Electronic Supplimentary Information

Calixarene intercalated NiCo Layered Double Hydroxide for enhanced oxygen evolution catalysis.

Babasaheb J. Waghmode*^{†,‡}, Aarti P. Gaikwad^{II}, Chandrashekhar V. Rode^{II}, Shivaram D. Sathaye^f, Kashinath R. Patil[‡] and Dipalee D. Malkhede[†]
[†]Centre for Advanced studies in Chemistry, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411007, India.
[‡]Centre for Materials Characterisation Divison, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune- 411008, India.
[#]Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
[#]759/83 Deccan Gymkhana, Pune 411004, India.
^Corresponding Author:
E mail:bwaghmode7@gmail.com
The number of pages (including cover page): 6 (S1-S6)
The number of Figures: 7 (Figures: S1-S7)

The number of Tabels: 3 (Table S1-S3)

Conversion of Hg/HgO to RHE

Hg/HgO electrode calibration was carried in a three electrode system with Pt wires as working and counter electrode and Hg/HgO as reference electrode. Hydrogen saturated 0.1 M KOH was used as an electrolyte. Linear sweep voltammetry was performed at 1 mV/s scan rate and the potential at which current crosses zero was taken as thermodynamic potential (vs Hg/HgO) for the hydrogen electrode. The potential at which current crosses zero is -0.949V vs Hg/HgO So E (RHE) = E (Hg/HgO) + 0.949

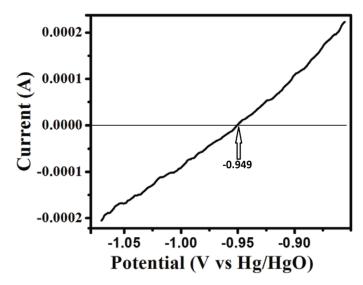
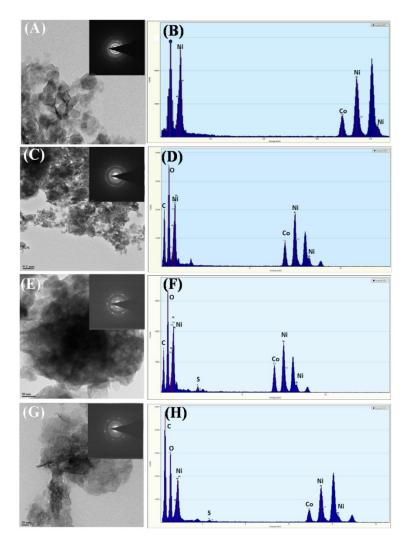
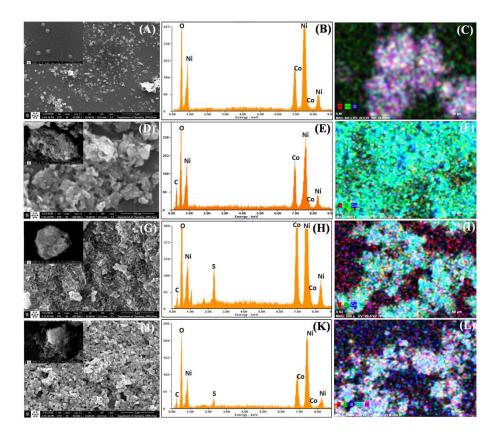
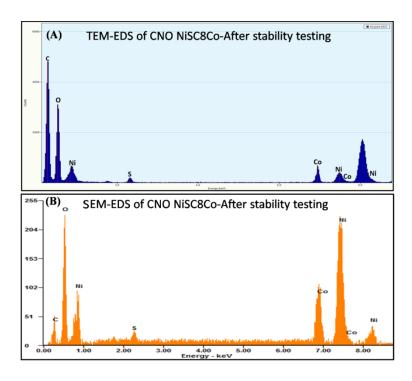
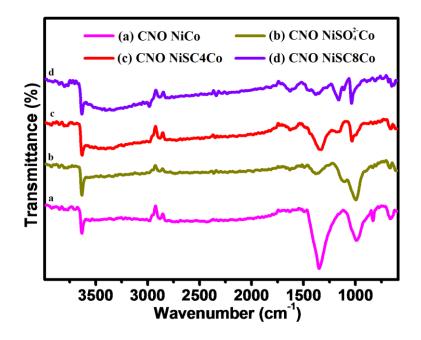




Figure S1. Calibration curve for reference electrode

Figure S2. (A, C, E, and G) TEM micrograph and (B, D, F, and H) TEM-EDS of NiCo LDHs, CNO NiCo, CNO NiSO₄²⁻Co and CNONiSC4Co nanocomposite material.

Figure S3. (A, D, G and J) SEM micrograph; (B, E, H and K) SEM-EDS; and (C, F, I and L) SEM-Elemental mapping of NiCo LDHs, CNO NiCo, CNO NiSO₄²Co and CNONiSC4Co nanocomposite material.

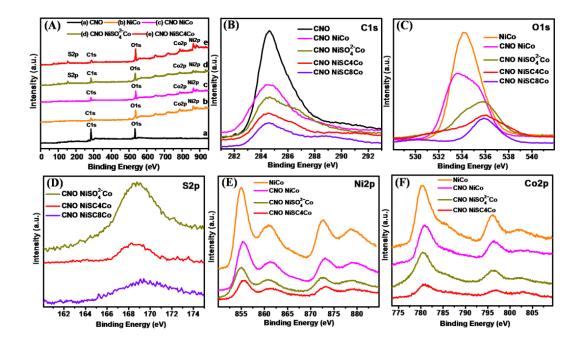
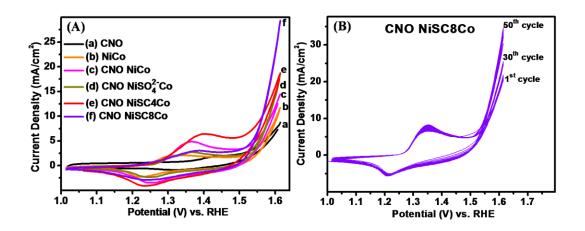

Figure S4. (A) TEM-EDS and (B) SEM-EDS of CNO NiSC8Co nanocomposite taken after OER.

Figure S5. IR spectra of (a) CNO NiCo, (b) CNO NiSO₄²⁻Co, (c)CNO NiSC4Co, and (d) CNO NiSC8Co electrocatalysts.

Table S1: Atomic percentage of elements obtained from TEM-EDS and SEM-EDS (From initial and after OER
CNO NiSC8Co nanocomposite.

Sr.	TEM-EDS			Sr.	SEM-EDS				
No.					No.				
		Element	Weight	Atomic			Element	Weight	Atomic
			%	%				%	%
		C(K)	40.96	60.04			C(K)	6.50	12.37
	CNO	O(K)	27.69	30.47		CNO NiSC8Co	O(K)	49.21	70.31
1	NiSC8Co	S(K)	0.37	0.20	- 1		S(K)	0.26	0.19
		Ni(K)	23.30	6.99			Ni(K)	32.18	12.53
		Co(K)	7.66	2.28			Co(K)	11.84	4.59
				1				1	
		C(K)	27.10	44.69			C(K)	05.73	13.15
	CNO	O(K)	33.78	41.83	2	CNO	O(K)	40.74	65.06
2	NiSC8Co	S(K)	1.02	0.63		NiSC8Co	S(K)	03.98	0.61
4	(Afterer 30 h	Ni(K)	24.45	8.25		(Afterer 30 h	Ni(K)	33.02	14.09
	anodisation)	Co(K)	13.63	4.58		anodisation)	Co(K)	16.52	07.03

Figure S6. Comparative (A) XPS survey scan, (B) C1s, (C) O1s, (D) S2p, (E) Ni2p, and (F) Co2p spectra of CNO, NiCo LDHs and its respective nanocomposites.


Table S2: XPS analysis v	with species	moieties	of elements	and its	atomic	percentage	of initial	and after	OER,	CNO
NiSC8Co nanocomposites.										

Sr. No.	Sample Name	Element present	Atomic %	
		С	23.86	
	-	0	63.42	
1	CNONiSC8Co	S	0.19	
	-	Ni	9.25	
	-	Со	3.25	
		С	38.16	
	-	0	51.48	
2	CNONiSC8Co	S	0.60	
	(Afterer 30 h	Ni	6.61	
	anodisation)	Со	3.13	

Table S3 Comparison of electrocatalytic performance of the previously reported LDH based electrocatalysts for

overall water splitting.

Sr.	Catalyst	Over	Tafel slope	Electrolyte	Reference
No.		potential	(mV dec ⁻¹)		
		(mV)			
1	Exfoliated Ni-Fe	300 mV	40 mV dec^{-1}	1 M KOH	Nat. Commun. 2014, 5, 4477.
2	Ni-Co-OH	337 mV	-	1 M NaOH	Nano Lett. 2015, 15, 2498.
3	Exfoliated Ni-Co	367 mV	40 mV dec^{-1}	1 M KOH	Nano Lett. 2015, 15, 1421.
4	Ultrathin Co-Mn LDH	324 mV	43 mV dec^{-1}	1 M KOH	J. Am. Chem. Soc. 2014, 136, 16481.
5	NiFe-Bi CC	363 mV	-	0.5 M K-Bi	ACS Appl. Mater. Int. 2017, 9, 19502.
6	CoMn-LDH/MWCNT	300 mV	74 mV dec ⁻¹	1 M KOH	ACS Appl. Mater. Int. 2016, 8, 14527.
7	ultrathin Co-Fe LDH	300 mV	47 mV dec^{-1}	1 M KOH	ACS Appl. Mater. Int. 2016, 8, 34474.
8	Fe-Ni nanoparticles	311 mV	-	1 M NaOH	ACS Catal. 2016, 7, 365.
9	Co-Cr LDH (2:1)	340 mV	81 mV dec^{-1}	0.1 M NaOH	J. Mater. Chem. A 2016 , 4, 11292.
10	Ni-Fe(8:2)/3D	259 mV	39 mV dec^{-1}	1 M KOH	J. Mater. Chem. A 2015 , 3, 6921.
11	Ni-Fe LDH/N-Gr	337 mV	45 mV dec^{-1}	0.1 M KOH	Adv. Mater. 2015 , 27, 4516.
12	Ni0.6Co1.4P	300 mV	80 mV dec^{-1}	1 M KOH	Adv. Funct. Mater. 2018, 1706008
13	3D NNCNTAs	460 mV	65 mV dec^{-1}	0.1 M KOH	Adv. Funct. Mater. 2014, 24, 4698.
14	Co-Fe LDH (1:0.35)	350 mV	49 mV dec ⁻¹	1 M NaOH	Chem Sus Chem 2017 , 10, 156.
15	Fe-Ni hydroxide	320 mV	57 mV dec^{-1}	1 M KOH	Chem Sus Chem 2016 , 9, 1835.
16	NiCo LDH	420 mV	113 mVdec ⁻¹	0.1 M KOH	J. Power Sources 2015 , 278, 445.
17	ZnCo LDH/graphene	430 mV	73 mV dec^{-1}	0.1 M KOH	Dalton Trans. 2014 , 43, 15119.
18	Co-Fe LDH/rGO	340 mV	43 mV dec^{-1}	0.1 M KOH	Adv. Mater. Int. 2016, 3, 1500782.

Figure S7. (A) CV of CNO, NiCo, CNO NiCo, CNO NiSO₄²⁻Co, CNONiSC4Co, and CNO NiSC8Co electrocatalysts at 50 mv scan rate, (B) CV of CNO NiSC8Co electrocatalysts 1st cycle to 50th cycle.