The effect of charcoal in cigarette filters on free radicals in mainstream smoke

Reema Goel[†], Zachary T. Bitzer[‡], Samantha M. Reilly[†], Gurkirat Bhangu[†], Neil Trushin[†], Ryan J. Elias[‡], Jonathan Foulds[†], Joshua Muscat[†], John P. Richie, Jr^{†,*}.

[†]Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA 17033.

[‡]Department of Food Science, Pennsylvania State University, College of Agricultural Sciences, University Park, PA.

*Corresponding Author. Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, 500 University Dr. – Mail Code: CH69, Hershey, PA, USA 17033. Phone: 717-531-5381; E-mail: jrichie@psu.edu

Table of Contents:	
Table S1Pg	S2.

Table S1: Filtration properties of the three different types of activated charcoal selected in this

study to examine effects on cigarette mainstream free radical and nicotine levels.

Charcoal Type	Name	Description	Mesh Size	Sampling properties
A	Anasorb 747	Beaded active carbon	20/40	High surface area Capacity for organic vapors similar to petroleum-based and coconut-shell charcoal Effective collector of non-polar and polar organic compounds Normally used with solvent desorption. Recommended Temperature Limit 350 C (Maximum temperature limit with a nitrogen purge.)
В	Anasorb CSC	Coconut-shell Charcoal	20/40	High surface area for sampling a broad range of primarily nonpolar compounds Recommended Temperature Limit 900 C. (Maximum temperature limit with a nitrogen purge.)
С	Anasorb JXC	Charcoal derived from residue of petroleum products	20/40	High surface area for sampling a wide range of both polar and non-polar products Recommended Temperature Limit 750 C (Maximum temperature limit with a nitrogen purge.)