Supporting Information

Visible light-erasable oxide FET-based non-volatile memory operated with deep trap interface

Taeyoon Kim^{†, ‡}, Jung Wook Lim^{†,‡,}*, Seong Hyun Lee[†], Jeho Na[†], Jiwoon Jeong[†], Kwang Hoon Jung^{†,‡}, Gayoung Kim^{†,‡}, and Sun Jin Yun^{†,‡,}*

[†] ICT Materials Research Group, Materials & Components Basic Research Division, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, South Korea

[‡] Department of Advanced Device Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, South Korea

*Corresponding authors: J. W. Lim, limjw@etri.re.kr; S. J. Yun, sjyun@etri.re.kr

PEALD and in-situ H₂-plasma treatment

Figure S1 shows the pulse sequence of the PEALD used to deposit the Al₂O₃ and TiO₂ films.^{1,2} The Al and Ti metal precursors were trimethyl aluminum (TMA) and titanium (IV) tetraisoproxide (TTIP), respectively, and O₂ plasma was used as the oxygen source. The reservoirs of TMA and TTIP were kept at 25 °C and 70 °C, respectively. Argon carrier gas was supplied with a flow rate of 100 sccm. The Al₂O₃ and TiO₂ films were deposited at a temperature and RF power of 300 °C and 150 W, respectively. The growth rates of Al₂O₃ and TiO₂ were 1.11 Å per cycle and 0.46 Å per cycle, respectively. For the in-situ H₂-plasma treatment, hydrogen was supplied with a flow rate of 200 sccm, and the same temperature and RF power were used.

Surface roughness of Al₂O₃ and TiO₂ films measured using AFM

Figure S2 (a) and (b) show the 2D and 3D AFM images, respectively, of an 80 nm Al₂O₃ thin film deposited by PEALD at 300 °C on a Si substrate. The average surface roughness was 0.21 nm, indicating that the Al₂O₃ thin film had a very flat surface, even at a thickness of 80 nm. Figure S2 (c) and (d) show AFM images of a 30 nm TiO₂ thin film deposited by PEALD at 300 °C on the Al₂O₃ film. The surface roughness value increased to 1.68 nm after TiO₂ deposition. This means that the 30 nm TiO₂ was crystallized (anatase phase) on the Al₂O₃ film during deposition at 300 °C.

Characterization of the electrical properties of the TOFDI TiO₂ flash memory devices.

The threshold voltage (V_{th}) of 0.5 V was calculated from the slope of the square root of the drain current ($I_D^{1/2}$) vs. V_G curve shown in Figure 4 (c). The field-effect mobility (μ_{FE}) for the device with a channel length/width (L/W) = 10 μ m/40 μ m, as shown in Figure 4 (c), was 1.2 cm²V⁻¹s⁻¹,

superior to the values previously reported for TiO₂ MOSFETs (μ_{FE} : 0.672 cm²V⁻¹s⁻¹) fabricated using ALD.³ The μ_{FE} was determined using the following equation⁴:

$$\mu_{FE} = \frac{Lg_m}{WC_{ox}V_D} \tag{1}$$

where, g_m and C_{ox} are the transconductance (obtained from I_D vs. V_G curves) and the capacitance per unit area of the gate insulator, respectively.

Electrical characteristics of the devices fabricated with and without H₂ treatment

Figure S3 (a) and (b) show the hysteresis of the transfer curves for the devices prepared with and without H₂ treatment. From the forward ($V_G = -20$ to 30 V) and subsequent reverse sweeps (30 to -20 V), the samples with and without H₂ plasma treatment typically showed clockwise hysteresis. This indicates that the trapped mobile carriers were a dominant factor contributing to the hysteresis.⁵ The magnitude of the threshold voltage shift (ΔV_{th}) for the sample without H₂ treatment was 9.5 V, while those for the H₂-treated samples at 12 s and 24 s were 5 V and 3 V, respectively, as shown in Table S1. The magnitude of ΔV_{th} did not decrease further as the treatment time increased to 36 s. This demonstrated that the hydrogen atoms effectively passivated the shallow trap sites.

Breakdown characteristic curve of Al₂O₃ and the gate current measured with the programming voltage

The breakdown characteristic curve of 80 nm-thick Al_2O_3 was measured, as shown in Figure S4(a). In the previous paper published in our group, the breakdown electric field of 30 nm-thick Al_2O_3 deposited using the same equipment as this experiment was 10 MV/cm.⁶ Similarly, the breakdown electric field of 80 nm-thick Al_2O_3 was 10 MV/cm (Figure S4(a)). Also, we

measured the gate current with the programming voltage of 50 V (Figure S4(b)). This result shows that gate current (I_G) were 5-orders of magnitude lower than I_D .

Energy band diagrams and memory operations

To well understand the electrical program and VL erase mechanisms of the TOFDI TiO₂ memory, we added the energy band diagrams and memory operations. Figure S5(a) shows energy band diagrams and initial state in the TOFDI TiO₂ memory. Note that the shallow level trap and deep level trap at the interface are relative concepts. The trap levels above E_F is referred to as the shallow level and the one below E_F is referred to as the deep level.^{7,8} In Figure S5(b), when a positive V_G pulse was applied for programming the memory, shallow and deep trap sites at the interface between TiO₂ and Al₂O₃ capture electrons in the channel. The trapped electrons recombine with holes photo-generated by the VL irradiation (Figure S5(c)) to form neutral trap sites, and the initial state can be fully recovered (Figure S5(a)).

Cycling tests of the TOFDI TiO₂ memory

The cycling tests for 100 times were performed, as shown in Figure S6. We cautiously claim that the cycling tests for 100 times show the stability of memory operation pretty well because the degradation of device characteristics usually occurs very early.

Supplementary Table and Figures

Table S1. Electrical properties of TOFDI TiO_2 flash memory devices prepared with or without H_2 treatment.

H ₂ treatment time	μ_{FE} (cm ² V ⁻¹ s ⁻¹)	V _{th} (V)	On/off ratio	Hysteresis (ΔV_{th})
0 s	1.2 (σ = 0.09)	- 0.5 (σ = 1)	~ 10 ⁷	9.0 (σ = 0.61)
12 s	1.5 (σ = 0.09)	- 2.0 (σ = 0.35)	~ 10 ⁷	5.1 (σ = 0.55)
24 s	$1.4 (\sigma = 0.04)$	- 2.7 (σ = 0.42)	~ 10 ⁷	3.1 (σ = 0.47)
36 s	1.4 ($\sigma = 0.10$)	- 3.1 (σ = 0.22)	~ 10 ⁷	3.2 (o = 0.21)

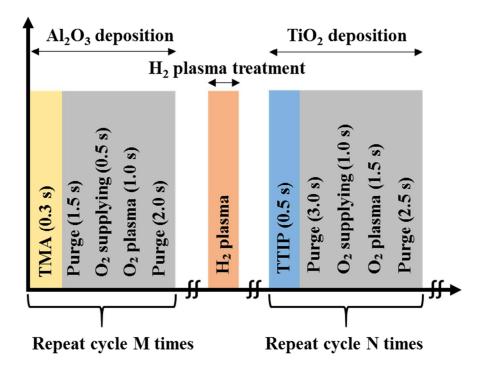
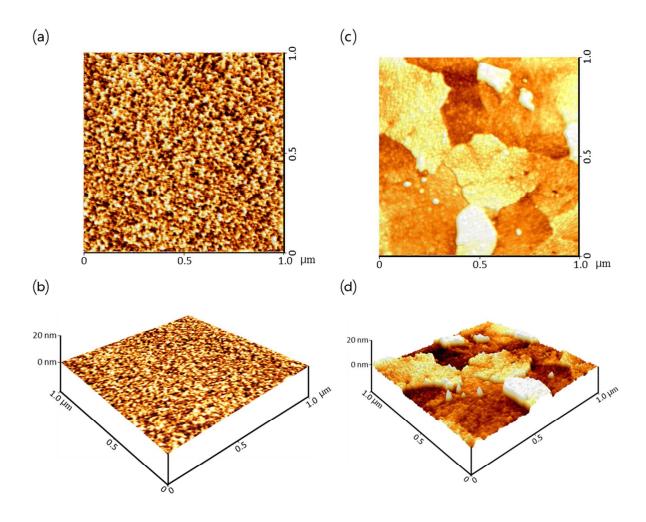



Figure S1. Schematic diagram showing the PEALD process and in-situ H_2 plasma treatment process for preparing the Al_2O_3 and TiO_2 films.

Figure S2. (a, c) 2D and b, d) 3D AFM micrographs (1 μ m × 1 μ m) for (a, b) Al₂O₃ thin films deposited on Si substrates and (c, d) TiO₂ thin films deposited onto the Al₂O₃ films. The root mean square (rms) surface roughness of the Al₂O₃ and TiO₂ films are 0.21 nm and 1.68 nm, respectively.

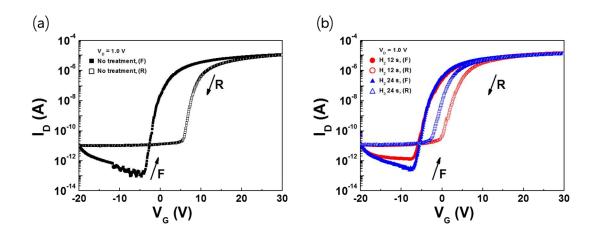


Figure S3. Transfer characteristics of TiO_2 MOSFETs with (a) no H₂-treatment and (b) under various H₂ treatment conditions, where F and R refer to forward and reverse directions, respectively.

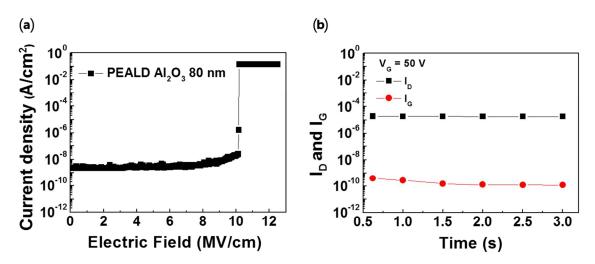


Figure S4 (a) breakdown characteristic curve of Al_2O_3 and (b) the gate current measured with the programming voltage of 50 V (L/W = 10 μ m/40 μ m).

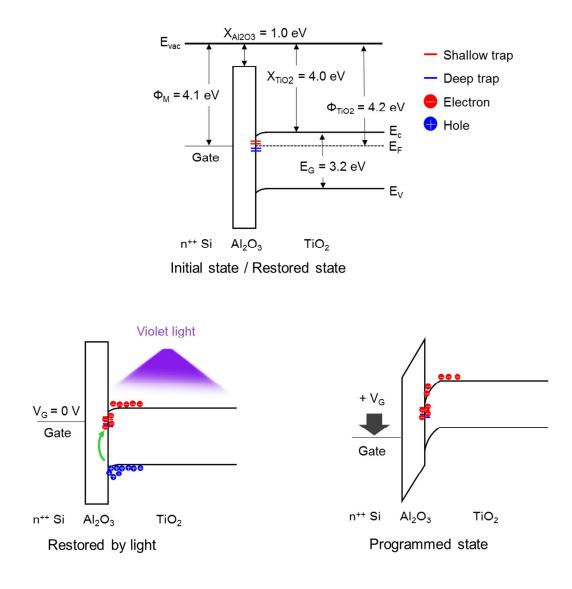


Figure S5. Schematic illustration of the mechanisms of the restoration procedure of the device, depicting the (a) initial state, (b) saturated state and (c) restoration by VL irradiation. (Φ_M : The work function of gate metal, Φ_{TiO2} : The work function of TiO₂, X_{Al2O3} : The electron affinity of Al₂O₃, X_{TiO2} : The electron affinity of TiO₂, E_G = Energy band gap, E_C = conduction band energy, E_F = Fermi energy level, E_V = valance band energy)

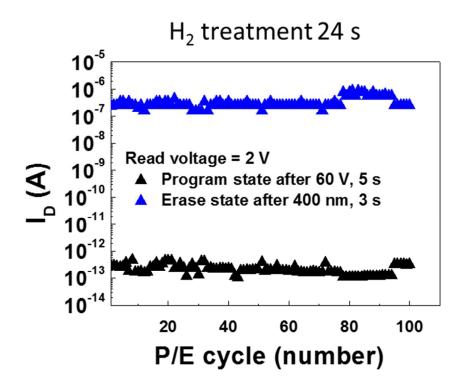


Figure S6. Program/erase (P/E) cycling tests of the TOFDI TiO₂ memory showing high reliability.

Supplementary references

- [1] Lim, J. W.; Yun, S. J. Electrical Properties of Alumina Films by Plasma-Enhanced Atomic Layer Deposition. *Electrochem. Solid State Lett.* 2004, 7, F45–F48.
- [2] Lim, J. W.; Yun, S. J.; Lee, J. H. Characteristics of TiO₂ Films Prepared by ALD With and Without Plasma. *Electrochem. Solid State Lett.* 2004, 7, F73–F76.
- [3] Teherani, F. H.; Okyay, A. K.; Oruç, F.; Çimen, F.; Aygün, L. E.; Look, D. C.; Rogers, D. J. TiO₂ Thin Film Transistor by Atomic Layer Deposition. *Proc. SPIE* 2013, *8626*, 862616.
- [4] Schroder, D. K. Semiconductor Material and Device Characterization. John Wiley & Sons: 2006.
- [5] Ye, Z.; Yuan, Y.; Xu, H.; Liu, Y.; Luo, J.; Wong, M. Mechanism and Origin of Hysteresis in Oxide Thin-Film Transistor and Its Application on 3-D Nonvolatile Memory. *IEEE Trans. Electron Devices* 2017, 64, 438–446.
- [6] Lee, D. J.; Lim, J. W.; Mun, J. K.; Yun, S. J. Improved stability of electrical properties of nitrogen-added Al₂O₃ films grown by PEALD as gate dielectric. *Materials Research Bulletin* 2016, 83, 597-602
- [7] Crupi, I.; Degraeve, R.; Govoreanu, B.; Brunco, D. P.; Roussel, P. J.; Van Houdt, J. Energy and Spatial Distribution of Traps in SiO₂/Al₂O₃ nMOSFETs. *IEEE Trans. Device* and Materials Reliability 2006, 6 (4), 509-516.

[8] Zheng, X. F.; Zhang, W. D.; Govoreanu, B.; Aguado, D. R.; Zhang, J. F.; Van Houdt, J. Energy and Spatial Distributions of Electron Traps Throughout SiO₂/Al₂O₃ Stacks as the IPD in Flash Memory Application. *IEEE Trans. Electron Devices* 2010, *57* (1), 288-296.