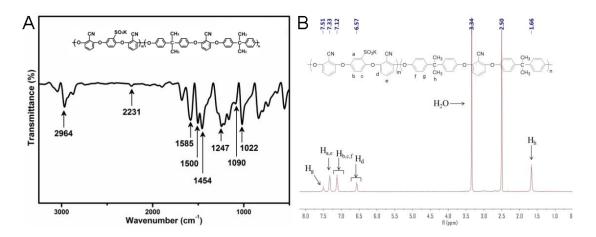
Supporting Information

Dual-mode fluorescence and magnetic resonance imaging nanoprobe based on aromatic amphiphilic copolymer encapsulated CdSe@CdS and Fe₃O₄

Xiaohong He, † Xue Shen, ‡ Dongming Li, † Yiyao Liu, ‡ Kun Jia*,† Xiaobo Liu*†


† Research Branch of Advanced Functional Materials, School of Materials and

Energy, University of Electronic Science and Technology of China, Chengdu,

611731, P.R. China

[‡] Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China

Corresponding authors: Kun Jia (jiakun@uestc.edu.cn), Xiaobo Liu (liuxb@uestc.edu.cn)

Figure S1. The FTIR spectrum (A) and the ¹H NMR spectrum (B) of the synthesized amphiphilic polyarylene ether nitrile.

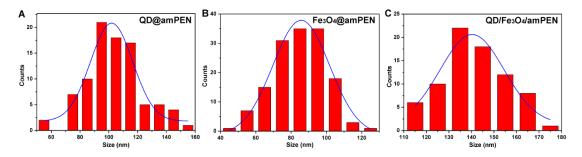


Figure S2. The size distribution histograms of the prepared QD@amPEN (A),

 $Fe_{3}O_{4}@PEN\ (B)$ and $QD/Fe_{3}O_{4}/amPEN\ (C)$ nanospheres.

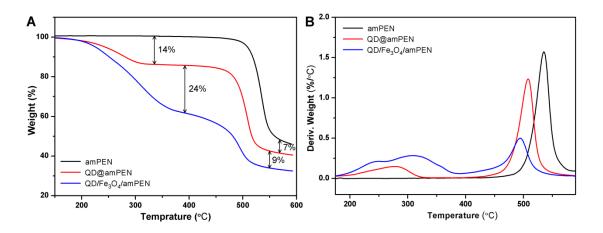


Figure S3. The TGA curves (A) and corresponding differential TGA curves (B) of the synthesized amPEN, QD@amPEN as well as QD/Fe₃O₄/amPEN nanospheres.

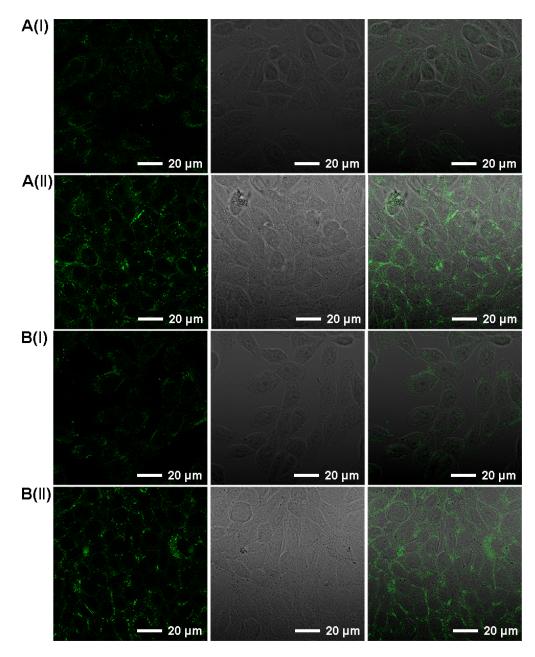


Figure S4. The confocal images of EMT6 cells labeled with QD@amPEN (A) and QD/Fe₃O₄/amPEN (B) nanospheres at a concentration of 60 μ g/mL and incubated for 3 h (I) and 12 h (II) under green channel, bright field, and merged images, respectively.