopterosin A-F	Me, Me		25	4.4	[3,3]sigmatropic rearr., Pdcatalyzed allylation	$\begin{aligned} & \mathrm{C}_{1}(R: S) 3: 1 \\ & \mathrm{C}_{13}(R: S) 15: 1 \end{aligned}$	erosion of C_{1} configuration during hydrogenation	10

pseudopterosin A-F	$-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}$	$\square=0$	12	4.4	Cu -cat enantiosel. $\mathrm{Me}_{2} \mathrm{Zn}$ add	$\begin{aligned} & \mathrm{C}_{1}(R: S) 5: 95 \\ & \mathrm{C}_{13}(R: S) 52: 48 \end{aligned}$	correct PG for further glycosylation	12
pseudopterosin A-F	Me, H		15	25.6	Enantioselective hydrovinylation (HV)	$\begin{aligned} & \mathrm{C}_{13}(R: S)>99: 1 \\ & \mathrm{C}_{11}(R: S) 1: 99 \\ & \mathrm{C}_{4}(R: S)>85: 15 \\ & \mathrm{C}_{1}(R: S) 2: 98 \end{aligned}$	- HV to install $\mathrm{C}_{11}, \mathrm{C}_{1}$, - diastereosel. Birch $\left(\mathrm{C}_{4}\right)$, diastereosel. cycliz. (C_{13}) - configurations at $\mathrm{C}_{11}, \mathrm{C}_{4}$, C_{1} controllable - correct PG for further glycosylation	13
pseudopterosin A-F	Me, Me		18	17	enantiosel. HV	$\begin{aligned} & \mathrm{C}_{13}(R: S)>99: 1 \\ & \mathrm{C}_{11}(R: S) 8: 92 \\ & \mathrm{C}_{4}(R: S) 97: 3 \\ & \mathrm{C}_{1}(R: S)<1: 99 \end{aligned}$	- HV to install $\mathrm{C}_{11}, \mathrm{C}_{1}$ diastereosel. Birch (C_{4}), diastereosel. epoxide (C_{13}) - configurations at $\mathrm{C}_{11}, \mathrm{C}_{4}$, C_{1} controllable	13,14
pseudopterosin $\mathrm{A}-\mathrm{F}^{\mathrm{c}}$	Me, Me		14	21	enantiosel. (HV)	$\begin{aligned} & \mathrm{C}_{13}(R: S) 86: 14 \\ & \mathrm{C}_{11}(R: S) 8: 92 \\ & \mathrm{C}_{4}(R: S) 97: 3 \\ & \mathrm{C}_{1}(R: S)<1: 99 \end{aligned}$	- HV to install $\mathrm{C}_{11}, \mathrm{C}_{1}$ diastereosel. Birch $\left(\mathrm{C}_{4}\right)$, diastereosel cycliz. $\left(\mathrm{C}_{13}\right)$ - configurations at $\mathrm{C}_{11}, \mathrm{C}_{4}$, C_{1} controllable	$13,1^{\text {d }}$
pseudopterosin G-J	Me, Me		20	13.6	enantiosel. HV	$\begin{aligned} & \mathrm{C}_{13}(R: S)<1: 99 \\ & \mathrm{C}_{11}(R: S) 8: 92 \\ & \mathrm{C}_{4}(R: S) 97: 3 \\ & \mathrm{C}_{1}(R: S)<1: 99 \end{aligned}$	- HV to install $\mathrm{C}_{13}, \mathrm{C}_{11}, \mathrm{C}_{1}$ diastereosel. Birch (C_{4}) - configurations at $\mathrm{C}_{11}, \mathrm{C}_{4}$, C_{1} controllable	13,14
pseudopterosin A-F: G-J aglycones (1:2, Scheme 18) (Stille route)	H, H		18	16.6	enantiosel. HV	$\begin{aligned} & \mathrm{C}_{13}(R: S) 1: 2 \\ & \mathrm{C}_{11}(R: S) 8: 92 \\ & \mathrm{C}_{4}(R: S) 97: 3 \\ & \mathrm{C}_{1}(R: S)<1: 99 \end{aligned}$	C_{13} installed by $\mathrm{Li} / \mathrm{NH}_{3}$ reduction of a dihydronaphthalene	13,14

pseudopterosin G-J	$-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}$	$\Delta=0$	12	5.5	Cu-cat enantiosel. $\mathrm{Me}_{2} \mathrm{Zn}$ addition	$\begin{aligned} & \mathrm{C}_{1}(R: S) 5: 95 \\ & \mathrm{C}_{13}(R: S) 52: 48 \end{aligned}$	correct PG for further glycosylation	12
ent-pseudopterosin G-J aglycone	H, H	$\mathbb{O}_{\overline{O H}}$	13	0.95	chiral pool	$\begin{aligned} & \mathrm{C}_{4}, \mathrm{C}_{11}(S, R): \\ & \text { diastereo- } \\ & \text { mer + two } \\ & \text { diasteromers. } \mathrm{dr}= \\ & 5: 2 \end{aligned}$	- shortest route - use of exceptionally innovative allene chemistry - need specialized high pressure reactor - stoichiometric Rh used for double decarbonylation, - overall low yield.	11
ent-pseudopterosin G-J aglycone	H, H		15	0.51	enantiosel. hydrogenation	(see previous entry)	(also previous entry)	11
pseudopterosin G-J aglycone	H, H	(-)-limonene	15	5.5	chiral pool	$\begin{aligned} & \mathrm{C}_{11}(R: S) 54: 46 \\ & \mathrm{C}_{13}(R: S) 1: 8 \end{aligned}$	C_{11} via kinetic resolution. Diastereomer synthesis (C_{4}, C_{1}) may require new chemistry	6,7
pseudopterosin A-F aglycone	H, H	(-)-citronellal	18	1	chiral pool	Wittig Reaction E:Z 9:1	diastereomer synthesis (C_{4}, C_{1}) - see previous row	9
pseudopterosin K-L aglycone	H, H	(-)-isopulegol	15	5.2	chiral pool	$\mathrm{C}_{13}(R: S)$ 1:10	diastereomer synthesis (C_{4}, C_{1}) - see previous row	9

a. A uniform numbering for serrulatanes and amphilectanes is followed (see Figure 1 in the paper).

8a pseudopterosin A-F 9a pseudopterosin G-J ent-8a pseudopterosin K-L
b. Yields uncertain in a few cases since required data is not available. c. The lowest stereoselectivities among the reactions to reach the final target are shown, except for our work (highlighted rows), where all selectivities are shown. d. Combination of RajanBabu, ${ }^{13,14}$ Harrowven ${ }^{1}$ routes (postinstallation of stereogenic centers) gives the shortest (14 steps, $\sim 21 \%$) with excellent stereoselectivity to pseudopterosins A-F aglycone, and, flexibility to make diastereomers at any of the centers.

Table S1. B. Comparison of the hydrovinylation approach (highlighted) with others for the synthesis of prototypical serrulatanes and amphilectanes ${ }^{\text {a }}$

natural product or key intermediate ${ }^{\text {a }}$	starting material	number of steps	overall yield ${ }^{\text {b }}$	source of chirality	limiting selectivity ${ }^{\text {c }}$	comments	ref.
intermediate for elisabethadione (37)		15	27.8	enantioselective HV	$\begin{aligned} & \mathrm{C}_{1}(S: R) 98: 2 \\ & \mathrm{C}_{4}(R: S) 85: 15 \\ & \mathrm{C}_{11}(S: R) 99: 1 \end{aligned}$	$\mathrm{C}_{1}(S)$ and $\mathrm{C}_{11}(\mathrm{~S})$ selectivity $>99: 1 . \mathrm{C}_{4}$-isomers separated by column (>99:1 R). Demonstrated flexibility in diastereomer ($\mathrm{C}_{1}, \mathrm{C}_{4}$, C_{11}) synthesis	13
intermediate for colombiasin, elisapterosin		13	$\begin{gathered} 36 \\ (\mathbf{4 3 a}) \end{gathered}$	enantioselective HV	$\begin{aligned} & \mathrm{C}_{1}(S: R) 98: 2 \\ & \mathrm{C}_{4}(R: S) 85: 15 \\ & \mathrm{C}_{11}(S: R) 99: 1 \end{aligned}$	$\mathrm{C}_{1}(S)$ and $\mathrm{C}_{11}(\mathrm{~S})$ selectivity $>99: 1$. C_{4}-isomers separated by column (>99:1 R). Demonstrated flexibility in diastereomer $\left(\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{11}\right)$ synthesis	13
		18	17.4	enantioselective HV	$\begin{aligned} & \mathrm{C}_{1}(S: R) 98: 2 \\ & \mathrm{C}_{4}(R: S) 85: 15 \\ & \left.\mathrm{C}_{11}(S: R) 99: 1\right) \end{aligned}$	$\mathrm{C}_{1}(S)$ and $\mathrm{C}_{11}(\mathrm{~S})$ selectivity $>99: 1$. C_{4}-isomers separated by column ($>99: 1$ R). Demonstrated flexibility in diastereomer $\left(\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{11}\right)$ synthesis	13
Intermediate for a p benzoquione natural product		14	30.7	enantioselective HV	$\begin{aligned} & \mathrm{C}_{1}(S: R) 98: 2 \\ & \mathrm{C}_{4}(R: S) 85: 15 \\ & \left.\mathrm{C}_{11}(S: R) 99: 1\right) \end{aligned}$	$\mathrm{C}_{1}(S)$ and $\mathrm{C}_{11}(\mathrm{~S})$ selectivity $>99: 1 . \mathrm{C}_{4}$-isomers separated by column ($>99: 1$ R). Demonstrated flexibility in diastereomer $\left(\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{11}\right)$ synthesis	13

		16	32.2	enantioselective HV	$\begin{aligned} & \mathrm{C}_{1}(S: R)>99: 1 \\ & \mathrm{C}_{4}(S: R) 3: 97 \\ & \mathrm{C}_{11}(S: R) 92: 8 \end{aligned}$	- independent control of all stereogenic centers	13
helioporin D (56c)		17	29.3	enantioselective HV	$\begin{aligned} & \mathrm{C}_{1}(S: R)>99: 1 \\ & \mathrm{C}_{4}(S: R) 3: 97 \\ & \mathrm{C}_{11}(S: R) 92: 8 \end{aligned}$	- independent control of all stereogenic centers	13
36e		10	17	Rh-cat C-H insertion. Kinetic resolution	$\mathrm{C}_{1}(S: R) 96: 4$	- C_{1} kinetic resolution (yield 41\%). $\mathrm{C}_{4}, \mathrm{C}_{11}$ - diastereomers might require new chemistry	15, 17
37		8	22.8	Rh-cat C-H insertion. Kinetic resolution	$\mathrm{C}_{1}(S: R) 96: 4$	- C_{1} kinetic resolution (yield 41\%). $\mathrm{C}_{4}, \mathrm{C}_{11}$ - diastereomers might require new chemistry	15, 17
ent-37		11	8.9	enantsel. crotylation, 3,3sigmatropic rear.	$\mathrm{C}_{1}(S: R) 1: 3$	- $\mathrm{C}_{4}, \mathrm{C}_{11}$ diastereoselective [3,3]-sigmatropic rearr. - diastereomers separated by prep-HPLC.	17
43a		17	5	racemic	$\mathrm{C}_{1}, \mathrm{C}_{4}$ config. linked through Diels-Alder dr 1.0:0.0	- C_{11} installed by diastereoselective hydrogeantion	19

43b	Pseudoephedrinepropionamide	9	17	stoichiometric auxiliary assisted enolate alkylation	$\mathrm{C}_{1}, \mathrm{C}_{4}$ config. linked through Diels-Alder regioisom. (1.7:1.0)	- $\mathrm{C}_{1}, \mathrm{C}_{4}$ diastereomeric mixture carried through synthesis	20
		11	15.4	Rh-cat C-H insertion. Kinetic resolution	$\mathrm{C}_{1}(S: R) 97: 3$	independent control of C_{4}, C_{11} configurations might require redesign of route	15, 16
O-methyl-norelisabethadione		12	7.8	Rh-cat C-H insertion. Kinetic resolution	$\mathrm{C}_{1}(S: R) 97: 3$	independent control of C_{4}, C_{11} configurations might require redesign of route.	15, 16
seco-pseudoptrosin A aglycone (56b)		18	26.3	via resolved $\mathrm{Cr}(\mathrm{CO})_{3}$ complex	- stoichiometric reaction to install C_{1}	- exceptional diastereoselectivity - synthesis of diastereomers ($\mathrm{C}_{4}, \mathrm{C}_{11}$) challenging	8
helioporin D (56c)		17	25.5	via resolved $\mathrm{Cr}(\mathrm{CO})_{3}$ complex	- stoichiometric reaction to install C 1	- exceptional diastereoselectivity - synthesis of diastereomers ($\mathrm{C}_{4}, \mathrm{C}_{11}$) challenging	21
helioporin E	(-)-limonene	17	$0.55^{\text {c }}$	chiral pool	$\begin{aligned} & \mathrm{C}_{11}(R: S) \\ & 54: 46 \end{aligned}$	- C_{11} via kinetic resolution. - diastereomer synthesis	6, 7
helioporin E		17	4.5	- enantiosel. $L^{*} \mathrm{Cu}$-cat $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ addition of MeMgBr - enantiosel. Ircat. hydrogen.	$\mathrm{C}_{4}(\mathrm{R}: S$) 4:1	- efficient route - potentially useful route for synthesis of various diastereomers	25

helioporin C		16	5.7	- enantiosel. $L^{*} \mathrm{Cu}$-cat $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ addition of MeMgBr - enantiosel. Ircat. hydrogen.	$\mathrm{C}_{4}(R: S) 4: 1$	- efficient route - potentially useful route for synthesis of various diastereomers	25
		20	1.1	enantiosel. DA	- $\mathrm{C}_{1}, \mathrm{C}_{4}$ linked through DA dr 85:15, er 97:3 - $\mathrm{C}_{11}(R: S) 1: 1$	- first synthesis - established the absolute configuration - demonstrated the intramolecular DA in the last step used by others later.	22
colombiasin A		12	11.5	- enantiosel. DA used twice	- C_{11} 93:7 enantsel. DA - $\mathrm{C}_{1}, \mathrm{C}_{4}$ linked through DA dr $>10: 1$	- Exceptionally short and practical synthesis - independent control of stereogenic centers could be challenging.	23
colombiasin A	Pseudoephedrinepropionamide	16	3.4	stoichiometric auxiliary assisted enolate alkylation	$\mathrm{C}_{1}, \mathrm{C}_{4}$ config. linked through Diels-Alder dr 1.7:1.0	$\mathrm{C}_{1}, \mathrm{C}_{4}$ Diastereomeric mixture carried through synthesis	20
colombiasin A	$\stackrel{(-)-}{\text { dihydrocarvone }}$	12	1.1	chiral pool, $[(-)-\mathrm{ipc}]_{2} \mathrm{BH}$	$\mathrm{C}_{1}, \mathrm{C}_{4}$ config. linked- dihydrocarvone)	C_{11} Configuration by stoichiometric asymmetric hydroboration	24
colombiasin A		14	5.3	kinetic resolution by Rh-cat. C-H insertion	$\mathrm{C}_{1}(S: R) 98: 2$	C_{1} kinetic resolution (yield $41 \%) . \mathrm{C}_{4}, \mathrm{C}_{11}$ configurations tied to that of C_{1}. Practical synthesis	15

(rac)-7-isocyano-11(20), 14-epiamphilectadiene		9	6.4	racemic	$\mathrm{C}_{1} \mathrm{~S}_{\mathrm{N}} 1$ with retention dr 88:12. $\mathrm{C}_{4}, \mathrm{C}_{10}, \mathrm{C}_{11}$ linked thru Diels-Alder dr $>10: 1$	$\mathrm{C}_{5}, \mathrm{C}_{9}$ config. installed via diastereosel. protonation. C_{13} config. Cu-catalyzed 1,4-addition. Shortest route (spectacularly so!) to the most complex amphilectane to-date. Racemic synthesis. Making specific diastereomers challenging.	30

a. Carbon numbering

1 serrulatane 2 amphilectane skeleton skeleton
b. Yields uncertain in a few cases since required data is not available. c. The lowest stereoselectivities among the reactions to reach the final target are shown, except for our work (highlighted rows), where all selectivities are shown. d. Formation of the methylenedioxy derivative (last step) has been reported (ref 21) to give a better yield (83%) than 10% reported in ref. 7 .

References

1. Harrowven, D. C.; Tyte, M. J. "Total synthesis of (+/-)-pseudopterosin A-F and K-L aglycone", Tetrahedron Lett. 2004, 45, 2089-2091.
2. Broka, C. A.; Chan, S.; Peterson, B. "Total Synthesis of Pseudopterosin A", J. Org. Chem. 1988, 53, 1584.
3. Buszek, K. R.; Bixby, D. L. "Total Synthesis of Pseudopterosins A and E Aglycon", Tetrahedron Lett. 1995, 36, 9129-9132.
4. Corey, E. J.; Carpino, P. "A New Enantiospecific Route to the Pseudopterosins", Tetrahedron Lett. 1990, 31, 3857-3858.
5. Corey, E. J.; Carpino, P. "Enantiospecific total synthesis of pseudopterosins A and E", J. Am. Chem. Soc. 1989, 111, 5472-5474.
6. Corey, E. J.; Lazerwith, S. E. "A direct and efficient stereocontrolled synthetic route to the pseudopterosins, potent marine antiinflammatory agents", J. Am. Chem. Soc. 1998, 120, 12777-12782.
7. Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. "Syntheses and stereochemical revision of pseudopterosin G-J aglycon and helioporin E", Org. Lett. 2000, 2, 2389-2392.
8. Majdalani, A.; Schmalz, H.-G. "Enantioselective Synthesis of the Aglycones of Pseudopterosin and seco-Pseudopterosin via a Common Synthetic Intermediate", Synlett 1997, 1303-1305.
9. Kocienski, P. J.; Pontiroli, A.; Qun, L. "Enantiospecific syntheses of pseudopterosin aglycones. Part 2. Synthesis of pseudopterosins K-L aglycone and pseudopterosins A-F via an B->BA->BAC annulation strategy", J. Chem. Soc., Perkin Trans 1 2001, 2356-2366.
10. Cooksey, J. P.; Kocieński, P. J.; Schmidt, A. W.; Snaddon, T. N.; Kilner, C. A. "A Synthesis of the Pseudopterosin A-F Aglycone", Synthesis 2012, 44, 2779-2785.
11. Newton, C. G.; Drew, S. L.; Lawrence, A. L.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. "Pseudopterosin synthesis from a chiral crossconjugated hydrocarbon through a series of cycloadditions", Nature Chemistry 2015, 7, 82-86.
12. Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. "Enantioselective Total Syntheses of Various Amphilectane and Serrulatane Diterpenoids via Cope Rearrangements", J. Am. Chem. Soc. 2016, 138, 6261-6270.
13. Tenneti, S.; Biswas, S.; Cox, G.; Mans, D.; Lim, H. J.; RajanBabu, T. V. "Broadly Applicable Stereoselective Syntheses of Serrulatane, Amphilectane Diterpenes and Their Diastereoisomeric Congeners using Asymmetric Hydrovinylation for Absolute Stereochemical Control", J. Am. Chem. Soc. 2018, 140, xxxx-xxxx.
14. Mans, D. J.; Cox, G. A.; RajanBabu, T. V. "Ethylene in Organic Synthesis. Repetitive Hydrovinylation of Alkenes for Highly Enantioselective Syntheses of Pseudopterosins", J. Am. Chem. Soc. 2011, 133, 5776-5779
15. Davies, H. M. L.; Dal, X.; Long, M. S. "Combined C-H activation/cope rearrangement as a strategic reaction in organic synthesis: Total synthesis of (-)-colombiasin A and (-)-elisapterosin B", J. Am. Chem. Soc. 2006, 128, 2485-2490.
16. Dai, X.; Wan, Z. L.; Kerr, R. G.; Davies, H. M. L. "Synthetic and isolation studies related to the marine natural products (+)-elisabethadione and (+)-elisabethamine", J. Org. Chem. 2007, 72, 1895-1900.
17. Davies, H. M. L.; Dai, X. "Application of the combined C-H activation/Cope rearrangement as a key step in the total syntheses of the assigned structure of $(+)$-elisabethadione and a $(+)$ p-benzoquinone natural product", Tetrahedron 2006, 62, 10477-10484.
18. O'Hora, P. S.; Incerti-Pradillos, C. A.; Kabeshov, M. A.; Shipilovskikh, S. A.; Rubtsov, A. E.; Elsegood, M. R. J.; Malkov, A. V. "Catalytic

Asymmetric Crotylation of Aldehydes: Application in Total Synthesis of (-)-Elisabethadione", Chem. Eur. J. 2015, 21, 4551-4555.
19. Preindl, J.; Leitner, C.; Baldauf, S.; Mulzer, J. "A Short Access to the Skeleton of Elisabethin A and Formal Syntheses of Elisapterosin B and Colombiasin A", Org. Lett. 2014, 16, 4276-4279.
20. Kim, A. I.; Rychnovsky, S. D. "Unified strategy for the synthesis of (-)-elisapterosin B and (-)-colombiasin A", Angew. Chem. Int. Ed. 2003, 42, 1267-1270.
21. Geller, T.; Jakupovic, J.; Schmalz, H. G. "Preparation of helioporin D from the seco-pseudopterosin aglycone: Revision of the stereostructure of helioporin D", Tetrahedron Lett. 1998, 39, 1541-1544.
22. Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. "Total synthesis of colombiasin A and determination of its absolute configuration", Chem. Eur. J. 2001, 7, 5359-5371.
23. Boezio, A. A.; Jarvo, E. R.; Lawrence, B. M.; Jacobsen, E. N. "Efficient total syntheses of (-)-colombiasin A and (-)-elisapterosin B: Application of the Cr-catalyzed asymmetric quinone Diels-Alder reaction", Angew. Chem. Int. Ed. 2005, 44, 6046-6050.
24. Harrowven, D. C.; Pascoe, D. D.; Demurtas, D.; Bourne, H. O. "Total synthesis of (-)-colombiasin A and (-)-elisapterosin B", Angew. Chem. Int. Ed. 2005, 44, 1221-1222.
25. Lölsberg, W.; Werle, S.; Neudörfl, J.-M.; Schmalz, H.-G. "An Enantioselective Total Synthesis of Helioporins C and E", Org. Lett. 2012, 14, 5996-5999.

Other notable examples of syntheses of serrulatanes and amphilectanes

The examples cited in Table S1A and Table S1B list only molecules and intermediates whose syntheses closely map a possible hydrovinylation approach. There are many other notable molecules in these classes of compounds that will be helped by this approach. The following references provide a partial list of some of the most notable syntheses in the area.
26. Yang, M.; Yang, X. W.; Sun, H. B.; Li, A. "Total Synthesis of Ileabethoxazole, Pseudopteroxazole, and seco-Pseudopteroxazole", Angew. Chem. Int. Ed. 2016, 55, 2851-2855.
27. Incerti-Pradillos, C. A.; Kabeshov, M. A.; O'Hora, P. S.; Shipilovskikh, S. A.; Rubtsov, A. E.; Drobkova, V. A.; Balandina, S. Y.; Malkov, A. V. "Asymmetric Total Synthesis of (-)-Erogorgiaene and Its C-11 Epimer and Investigation of Their Antimycobacterial Activity", Chem. Eur. J. 2016, 22, 14390-14396.
28. Williams, D. R.; Shah, A. A. "Total Synthesis of (+)-Ileabethoxazole via an Iron-Mediated Pauson-Khand [2+2+1] Carbocyclization", J. Am. Chem. Soc. 2014, 136, 8829-8836.
29. Lu, J. M. H.; Perkins, M. V.; Griesser, H. J. "Total synthesis and structural confirmation of the antibacterial diterpene leubethanol", Tetrahedron 2013, 69, 6468-6473.
30. Pronin, S. V.; Shenvi, R. A. "Synthesis of a Potent Antimalarial Amphilectene", J. Am. Chem. Soc. 2012, 134, 19604-19606.
31. Elford, T. G.; Nave, S.; Sonawane, R. P.; Aggarwal, V. K. "Total Synthesis of (+)-Erogorgiaene Using Lithiation-Borylation Methodology, and Stereoselective Synthesis of Each of Its Diastereoisomers", J. Am. Chem. Soc. 2011, 133, 16798-16801. This approach allows the synthesis of all diastereomers of this simple serrulatane.
32. Esteban, G.; Rincon, R.; Csaky, A. G.; Plumet, J. "A convenient synthesis of the central core of helioporins, seco-pseudopterosins and pseudopterosins via BCA-annulation sequence", Natural Product Communications 2008, 3, 495-504.
33. Harmata, M.; Hong, X. "Benzothiazines in Synthesis. A Total Synthesis of Pseudopteroxazole", Org. Lett. 2005, 7, 3581-3583.
34. Cesati III, R. R.; de Armas, J.; Hoveyda, A. H. "Enantioselctive total synthesis of erogorgiaene: Application of Cu-catalyzed conjugate additions of alkylzincs to acyclic enones", J. Am. Chem. Soc. 2004, 126, 96-101.
35. Waizumi, N.; Stankovic, A. R.; Rawal, V. H. "A general strategy to elisabethane diterpenes: Stereocontrolled synthesis of elisapterosin B via oxidative cyclization of an elisabethin precursor", J. Am. Chem. Soc. 2003, 125, 13022-13023.
36. Davidson, J. P.; Corey, E. J. "First enantiospecific total synthesis of the antitubercular marine natural product pseudopteroxazole: Revision of assigned stereochemistry", J. Am. Chem. Soc. 2003, 125, 13486-13489.
37. McCombie, S. W.; Cox, B.; Ganguly, A. K. "Controlling Benzylic Functionality and Stereochemistry. 2. Synthesis of the Pseudopterosin Aglycone", Tetrahedron Lett. 1991, 32, 2087-2090.

Supporting Information

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

30

S6

Supporting Information

Supporting Information

Supporting Information

Faculty Group Rajanibabu 2163
ST-01-223-GRIG-NP
CARBON_OSU CDC13 \{C:\Bruker\TopSpin3.5pl5) tenneti. 363

BRUKER

Supporting Information

Faculty Group Rajanbabu 2163
ST-01-223-GRIG-N
C13DEPT135 CDC13 (C: \Bruker\TopSpin3.5p15) tenneti. 363

Supporting Information

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Supporting Information

43a

Supporting Information

$00 \cdot 88 T-$
$90 \cdot 68 I-$
155.57
-146.46
-144.06
-128.79

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

Supporting Information

Supporting Information

R.

Supporting Information

58
$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

8b

Supporting Information

8. Gas Chromatograms of Crude Products Showing Selectivites of Reactions

Compound 22, Racemic-27 and Enantioenriched 27

Compound 25

Racemic 28 and Enantioenriched 28

Saneln Name: ab-5-129-0

Åcgi aperatar	Adam cor	Seq. Wing
A\%. Thatrizant	fatu	isentime
Indestion Date		5 cd

NHA,tery
siphal 14 PTDI E, Enek Signal

... Etra of Aeport

Hydrovinylation of Racemic and Enantioenriched 34

Data File C: \CHEM32\1 \DATA\OLD GROOP MEMBERS \GAC\2_CHIRAL 2010-09-09 15-10-08\AC-5-17.D Sample Name: AC-5-17 Chiral GC (Cyclosil-B, $150^{\circ} \mathrm{C}$ isotherm)

$$
\begin{array}{llll}
0.3449 & 6.88202 & 3.32605 \mathrm{e}-1 & 0.44907
\end{array}
$$

[^3]Data File C: \CHEM32\... OLD GROUP MEMBERS \GAC\AC_HV_1_CHIRAL 2011-04-06 10-36-32\AC-6-205. D Sample Name: AC-6-205

CSP GC (Cyclosil-B), 150 oC isotherm)

FID1 B, Back Signal (OLD GROUP MEMBERSIGACIAC_HV_1_CHIRAL 2011-04-06 10-36-32LAC-6-205.D)

Signal 1: EID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \frac{\Delta}{12} \end{gathered}$	$\begin{gathered} \text { Ret'Time } \\ {[\text { min] }} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \frac{\%}{\circ} \end{gathered}$
1	52.254	BB	0.2843	956.61475	40.39579	99.08068
2	57.513	MM	0.3728	6.31121	$2.82174 e^{-1}$	0.65368
3	59.250	MM	0.3997	2.56470	$1.06943 \mathrm{e}^{-1}$	0.26564
Total	s :			965,49065	40.78490	

*** End of Report ***

Data File C: \CHEM32\I\DATA\TSB\ST-02-RVZ-70SM.D
Sample Name: ST-02-hv2-70sm Chiral GC (Cyclosil-B, $150^{\circ} \mathrm{C}$ isotherm)

Area Percent Report				
Sorted By	Signal			
Multiplier:	:	1.0000		
Dilution:	:	1.0000		
Sample Amount:	:	1.00000	[ng/ul]	(not used

Dse Multiplier \& Dilution Eactor with 1STDs
HV of (S)-33 using (Rc,Rc)-ligand ent- L3
Signal 1; EID1 B, Back Signal showing retention times of starting material Peak retTime Type Width Area Height and products (incomplete reaction)

\#	[min]	e	$[\mathrm{min}]$	$\left[p^{*} s\right]$	$\begin{aligned} & H=i g \\ & {[\mathrm{pA}]} \end{aligned}$	\%
1	47.669	MM	0.4061	2558.49756	105.00091	71.39868
2	51.522	MM	0.4057	42.30760	1.73804	1.18066
3	58.849	MM	0.4476	982.59088	6.58854	

Babu 6/1/2018 11:22:10 AM MAHESH

Diastereomeric (C_{4}) mixture 36d

36d $\left(\mathrm{C}_{4}-R\right)$ and 36d ($\left.\mathrm{C}_{4}-S\right)$

Sapple Burtot $\mathrm{K}[-\mathrm{A}-\mathrm{is}$

Racemic 51 and Enantioenriched 51

Compound 58 and Hydrovinylated Product 59

[^0]: ${ }^{\text {a }}$ Spectrum calibrated to the chloroform peak (7.26 ppm). ${ }^{\mathrm{b}}$ Spectrum recalibrated to the chloroform peak (77.0 ppm).

[^1]: ${ }^{\text {a }}$ Spectrum calibrated to the chloroform peak (7.26 ppm). $\quad{ }^{\mathrm{b}}$ Spectrum recalibrated to the chloroform peak (77.0 ppm).

[^2]: ${ }^{\text {a }}$ Spectrum calibrated to the chloroform peak (7.26 ppm). $\quad{ }^{\mathrm{b}}$ Spectrum recalibrated to the chloroform peak (77.0 ppm).

[^3]: Babu 5/25/2018 12:16:34 PM MAHESH

