Supporting Information

Domino Synthesis of 2,3-Dialkylidenetetrahydrofurans via Tandem Prins Cyclization/Skeletal Reorganization

Mizuki Kato and Akio Saito*

Table of contents

Evaluation of acids and additives for the formation of 3aa (Table S-1)......S2
Other control experiments (Scheme S-1, S-2)......S3
General information......S3
Preparation and Characterization of 3,5-Diynols 1c-e......S4
Domino Synthesis of 2,3-Dialkylidenetetrahydrofurans 3 and Characterization of $\mathbf{3}$ and 4da......S4
Preparation and Characterization of 4-En-1-yn-3-ones 4aa, 4aj or 4ak......S7
Preparation of 2,3-Dialkylidenetetrahydrofuran 3aa from 4-En-1-yn-3-one 4aa......S8
Preparation and Characterization of Dihydrobenzofuran 5......S8
Preparation and Characterization of 4-En-1-yn-3-one 8......S8
2D NMR spectra of Product 3aa, 4aa and 8......S10
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds 1c-e, 3aa-3al, 3ba-3ga, 4da, 4aa, 4aj, 4ak, 5 and $\mathbf{8} \ldots . .$. S16

Evaluation of acids and additives for the formation of 3aa

As shown in Table S-1, acids and additives were evaluated for the domino reaction of 3,5-diynol 1a and benzaldehyde (2a) in dichloromethane (DCM). Initially, it turned out that the catalytic amounts of acids brought about the low conversion to the desired furans 3aa at room tmparature (up to 15% yields, entries $1-3$ and 5). Even under catalytic conditions, the reaction temperatures were rised in dichloroethane to give the complex mixture (entries 4 and 6). Also, iodine reagents such as "IBF ${ }_{4}$ " and molecular iodine, ${ }^{2}$ which worked well in the Prins cyclization and its related reaction, afforded the complex mixture (entries 7-9). On the other hand, when one equivalent of TMSOTf, HOTf and $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ were used, the furans 3aa were obtained in $17-25 \%$ yields at room temperature for 8 h (entries 10-12). Furthermore, the addition of methanol (1 equiv) with $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (1 equiv) showed better result, in which the yield of 3aa was improved up to 37% (entry 15). Unfortunately, the reaction with an increased amount of methanol (2 or 5 equiv) was sluggish (entry 16 or 17). In contrast, increasing the amounts of both methanol and $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ by 1 equiv led to good conversion to 3aa (entries 18 and 19), and finally, the use of 3 equiv each afforded 3aa in high yield (80%, entry 19). Notably, compared with other alcohols (entries 21-23) and $\mathrm{H}_{2} \mathrm{O}$ (entry 24), methanol was found out to be the best additive (entry 19). Furthermore, the present reaction could be successfully scaled up (1a: 5 mmol , entry 25).

Table S-1. Evaluation of acids and additives for the formation of 3aa

			$\begin{aligned} & \text { Ph } \frac{\text { acid, addii }}{\text { DCM }} \\ & \mathbf{2 a} \end{aligned}$			
entry	2a (equiv)	Acid (equiv)	Addtive (equiv)	Temp. / (h)	3aa (\%) ${ }^{a}$	1a (\%) ${ }^{a}$
1	1.2	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.2)$		rt / 24	2	87
2	1.2	TfOH (0.2)		rt / 24	6	56
3	1.2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(0.2)$		rt / 24	4	93
$4^{\text {b }}$	1.2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(0.2)$		$90^{\circ} \mathrm{C} / 24$	0	27
5	2	TMSOTf (0.2)		rt / 24	15	48
6^{b}	2	$\mathrm{Yb}(\mathrm{OTf})_{3}(0.2)$		$60{ }^{\circ} \mathrm{C} / 24$	0	69
7	2	$\mathrm{IPy}_{2} \mathrm{BF}_{4}(0.2)$	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(0.4)$	rt / 24	0	75
8	2	$\mathrm{I}_{2}(0.2)$	AgBF_{4} (0.2)	rt / 24	0	64
9	2	$\mathrm{I}_{2}(1)$		rt / 24	0	29
10	2	TMSOTf (1)		rt/ 8	17	6
11	2	HOTf (1)		rt/ 8	21	6
12	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(1)$		rt/ 8	25	27
13	5	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(1)$		rt / 24	25	12
14	10	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(1)$		rt / 24	21	0
15	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(1)$	MeOH (1)	rt/ 8	37	46
16	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(1)$	MeOH (2)	rt/ 8	21	79
17	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(1)$	MeOH (5)	rt/ 8	0	100
18	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (2)	MeOH (2)	rt/ 8	66	25
19	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(3)$	MeOH (3)	rt/ 8	$80^{\text {c }}$	0
20	2	TMSOTf (3)	MeOH (3)	rt/ 8	10	55
21	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (3)	EtOH (3)	rt/ 8	$62^{\text {c }}$	0
22	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (3)	$i-\mathrm{PrOH}$ (3)	rt/ 8	$57^{\text {c }}$	0
23	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (3)	t - BuOH (3)	rt/ 8	trace	trace
24	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (3)	$\mathrm{H}_{2} \mathrm{O}$ (3)	rt/ 8	25	3
$25^{\text {d }}$	2	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (3)	MeOH (3)	rt / 8	$81^{\text {c }}$	0

${ }^{a}$ Values were determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Solvent: 1,2-dichloroethane. ${ }^{c}$ Isolated yield.
${ }^{d}$ As a example of scale-up reaction, 5 mmol of 1 a was used.

[^0]
Other control experiments

As the alternative formation path of 4-en-1-yn-3-ones 4, the Aldol-type reaction of vinyl ethers $\mathbf{6}$ derived from 3,5-diynols $\mathbf{1}$ (Scheme S-1) and methanol or alkyn-carbonyl metathesis reaction ${ }^{3}$ such as the conversion of diyne 7 with aldehyde 2a to 4-en-1-yn-3-one 8 (Scheme S-2) would be presumed. However, since treatment of 1a with methanol in the presence of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ led to no conversion of $\mathbf{1 a}$ under the optimum conditions, we believe that vinyl ether $\mathbf{6}$ is not involved as an intermediate. On the other hand, regardless of the presence or absence of methanol, diyne 7 having no hydroxy group was exposed with $\mathbf{2 a}$ in the presence of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ to give 8 (Scheme S-2). However, compared to 4aa, the products 8 were obtained lower yields. Considering that hydroxyethyl group-binding alkyne site exclusively underwent the reaction with aldehydes irrespective of the type of R^{1} group ($\mathrm{R}^{1}=$ aryl or n-butyl, Scheme 3 in the text), the hydroxy groups in the substrates are essential for the formation of 4-en-1-yn-3-ones under the optimum conditions. Thus, 4-en-1-yn-3-ones 4 would be obtained mainly through Prins-type cyclization.

Scheme S-1. No conversion of 1a to $\mathbf{6 a}$ under the optimum conditions

1a 6a (not fromed) (recovery of 1a: quant)

Scheme S-2. No conversion of $\mathbf{7}$ and 2a to $\mathbf{8}$ under the optimum conditions

General information

All reactions were carried out under an argon atmosphere. 3,5-Diynols $\mathbf{1 a},{ }^{4} \mathbf{1 b},{ }^{4} \mathbf{1 f},{ }^{5}$ and $\mathbf{1 g}{ }^{6}$ were prepared by the method reported in the literatures. Tetrafluoroboric acid diethyl ether complex and aldehydes 2a-l are commercially available. Dichloromethane and methanol were purchased as the "anhydrous" and used without further purification. Column chromatography was performed on silica gel 60 N (63-200 μ m, neutral, Kanto Kagaku Co., Ltd.). Preparative thin layer chromatography (PTLC) was carried out using Wakogel B-5F. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 500 (or 300) and 125 (or 75) MHz in CDCl_{3}, and the chemical shifts are given in ppm using CHCl_{3} (7.26 ppm) in CDCl_{3} for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR as an internal standard, respectively. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and $b r$ (broadened). Mass spectra and HRMS were recorded on double-focusing magnetic sector by FAB methods.

[^1]
Preparation and Characterization of 3,5-Diynols 1c-e

In a light-shielded flask, a solution of 3-butyn-1-ol ($0.91 \mathrm{~mL}, 12 \mathrm{mmol}$), N-bromosuccinimide ($2.35 \mathrm{~g}, 13.2 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(0.20 \mathrm{~g}, 1.2 \mathrm{mmol})$ in acetone $(40 \mathrm{~mL})$ was stirred at room temperature for 2 h . After the solvent is distilled off under reduced pressure, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extraction solvent was concentrated in vacuo to give 4-bromo-3-butyn-1-ol ($1.76 \mathrm{~g}, 98 \%$). ${ }^{7}$
$\mathrm{CuCl}(0.20 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to a $30 \% \mathrm{n}-\mathrm{BuNH}_{2}(20 \mathrm{~mL})$ aqueous solution at room temperature. And then, until the resulting blue solution became colorless, hydroxylamine hydrochloride were added. After the solution was cooled to $0^{\circ} \mathrm{C}$, 3ethynylanisole ($1.32 \mathrm{~g}, 10 \mathrm{mmol}$), 2-ethynylanisole ${ }^{8}(1.32 \mathrm{~g}, 10 \mathrm{mmol})$ or 4-ethynyltoluene ($1.16 \mathrm{~g}, 10 \mathrm{mmol}$) was added, thereby forming in a yellow acetylide suspension. Subsequently, 4-bromo-3-butyn-1-ol ($1.76 \mathrm{~g}, 11.8 \mathrm{mmol}$) was added at same temperature. After being stirred at room temperature for 16 h , the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (hexane: $\mathrm{AcOEt}=3: 1$) to give $\mathbf{1 c}, \mathbf{1 d}$ or $\mathbf{1 e}$.

6-(3-Methoxyphenyl)hexa-3,5-diyn-1-ol (1c): 0.87 g (43\%). Brown oil. IR (neat) $\mathrm{v} \mathrm{cm}^{-1}$; $3370,1228,1042 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta \mathrm{ppm} ; 1.84$ (br.s, 1 H), $2.64(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{ddd}, J=8.1,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=2.7,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{dt},, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta \mathrm{ppm} ; 23.9$, $55.2,60.8,66.8,73.7,75.3,81.0,115.9,117.3,122.8,125.2,129.6,159.4$. HRMS(FAB): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 201.0916; found 201.0903.

6-(2-Methoxyphenyl)hexa-3,5-diyn-1-ol (1d): 1.52 g (76\%). Brown oil. IR (neat) $\mathrm{v} \mathrm{cm}^{-1}$; $3370,1245,1162,1044 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta \mathrm{ppm}$; 1.87 (br.s, 1 H), $2.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.79(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.82-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta \mathrm{ppm} ; 24.0,55.7,60.7,67.1,71.8,77.6,81.5$, $110.6,110.9,120.5,130.6,134.5,161.6$. HRMS(FAB): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 201.0916; found 201.0924.

6-(4-Methylphenyl)hexa-3,5-diyn-1-ol (1e): $1.58 \mathrm{~g}(86 \%)$. Brown oil. IR (neat) $\mathrm{vcm}^{-1} ; 3369$, 1044, 816. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta \mathrm{ppm} ; 2.19$ (br.s, 1H), 2.34 (s, 3H), 2.63 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.79(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta \mathrm{ppm} ; 21.4,23.8,60.7,66.8,73.3,75.6,80.6,118.5,129.2,132.5,139.5 . \operatorname{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]$ 185.0966; found 185.0943.

Domino Synthesis of 2,3-Dialkylidenetetrahydrofurans 3 and Characterization of 3 and 4da

To a solution of 3,5-diynol $\mathbf{1}(0.4 \mathrm{mmol})$, aldehyde $2(0.8 \mathrm{mmol})$ and methanol ($48.6 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) in dichloromethane $(\mathrm{DCM}, 2.5 \mathrm{~mL})$ was added $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(163.3 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for 8 h , the reaction mixture was quenched with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by PTLC (hexane: $\mathrm{AcOEt}=1: 1$) to give 3.

Scale-up preparation of 3aa: According to the above procedure, 3aa was prepared from 1a ($851 \mathrm{mg}, 5 \mathrm{mmol}$), benzaldehyde $(2 \mathbf{a}, 1.0 \mathrm{~mL}, 10 \mathrm{mmol})$, methanol $(0.61 \mathrm{~mL}, 15 \mathrm{mmol})$ and $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(2.0 \mathrm{~mL}, 15 \mathrm{mmol})$ in DCM (31 mL). After the purification by silica gel column chromatography (hexane: $\mathrm{AcOEt}=3: 1$), 3aa was obtained in the 81% yield ($1.12 \mathrm{~g}, 4.05$ mmol).

[^2]

(2Z)-2-[(E)-3-Benzylidenedihydrofuran-2(3H)-ylidene]-1-phenylethanone (3aa): $R_{\mathrm{f}}=0.25$. $88.1 \mathrm{mg}(80 \%)$. Yellow solid. MP: $116-118^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3054,1580,1248,1011 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.11(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.53(\mathrm{~m}, 7 \mathrm{H}), 7.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 29.0,72.1,90.4,127.5,127.6,128.2,128.76,128.81,129.4$, $131.5,134.2,135.5,140.3,168.8,188.3$. $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 277.1229; found 277.1241.
(2Z)-2-[(E)-3-(4-Nitrobenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone (3ab): $R_{\mathrm{f}}=0.27 .91 .8 \mathrm{mg}(71 \%)$. Yellow solid. MP: $172-174^{\circ} \mathrm{C}$. IR (KBr$) v \mathrm{~cm}^{-1} ; 3063,1561,1520$, $1344,1009 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.15(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{tt}, J=7.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{dt}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 29.3, 72.0, 91.7, 124.1, 124.6, 127.7, 128.4, 129.8, 131.9, 138.8, 139.9, 141.8, 147.2, 167.3, 188.4. HRMS(FAB): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}] 322.1079$; found 322.1056.
(2Z)-2-[(E)-3-(4-Fluorobenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone (3ac): $R_{\mathrm{f}}=0.19 .95 .9 \mathrm{mg}(81 \%)$. Yellow solid. MP: 114-116 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \vee \mathrm{cm}^{-1} ; 3066,1557,1252$, $1232,1012 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 3.08(\mathrm{td}, J=7.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{tt}$, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 28.9,72.1$, $90.4,115.9(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 126.3,127.7,128.3,131.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 131.6,131.8(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 133.8,140.3,162.7(\mathrm{~d}, \mathrm{~J}=249.3 \mathrm{~Hz}), 168.6,188.3$. $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]$ 295.1134; found 295.1145.
(2Z)-2-[(E)-3-(4-Bromobenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone
(3ad): $R_{\mathrm{f}}=0.24 .112 .1 \mathrm{mg}(79 \%)$. Yellow solid. MP: $125-127^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3057$, $1561,1249,1008 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.06(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 29.0,72.1,90.7,123.0,126.1,127.7,128.3,130.7,131.6,132.0$, 134.4, 135.0, 140.2, 168.4, 188.3. HRMS(FAB): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}] 355.0334$; found 355.0338 .
(2Z)-2-[(E)-3-(4-Methylbenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone
(3ae): $R_{\mathrm{f}}=0.21 .87 .8 \mathrm{mg}(75 \%)$. Yellow solid. MP: $121-123{ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3022,2919$, $1557,1252,1011 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.64$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{tt}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dt}, J=7.5,2.0 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 21.3, 28.9, 72.1, $90.1,127.5,127.6,128.2,129.4,129.5$, $131.4,132.7,133.0,139.1,140.3,169.1,188.2$. $\operatorname{HRMS}(F A B): m / z$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+$ H] 291.1385; found 291.1400.
(2Z)-2-[(E)-3-(4-Methoxybenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone
(3af): $R_{\mathrm{f}}=0.11 .29 .4 \mathrm{mg}(24 \%)$. Yellow amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2968,1511,1252,1173$, $1028,1010 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta \mathrm{ppm} ; 3.09(\mathrm{td}, J=7.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.55(\mathrm{~m}$, $5 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta \mathrm{ppm}$; 28.9, 55.3, 72.2, 89.9, 114.3, 127.4, 127.7, 128.31, 128.34, 131.2, 131.5, 131.6, 140.6, 160.2, 169.6, 188.4. HRMS(FAB): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 307.1334$; found 307.1348 .
(2Z)-2-[(E)-3-(3-Nitrobenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone (3ag): $R_{\mathrm{f}}=0.12 .91 .4 \mathrm{mg}(71 \%)$. Yellow solid. MP: $142-144{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\mathrm{cm}}{ }^{-1} ; 3070,1565,1526$, $1353,1011 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.18(\mathrm{td}, J=7.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 28.9,72.0,91.2,123.0,123.5,124.5,127.6,128.2$, 129.7, 131.7, 134.8, 137.1, 137.4, 139.8, 148.3, 167.5, 188.2. HRMS(FAB): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}] 322.1079$; found 322.1062.

(2Z)-2-[(E)-3-(3-Methoxybenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone
(3ah): $R_{\mathrm{f}}=0.18 .76 .0 \mathrm{mg}(62 \%)$. Brown amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2973,1562,1280,1238$, $1033,1011 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.13(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.51(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 29.1$, $55.3,72.2,90.5,114.3,114.9,121.9,127.4,127.7,128.3,129.8,131.6,134.5,136.8,140.3$, 159.7, 168.7, 188.3. HRMS(FAB): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 307.1334$; found 307.1320 .
(2Z)-2-[(E)-3-(2-Bromobenzylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone (3ai): $R_{\mathrm{f}}=0.15 .98 .2 \mathrm{mg}(69 \%)$. Yellow solid. MP: 113-114 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \vee \mathrm{cm}^{-1} ; 30557,1554,1246$, 1009. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.02(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ $(\mathrm{s}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dt}, J=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 28.8,72.0,91.2,125.1,126.3,127.4,127.7,128.3,129.5,130.0,131.7,133.2,135.4$, 136.6, 140.1, 167.9, 188.4. HRMS(FAB): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{2}[M+\mathrm{H}] 355.0334$; found 355.0338 .
(2Z)-2-\{(E)-3-[(E)-3-Phenylallylidene]dihydrofuran-2(3H)-ylidene\}1-phenylethanone
(3aj): $R_{\mathrm{f}}=0.24 .51 .3 \mathrm{mg}(42 \%)$. Yellow amorphous. IR (KBr) $v \mathrm{~cm}^{-1} ; 2974,1556,1233,1017$. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.00(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H})$, 6.84-6.96 (m, 2H), $7.05(\mathrm{dt}, J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta \mathrm{ppm} ; 27.2,71.9,90.5,124.8,127.0,127.1,127.6,128.2,128.8,131.5,134.8,136.4$, 138.3, 140.3, 167.8, 188.1. HRMS(FAB): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] 303.1385$; found 303.1379 .
(2Z)-2-[(E)-3-(cyclohexylmethylene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone
(3ak): $R_{\mathrm{f}}=0.30 .14 .3 \mathrm{mg}(13 \%)$. Yellow amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2926,1584,1228,1016$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 1.15-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{td}$, $J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{dt}, J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 7.42$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.47(\mathrm{tt}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dt}, J=7.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta \mathrm{ppm} ; 25.6,25.8,26.4,32.0,39.9,72.3,89.7,127.6,128.2,131.4,132.5,135.6,140.4$, 168.2, 188.3. $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] 283.1698$; found 283.1663.
(2Z)-2-[(E)-3-(2,2-Dimethylpropylidene)dihydrofuran-2(3H)-ylidene]-1-phenylethanone
(3al): $R_{\mathrm{f}}=0.36 .61 .9 \mathrm{mg}(60 \%)$. Yellow amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2960,1567,1242,1020$.
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 1.20(\mathrm{~s}, 9 \mathrm{H}), 2.89(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 26.7, 29.8, 33.7, 72.2, 89.4, 127.6, 128.2, 131.2, 131.3, 139.9, 140.5, 169.7, 188.3. HRMS(FAB): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+$ H] 257.1542; found 257.1579 .
(2Z)-2-[(E)-3-Benzylidenedihydrofuran-2(3H)-ylidene]-1-(4-methoxyphenyl)ethanone
(3ba): $R_{\mathrm{f}}=0.19 .92 .0 \mathrm{mg}(75 \%)$. Brown amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2973,1649,1600,1509$, $1248,1172,1023 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.11(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.61$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{tt}, J=$ $7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 29.1, 55.4, 72.0, $90.3,113.4,127.1,128.7,128.8,129.4,129.8,133.1,134.3,135.6,162.4$, 168.2, 187.1. $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 307.1334$; found 307.1370.
(2Z)-2-[(E)-3-Benzylidenedihydrofuran- $\mathbf{2 (3 H)}$-ylidene]-1-(3-methoxyphenyl)ethanone
(3ca): $R_{\mathrm{f}}=0.19 .68 .9 \mathrm{mg}(56 \%)$. Brown amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2971,1650,1562,1259$, 1020. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.12(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=8.5,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{dd}, J=3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 29.1, 55.4, 72.2, $90.5,112.5,117.7,120.1,127.6,128.8,128.9$, $129.2,129.4,134.2,135.5,141.8,159.6,168.9,188.0$. $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}] 307.1334$; found 307.1344.

(2Z)-2-[(E)-3-Benzylidenedihydrofuran-2(3H)-ylidene]-1-(3-methoxyphenyl)ethanone
(3da): $R_{\mathrm{f}}=0.20 .46 .1 \mathrm{mg}(38 \%)$. Brown amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2973,1598,1243,1023$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 3.09(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.63(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta \mathrm{ppm}$; 29.0, $55.8,72.0,95.4,111.4,120.7,127.2,128.65,128.70,129.3,129.9,131.6$, $131.8,134.3,135.6,157.2,167.3,189.7$. $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 307.1334; found 307.1341.
(E)-4-Benzylidene-6-hydroxy-1-(2-methoxyphenyl)hex-1-yn-3-one (4da): $R_{\mathrm{f}}=0.25 .14 .6$ $\mathrm{mg}(25 \%)$. Yellow oil. IR (neat) $\mathrm{v} \mathrm{cm}^{-1} ; 3430,2971,2197,1614,1277,1044 .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 2.06(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{td}, J=6.3,6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.60$ $(\mathrm{m}, 3 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 29.4,55.9,61.8,90.2,90.4,109.4,110.7$, 120.7, 128.8, 129.5, 129.7, 132.4, 134.8, 135.2, 139.4, 148.5, 161.7, 181.6. HRMS(FAB): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 307.1334$; found 307.1341.
(2Z)-2-[(E)-3-Benzylidenedihydrofuran-2(3H)-ylidene]-1-(p-tolyl)ethanone (3ea): $R_{\mathrm{f}}=$ $0.21 .76 .1 \mathrm{mg}(65 \%)$. Yellow amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2974,1607,1251,1181 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{td}, J=7.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 21.6,29.1,72.1,90.5,126.4,127.3$, $127.8,128.8,129.0,129.4,134.3,135.6,137.7,142.2,168.5,188.1$. HRMS(FAB): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 291.1385; found 291.1355.
(2Z)-2-[(E)-3-Benzylidenedihydrofuran-2(3H)-ylidene]-1-(4-nitrophenyl)ethanone (3fa): $R_{\mathrm{f}}=0.25 .29 .7 \mathrm{mg}(23 \%)$. Yellow solid. MP: 195-196 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v \mathrm{~cm}^{-1} ; 3068,1556,1520$, $1345,1025 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.16(\mathrm{td}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{tt}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 4 \mathrm{H})$, $8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 29.0,72.7$ 90.2 , 123.6, 128.6, 128.87, 128.92, 129.3, 129.6, 133.7, 135.2, 145.5, 149.4, 170.7, 186.3. HRMS(FAB): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}] 322.1079$; found 322.1111 .
(2Z)-1-[(E)-3-Benzylidenedihydrofuran-2(3H)-ylidene]hexan-2-one (3ga): $R_{\mathrm{f}}=0.43 .67 .0$ mg (65%). Colorless amorphous. IR (neat) $v \mathrm{~cm}^{-1} ; 2956,1618,1399$, 1033. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{sext}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63$ (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{td}, J=7.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H})$, $7.14(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}) \delta \mathrm{ppm} ; 13.9,22.5,27.0,29.1,43.1,71.5,95.7,127.2,128.6,128.7,129.2,133.5$, 135.6, 166.3, 199.7. HRMS(FAB): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] 257.1542$; found 257.1530 .

Preparation and Characterization of 4-En-1-yn-3-ones 4aa, 4aj or 4ak

To a solution of 3,5 -diynol $\mathbf{1 a}(68.1 \mathrm{mg}, 0.4 \mathrm{mmol})$ and aldehyde $\mathbf{2}(\mathbf{2 a}: 81.6 \mu \mathrm{~L}, 0.80 \mathrm{mmol} ; \mathbf{2 j}: 100.7 \mu \mathrm{~L}, 0.80 \mathrm{mmol}$; 2k: $96.5 \mu \mathrm{~L}, 0.80 \mathrm{mmol})$ in dichloromethane ($\mathrm{DCM}, 2.5 \mathrm{~mL}$) was added $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(163.3 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. After being stirred at same temperature for 2 h , the reaction mixture was quenched with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by PTLC (hexane:AcOEt $=2: 1$) to give 4aa, 4aj or 4ak.

(E)-4-Benzylidene-6-hydroxy-1-phenylhex-1-yn-3-one (4aa): $R_{\mathrm{f}}=0.30 .79 .6 \mathrm{mg}$ (72\%). Yellow oil. IR (neat) $v \mathrm{~cm}^{-1} ; 3429,2973,2876,1617,1277 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 2.07$ (br.s, 1H), $2.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38-7.48 (m, 6H), $7.57(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 29.4,61.7$, 86.0, 92.9, 120.2, 128.7, 128.8, 129.6, 129.7, 130.6, 132.8, 134.8, 139.4, 148.3, 181.4. HRMS(FAB): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}-\mathrm{OH}] 259.1123$; found 259.1135.

(4E,6E)-4-(2-Hydroxyethyl)-1,7-diphenylhepta-4,6-dien-1-yn-3-one (4aj): $R_{\mathrm{f}}=0.26 .68 .2$ $\mathrm{mg}(56 \%)$. Yellow solid. MP: $86-88{ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3345$, 2882, 1604. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 1.85(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{td}, J=6.3,5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.48(\mathrm{tt}, J=7.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 29.0, 61.9, 86.2, 92.0, 120.3, 123.7, 127.5, 128.6, 128.8, 129.5, $130.4,132.7,135.9,138.2,143.0,147.4,180.1$. $\operatorname{HRMS}(F A B): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+$ H] 303.1385; found 303.1394.
(E)-4-(Cyclohexylmethylene)-6-hydroxy-1-phenylhex-1-yn-3-one (4ak): $R_{\mathrm{f}}=0.46 .67 .1 \mathrm{mg}$ (61\%). Yellow oil. IR (neat) $v \mathrm{~cm}^{-1} ; 3437,2927,2202,1626 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm}$; $1.20-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.85(\mathrm{~m}, 5 \mathrm{H}), 2.48-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 25.3, 25.7, 28.9, 32.1, 38.5, $62.0,86.0,91.9,120.3,128.6,130.4,132.7,137.4,157.9,181.3$. HRMS(FAB): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}-\mathrm{OH}]$ 265.1592; found 265.1609.

Preparation of 2,3-Dialkylidenetetrahydrofuran 3aa from 4-En-1-yn-3-one 4aa

To a solution of 4-en-2-ynone 4aa ($110.5 \mathrm{mg}, 0.4 \mathrm{mmol}$) and methanol ($48.6 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) in dichloromethane (DCM, 2.5 $\mathrm{mL})$ was added $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(163.3 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 8 h , the reaction mixture was quenched with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by PTLC (hexane: $\mathrm{AcOEt}=1: 1, R_{\mathrm{f}}=0.25$) to give 3aa ($83.0 \mathrm{mg}, 75 \%$).

Preparation and Characterization of Dihydrobenzofuran 5

A solution of 2,3-dialkylidenetetrahydrofuran 3 aa ($27.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and dimethyl acetylenedicarboxylate (DMAD, $49 \mu \mathrm{~L}$, $0.4 \mathrm{mmol})$ in toluene (1 mL) was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After the reaction mixture was cooled to room temperature, 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, $22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added. After being stirred at same temperature for 2 h, the reaction mixture was quenched with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by PTLC (hexane: $\mathrm{AcOEt}=2: 1$) to give 5 ($17.9 \mathrm{mg}, 43 \%$).
Dimethyl 7-benzoyl-2,3-dihydro-4-phenylbenzofuran-5,6-dicarboxylate (5): $R_{\mathrm{f}}=0.34$. Yellow amorphous. IR (neat) $v \mathrm{~cm}^{-}$ ${ }^{1} ; 2975,1736,1671,1246,1035 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 3.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (dt, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 29.0, 52.1, 52.3, $72.5,121.1,127.5,128.0,128.1,128.4,128.5,129.2$, $130.0,131.3,133.4,136.8,136.9,139.0,157.8,166.1,168.1,193.2$. HRMS(FAB): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{6}$ [M] 416.1260; found 416.1272.

Preparation and Characterization of 4-En-1-yn-3-one 8

To a solution of diyne $7^{9}(72.9 \mathrm{mg}, 0.4 \mathrm{mmol})$, benzaldehyde ($2 \mathrm{a}: 81.6 \mu \mathrm{~L}, 0.80 \mathrm{mmol}$) and methanol ($48.6 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) in dichloromethane ($\mathrm{DCM}, 2.5 \mathrm{~mL}$) was added $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(163.3 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. After being stirred at same temperature for 8 h , the reaction mixture was quenched with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by medium-pressure liquid chromatography (MPLC, hexane: $\mathrm{AcOEt}=99: 1$, flow rate $20 \mathrm{~mL} / \mathrm{min}$) to give $8(69.4 \mathrm{mg}, 60 \%)$.
(E)-4-Benzylidene-1-phenyloct-1-yn-3-one (8): Colorless oil. IR (neat) $\mathrm{vcm}^{-1} ; 2200,1622 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm}$; $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.44($ sextet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 13.8,22.9,25.6,30.8,86.4,91.6$, 120.4, 128.55, 128.61, 129.14, 129.6, 130.3, 132.7, 135.4, 143.1, 145.2, 180.6. HRMS(FAB): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}$ [M+H] 289.1592; found 289.1605.

[^3]HMQC spectra of 3aa

3aa

HMBC spectra of 3aa

3aa

3aa

The chart on the right is an enlarged view ($6.2-8.2 \mathrm{ppm}$) of the above NOESY spectrum of 3aa. As shown in the enlarged view, NOE is not observed between H^{a} and H^{g} but between H^{a} and H^{h} or between H^{g} and H^{h}. Since $\mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{g}}$ and H^{h} are assigned as each proton in the structure of 3aa on the upper right, the stereochemistry of 3aa was determined as the illustrated structure.

HMQC spectra of 4aa

HMBC spectra of 4aa

The chart on the right is an enlarged view (7.0-8.5 ppm) of the above NOESY spectrum of 4aa. As shown in the enlarged view and above NOESY spectrum (red lines), NOE is observed between H^{a} and H^{c}, between H^{c} and H^{h} or between H^{c} and H^{i}. On the other hand, NOE is not observed between H^{a} and H^{h} or between $\mathrm{H}^{\text {a }}$ and H^{i}. Since $\mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{c}}, \mathrm{H}^{\mathrm{h}}$ and H^{i} are assigned as each proton in the structure of 4aa on the upper right, the stereochemistry of 4aa was determined as the illustrated structure.

HMQC spectra of $\mathbf{8}$

HMBC spectra of $\mathbf{8}$

NOESY spectra of $\mathbf{8}$

The chart on the right is an enlarged view (7.0-8.5 ppm) of the above NOESY spectrum of 8. As shown in the enlarged view and above NOESY spectrum (red lines), NOE is observed between H^{a} and H^{c}, between H^{c} and H^{h} or between H^{c} and H^{i}. On the other hand, NOE is not observed between H^{a} and H^{h} or between H^{a} and H^{i}. Since H^{a}, H^{c}, H^{h} and H^{i} are assigned as each proton in the structure of $\mathbf{8}$ on the upper right, the stereochemistry of $\mathbf{8}$ was determined as the illustrated structure.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds
${ }^{1}$ H NMR of 1c

1c

${ }^{13} \mathrm{C}$ NMR of 1c

1c

${ }^{1}$ H NMR of 1d

${ }^{13}$ C NMR of 1d

${ }^{1}$ H NMR of $\mathbf{1 e}$

1e

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 e}$

1 e

${ }^{1} \mathrm{H}$ NMR of 3aa

${ }^{13} \mathrm{C}$ NMR of 3aa

${ }^{1} \mathrm{H}$ NMR of 3ab

${ }^{13} \mathrm{C}$ NMR of 3ab

${ }^{1} \mathrm{H}$ NMR of 3ac

${ }^{13} \mathrm{C}$ NMR of 3ac

${ }^{1} \mathrm{H}$ NMR of 3ad

${ }^{13} \mathrm{C}$ NMR of 3ad

${ }^{1} \mathrm{H}$ NMR of 3ae

${ }^{13} \mathrm{C}$ NMR of 3ae

${ }^{1}$ H NMR of 3af

${ }^{13}$ C NMR of 3af

${ }^{1}$ H NMR of 3ag

${ }^{13} \mathrm{C}$ NMR of 3ag

${ }^{1}$ H NMR of 3ah

3ah

$$
\mathrm{Me}
$$

${ }^{13} \mathrm{C}$ NMR of 3ah

3ah

${ }^{1}$ H NMR of 3ai

${ }^{13} \mathrm{C}$ NMR of 3ai

${ }^{1} \mathrm{H}$ NMR of 3aj

${ }^{13} \mathrm{C}$ NMR of 3aj

3aj

${ }^{1}$ H NMR of 3ak

${ }^{13} \mathrm{C}$ NMR of 3ak

${ }^{1}$ H NMR of 3al

3al

${ }^{13} \mathrm{C}$ NMR of 3al

3al

${ }^{1} \mathrm{H}$ NMR of 3ba

3ba

${ }^{13} \mathrm{C}$ NMR of 3ba

${ }^{1} \mathrm{H}$ NMR of 3ca

${ }^{13} \mathrm{C}$ NMR of 3ca

${ }^{1}$ H NMR of 3da

${ }^{13} \mathrm{C}$ NMR of 3da

${ }^{1}$ H NMR of 3ea

${ }^{13} \mathrm{C}$ NMR of 3ea

${ }^{1} \mathrm{H}$ NMR of 3fa

${ }^{13} \mathrm{C}$ NMR of 3fa

3fa
$]_{76.75}^{-77.26}$
${ }^{1}$ H NMR of 3ga

${ }^{13} \mathrm{C}$ NMR of 3ga

${ }^{1} \mathrm{H}$ NMR of 4da

${ }^{13} \mathrm{C}$ NMR of 4da

${ }^{1} \mathrm{H}$ NMR of 4aa

${ }^{13} \mathrm{C}$ NMR of 4aa

4aa
${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a j}$

${ }^{13} \mathrm{C}$ NMR of 4aj

${ }^{1}$ H NMR of 4ak

${ }^{13} \mathrm{C}$ NMR of 4ak

${ }^{1}$ H NMR of 5

${ }^{13} \mathrm{C}$ NMR of 5

${ }^{1} \mathrm{H}$ NMR of 8

${ }^{13} \mathrm{C}$ NMR of 8

[^0]: ${ }^{1}$ K. Murai, K. Tateishi, A. Saito, Org. Biomol. Chem. 2016, 14, 10352-10356.
 ${ }^{2}$ J. S. Yadav, B. V. Subba Reddy, G. G. K. S. Narayana Kumar, T. Swamy, Tetrahedron Lett. 2007, 48, 2205-2208.

[^1]: ${ }^{3}$ Review: A. Saito, K. Tateishi, Heterocycles 2016, 92, 607-630.
 ${ }^{4}$ H. -F. Jiang, A. -Z. Wang, Synthesis 2007, 11, 1649-1654.
 ${ }^{5}$ S. Wang, Y. Li, H. Liu, J. Li, T. Li, Y. Wu, S. Okada, H. Nakanishi, Org. Biomol. Chem. 2015, 13, 5467-5474.
 ${ }^{6}$ S. H. Kang, K. S. Jang, P. Theato, R. Zentel, J. Y. Chang, Macromolecules 2007, 40, 8349-8354.

[^2]: ${ }^{7}$ A. H. Cherney, S. H. Reisman, J. Am. Chem. Soc. 2014, 136, 14365-14368.
 ${ }^{8}$ M. Tsuji, J. Org. Chem. 2003, 68, 9589-9597.

[^3]: ${ }^{9}$ Y. Matsuda, S. Naoe, S. Oishi, N. Fujii, H. Ohno, Chem. Eur. J. 2015, 21, 1463-1467.

