Supporting information

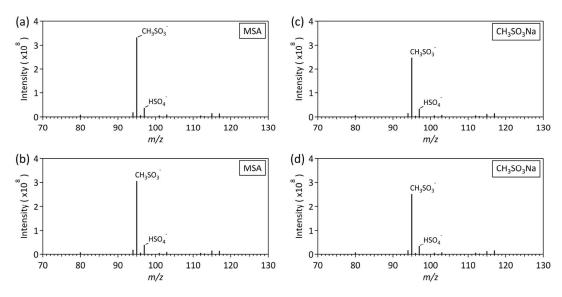
Chemical Transformation of Methanesulfonic Acid and Sodium Methanesulfonate through Heterogeneous OH Oxidation

Kai Chung Kwong¹, Man Mei Chim¹, Erik Hans Hoffmann², Andreas Tilgner², Hartmut Herrmann², James F. Davies³, Kevin R. Wilson⁴, Man Nin Chan^{1,5*}

¹Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, CHINA

²Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, GERMANY

³Department of Chemistry, University of California Riverside, Riverside, USA


⁴Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

⁵The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, CHINA

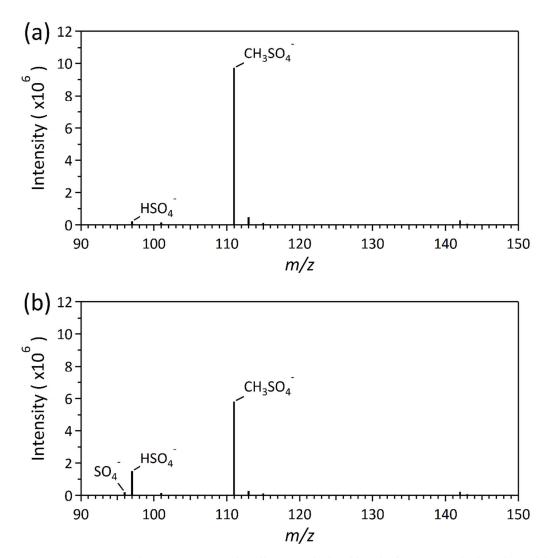

^{*}Correspondence to: Man Nin Chan (mnchan@cuhk.edu.hk)

Table S1. Chemical structure of sodium methyl sulfate

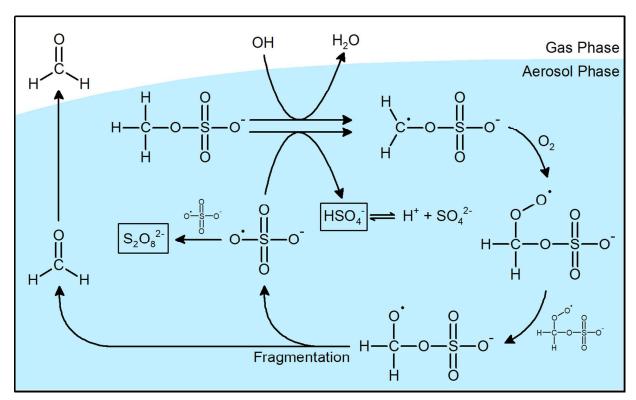

Chemical	Sodium Methyl Sulfate
Structural formula	H O
Molecular formula	CH ₃ SO ₄ Na
Molecular weight (g mol ⁻¹)	134.0867

Figure S1. DART-aerosol mass spectra of MSA (left panel): (a) presence of UV light and absence of ozone; (b) absence of UV light and presence of ozone; and CH₃SO₃Na (right panel): (c) presence of UV light and absence of ozone; (d) absence of UV light and presence of ozone.

Figure S2. DART-Aerosol mass spectra of sodium methyl sulfate before (a) and after (b) oxidation (reproduced from *Kwong et al.*, 2018).

Scheme S1. Proposed reaction mechanism for heterogeneous OH oxidation of sodium methyl sulfate.

Reference

Kwong, K. C.; Chim, M. M.; Davies, J. F.; Wilson, K. R.; Chan, M. N. Importance of Sulfate Radical Anion Formation and Chemistry in Heterogeneous OH Oxidation of Sodium Methyl Sulfate, the Smallest Organosulfate. *Atmos. Chem. Phys.*, **2018**, 18, 2809–2820.