Supporting Information

Visible-Light-Activated Catalytic Enantioselective β -Alkylation of α,β -Unsaturated 2-Acyl Imidazoles Using Hantzsch Esters as Radical Reservoirs

Francisco F. de Assis, ^{1,2} Xiaoqiang Huang, ² Midori Akiyama, ³ Ronaldo A. Pilli ¹ and Eric Meggers* ²

¹Instituto de Química, Universidade Estadual de Campinas, 13084-971 Campinas - SP, Brazil

²Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany

³Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Japan

*meggers@chemie.uni-marburg.de

TABLE OF CONTENTS

1. Cyc	lic voltammetry of 2a	S2
2. HP	LC Traces	S3
3. NM	R SpectraS	18

1. Cyclic voltammetry of 2a

Voltammetric experiments were conducted with a computer controlled Eco Chemie AutolabPGSTAT204 potentiostat in a Metrohm electrochemical cell containing a 1 mm diameter planar platinum electrode, a Pt wire electrode and a Ag/AgCl/KCl (3 M) reference electrode. The solution used for the voltammetric experiment was deoxygenated by nitrogen gas and measurement was performed at room temperature (22 \pm 2 $^{\rm o}$ C). As shown in Figure S1, Hantzsch ester **2a** could be oxidized in a chemically irreversible process with $E_p^{\rm ox}=+1.03$ V vs. Ag/AgCl.

Figure S1. CV of a 0.1 M solution of 2a in CH_2Cl_2 containing 0.1 M n-Bu₄NPF₆ at a scan rate = 0.1 V/s.

2. HPLC Traces

Enantiomeric purities of the reaction products were determined with a Daicel Chiralpak AD-H, OD-H or OJ-H (250×4.6 mm) HPLC column on an Agilent 1200 or 1260 Series HPLC System using hexane/isopropanol as a mobile phase. The column temperature was 25 °C and UV-absorption was measured at 254 nm.

Peak	RetTime	Type	Width	Area	Height	Area	
	_		_	[mAU*s]	_		
1	10.239	MM R	0.4395	624.47174	23.67918	3.6794	
2	11.401	MM R	0.3757	1.63474e4	524.75500	96.3206	

Figure S2. HPLC trace of (R)-3a.

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							I
1	13.584	MM R	0.9925	399.65662	6.71100	2.6690	
2	22.299	MM R	1.8742	1.45743e4	129.60355	97.3310	

Figure S3. HPLC trace of (*R*)-3b.

Peak	${\tt RetTime}$	tTime Type Width Area		rea	Height		Area			
#	[min]			[min]	mAU	*s	[mAU]	%	
			- -							
1	17.235	MF	R	0.8451	233	.57275	4.0	60662	4.6430	
2	18.903	FM	R	0.9733	4797	.03809	72.0	63154	95.3570	

Figure S4. HPLC trace of (R)-3c.

F	Peak	RetTime	Type	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	%	
	1	15.226	MM R	1.0045	208.04187	3.45174	2.6822	
	2	26.726	MM R	1.9288	7548.20703	65.22422	97.3178	

Figure S5. HPLC trace of (R)-3d.

Peak	ak RetTime Type W		Width Area		Height		Area		
#	[min]		[min]	mAU	*s	[mAU]	용	
1	10.353	BB	0.5978	249	.55544	6.4	1751	2.1674	
2	15.597	BB	1.1105	1.12	645e4	156.7	77347	97.8326	

Figure S6. HPLC trace of (*R*)-3e.

Figure S7. HPLC trace of rac-3f.

Figure S8. HPLC trace of (*R*)-3f.

13.819 BV 0.7154 4698.74902 100.14457 42.5825 2 15.082 VB 0.8953 6335.71240 102.05298 57.4175

Figure S9. HPLC trace of rac-3g.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	13.514	BV E	0.4371	151.46977	4.07099	3.7684
2	14.779	VV R	0.5980	3868.02808	77.26643	96.2316

Figure S10. HPLC trace of (R)-3g.

Peak	RetTime	Туре	Width	Area	Height	Area	
# [min]		[min]	[mAU*s]	[mAU]	%		
1	8.426	MF F	0.5495	282.95898	8.58157	3.3946	
2	9.890	FM R	0.6525	8052,58984	205.69638	96,6054	

Figure S11. HPLC trace of (*R*)-3h.

Figure S12. HPLC trace of (*R*)-3i.

Figure S13. HPLC trace of rac-3j.

Figure S14. HPLC trace of (*R*)-3j.

Figure S15. HPLC trace of rac-3k.

Figure S16. HPLC trace of (R)-3k.

Figure S17. HPLC trace of *rac-*3l.

Figure S18. HPLC trace of (S)-3l.

Figure S19. HPLC trace of (*R*)-3m.

Figure S20. HPLC trace of rac-3n.

Figure S21. HPLC trace of (R)-3n.

Figure S22. HPLC trace of (*S*)-**30**.

338.95990 98.5791

0.5718 1.33978e4

2 12.163 BB

3. NMR Spectra

Figure S23. ¹H spectrum of S1.

Figure S24. ¹³C spectrum of S1.

Figure S25. ¹H spectrum of 1f.

Figure S26. ¹³C spectrum of 1f.

Figure S27. ¹H spectrum of 2c.

Figure S28. ¹³C spectrum of 2c.

Figure S29. ¹H spectrum of 2d.

Figure S30. ¹³C spectrum of 2d.

Figure S31. ¹H spectrum of 2f.

Figure S32. ¹³C spectrum of 2f.

Figure S33. ¹H spectrum of 3a.

Figure S34. ¹³C spectrum of **3a**.

Figure S35. ¹H spectrum of 3b.

Figure S36. ¹³C spectrum of 3b.

Figure S37. ¹H spectrum of 3c.

Figure S38. ¹³C spectrum of **3c**.

Figure S39. ¹H spectrum of 3d.

Figure S40. ¹³C spectrum of 3d.

Figure S41. ¹H spectrum of 3e.

Figure S42. ¹³C spectrum of **3e**.

Figure S43. ¹H spectrum of 3f.

Figure S44. ¹³C spectrum of **3f**.

Figure S45. ¹H spectrum of 3g.

Figure S46. ¹³C spectrum of 3g.

Figure S47. ¹H spectrum of 3h.

Figure S48. ¹³C spectrum of 3h.

Figure S49. ¹H spectrum of 3i.

Figure S50. ¹³C spectrum of 3i.

Figure S51. ¹H spectrum of 3j.

Figure S52. ¹³C spectrum of 3j.

Figure S53. ¹H spectrum of 3k.

Figure S54. ¹³C spectrum of 3k.

Figure S55. ¹H spectrum of 3l.

Figure S56. ¹³C spectrum of 3l.

Figure S57. ¹H spectrum of 3m.

Figure S58. ¹³C spectrum of **3m**.

Figure S59. ¹³C spectrum of 3n.

Figure S60. ¹³C spectrum of 3n.

Figure S61. ¹H spectrum of 30.

Figure S62. ¹³C spectrum of 3o.