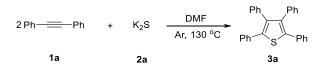
Supporting information for

Trisulfur Radical Anion (S₃⁻) Involved [1+2+2] and [1+3+1] Cycloaddition with Aromatic Alkynes: Synthesis of Tetraphenylthiophene and 2-Benzylidenetetrahydrothiophene Derivatives

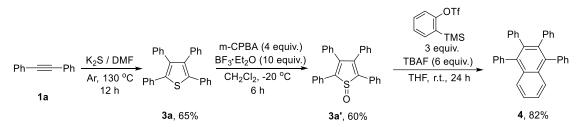
Jing-Hao Li, Qi Huang, Shun-Yi Wang,* and Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China. E-mail: shunyi@suda.edu.cn; shunjun@suda.edu.cn


Table of Contents

1. General Information	S3
2. Synthesis of tetraphenylthiophene 3a	S3
3. Synthesis of 1,2,3,4-Tetraphenylnaphthalene 4	S3
4. Synthesis of 2-benzylidenetetrahydrothiophene 6a and	
(<i>Z</i>)-2-benzylidenetetrahydrothiophene 1-oxide 7	S4
5. Screenings of two Reactions' Conditions	S5
6. Radical-trapping experiments	S6
7. Investigation of the Hydrogen Source in [1+3+1] cycload	ddition
Reaction	S6
8. ESR Experiments	S7
9. Spectroscopic Data of Compounds	S8
10. Unsuccessful examples	S17
11. Copies of ¹ H NMR and ¹³ C NMR Spectra for Compounds	S18
12. X-ray Structure of 3a and 7	S50

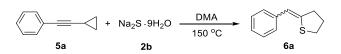
1. General Information


Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade and used without further purification. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 300-400 mesh silica gel was used. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 400 MHz spectrometer in CDCl₃ or DMSO-*d*₆. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 2.50) for ¹H NMR. Chemical shifts of ¹³C NMR are reported relative to CDCl₃ (δ 77.16) or DMSO-*d*₆ (δ 39.52). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). Melting points were measured on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained by using BRUKER MICROTOF-Q III instrument with EI source. ESR spectra were detected by JES-X320 electron spin-resonance instrument.

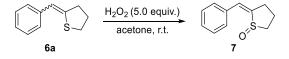
2. Synthesis of tetraphenylthiophene 3a

A mixture of 1,2-diphenylethyne **1a** (0.60 mmol) and K₂S **2a** (0.60 mmol) in 2.5 mL dry DMF was stirred under an Ar atmosphere at 130 °C for 12 h. After completion of the reaction, as indicated by TLC, water (10 mL) was added, and the solution was extracted with ethyl acetate (3 × 15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography using n-hexane on silica gel to afford **3a** in 69% yield. All remaining Polyarylsubstituted thiophenes (except **3j'**, **3k**, **3l**) were prepared using a procedure similar to that used to synthesize **3a**. The **3j'** was purified by flash column chromatography (hexane/EtOAc = 4:1) and The **3k** and **3l** were purified by flash column chromatography (CH₂Cl₂/CH₃OH = 15:1) to afford pure product.

3. Synthesis of 1,2,3,4-Tetraphenylnaphthalene 4


A 50-mL two-necked flask, containing a magnetic stirring bar, was flame-dried under vacuum and filled with argon after cooling to room temperature. To this flask were added 1,2-diphenylethyne **1a** (356mg, 2.0 mmol) and K_2S **2a** (221mg, 2.0 mmol), dry DMF (8 mL) under a stream of argon. The flask was

heated at 130 °C for 12 h. After cooling the reaction mixture to room temperature, the mixture was extracted with ethyl acetate, dried over with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography using n-hexane on silica gel to afford tetraphenylthiophene **3a** (253mg, 65% yield) as a white solid.


A 50-mL two-necked flask, containing a magnetic stirring bar, was flame-dried under vacuum and filled with Argon after cooling to room temperature. To this flask were tetraphenylthiophene **3a** (253 mg, 0.65 mmol, 1.0 equiv) and dry CH₂Cl₂ (3.0 mL). After cooling to $-20 \ \text{C}$, BF₃ OEt₂ (816 µL, 6.5 mmol, 10 equiv) was added under a stream of Argon. After stirring the mixture at $-20 \ \text{C}$ for 1 h, a solution of m-CPBA (0.65 mmol, 1.0 equiv) in CH₂Cl₂ (1.5 mL) was slowly added (four times every hour), and the resultant mixture was further stirred at $-20 \ \text{C}$ for 1 h. The reaction was quenched by adding saturated Na₂S₂O₃ aqueous solution and saturated NaHCO₃ aqueous solution. The mixture was extracted with CH₂Cl₂, dried over with Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (CHCl₃) to afford 2,3,4,5-tetraphenylthiophene 1-oxide **3a**' (158 mg, 60% yield) as a yellow solid.

A 25-mL screw cap tube, containing a magnetic stirring bar, was flame-dried under vacuum and filled with Argon after cooling to room temperature. To this tube were added **3a'** (162 mg, 0.4 mmol, 1.0 equiv), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (358 mg, 1.2 mmol, 3.0 equiv) and THF (2.0 mL) under a stream of nitrogen. Tetrabutylammonium fluoride (TBAF: 2.4 mL, 2.4 mmol, 6.0 equiv, 1M in THF) was slowly added. The reaction mixture was stirred at room temperature for 24 h. After adding water (20 mL) and CH₂Cl₂ (20 mL) to the mixture, cooling the resultant was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and the volatiles were removed under reduced pressure. The volatiles were removed under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 10:1) to afford 1,2,3,4-Tetraphenylnaphthalene **4** (142 mg, 82% yield) as a white solid.

4. Synthesis of 2-benzylidenetetrahydrothiophene 6a and (Z)-2-benzylidenetetrahydrothiophene 1-oxide 7

A mixture of (cyclopropylethynyl)benzene **5a** (0.50 mmol) and Na₂S 9H₂O **2b** (1.0 mmol) in 2.5 mL DMA was stirred at 150 °C for 9 h. After completion of the reaction, as indicated by TLC, water (10 mL) was added, and the solution was extracted with ethyl acetate (3×15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography using n-hexane on silica gel to afford **6a** in 69% yield. All remaining 2-benzylidenetetrahydrothiophene were prepared using a procedure similar to that used to synthesize **6a**.

A 25-mL test tube which contains a magnetic stirring bar were added **6a** (88 mg, 0.5 mmol, 1.0 equiv), and acetone (3.0 mL). H₂O₂ (2.5 mmol, 5.0 equiv, 30% in water) was slowly added at 0 $^{\circ}$ C. Then the reaction mixture was stirred at room temperature for 24 h. Water (10 mL) was added, and the solution was extracted with ethyl acetate (3 × 15 mL). The organic layer was dried over Na₂SO₄ and the volatiles

were removed under reduced pressure. The volatiles were removed under reduced pressure. The residue was purified by flash column chromatography using ethyl acetate on silica gel to afford (Z)-2-benzylidenetetrahydrothiophene 1-oxide **7** (82 mg, 85% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, J = 7.1 Hz, 2H), 7.45 – 7.32 (m, 3H), 7.09 (s, 1H), 3.15 (dq, J = 8.3, 6.0, 4.4 Hz, 2H), 2.86 – 2.62 (m, 3H), 2.22 – 2.10 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 148.2, 135.9, 135.3, 129.2, 128.9, 128.7, 54.5, 33.3, 23.2.

5. Screenings of two Reactions' Conditions

Entry	Sulfur reagents	Solvent	Temperature	LC-Yield ^b
	(mmol)	(2.5 mL)	(°C)	(%)
1	K ₂ S (0.36)	DMF	120	65(48) ^c
2	Na ₂ S [.] 9H ₂ O (0.36)	DMF	120	36
3	S ₈ +NaO'Bu (0.36)	DMF	120	trace
4	Na ₂ S ₂ O ₃ (0.36)	DMF	120	N.D
5	Thiourea(0.36)	DMF	120	N.D
6	K ₂ S (0.36)	DMSO	120	52
7	K ₂ S (0.36)	DMA	120	40
8	K ₂ S (0.36)	Toluene	120	trace
9	K ₂ S (0.36)	H ₂ O	120	$N.D^d$
10	K ₂ S (0.36)	CH ₃ CN	120	<10
11	K ₂ S (0.36)	DMF	r.t.	N.D
12	K ₂ S (0.36)	DMF	80	N.D
13	K ₂ S (0.36)	DMF	110	49
14	K ₂ S (0.36)	DMF	130	$70(63)^{c}$
15	K ₂ S (0.36)	DMF	140	68
16	K ₂ S (0.36)	DMF	150	69
17	K ₂ S (0.45)	DMF	130	73
18	K ₂ S (0.6)	DMF	130	78(69) ^c
19	K ₂ S (0.9)	DMF	130	78
20	K ₂ S (1.2)	DMF	130	77

Table 1. Optimization of the cycloaddi	tion reaction conditions
--	--------------------------

^{*a*}Reaction Conditions: **1a** (0.6 mmol), Sulfur reagents (X mmol), solvent (2.5 mL) under argon atmosphere for 12 h. ^{*b*}The yields were determined by LC analysis using biphenyl as the internal standard. ^{*c*}Isolated yields. ^{*d*}N.D. = no target product detected.

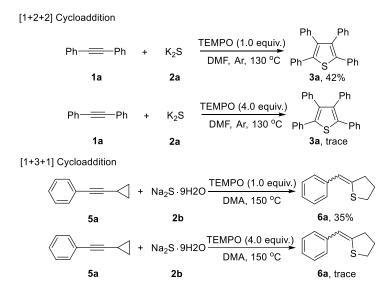
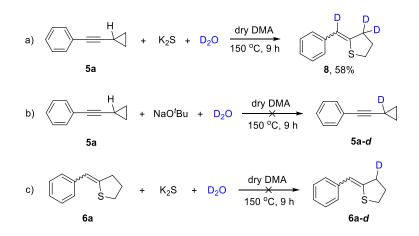
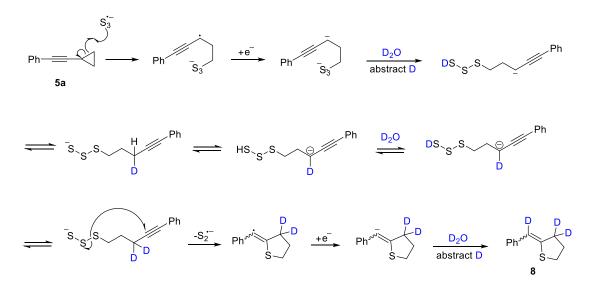

Entry	Sulfur reagents	Slovent	Tempurature	LC-Yield ^b
	(equiv.)	(2.5 mL)	(°°)	(%)
1	$K_2S(2.0)^e$	DMF	130	48(35) ^c
2	K ₂ S (2.0)	DMF	130	60
3	Na ₂ S·9H ₂ O (2.0)	DMF	130	67(56) ^c
4	S ₈ +NaO'Bu (2.0)	DMF	130	trace
5	$Na_2S_2O_3(2.0)$	DMF	130	N.D
6	Thiourea(2.0)	DMF	130	N.D

Table 2. Optimization of the ring expansion reaction conditions


7	Na ₂ S [.] 9H ₂ O (2.0)	DMSO	130	40
8	Na ₂ S [.] 9H ₂ O (2.0)	DMA	130	trace
9	Na ₂ S [.] 9H ₂ O (2.0)	toluene	130	N.D
10	Na ₂ S [•] 9H ₂ O (2.0)	DMA	140	73
11	Na ₂ S [.] 9H ₂ O (2.0)	DMA	150	79(69) ^c
12	Na ₂ S [.] 9H ₂ O (2.0)	DMA	160	70
13	Na ₂ S [•] 9H ₂ O (2.0)	NMP ^f	160	N.D
14	Na ₂ S [.] 9H ₂ O (2.0)	Mesitylene	170	N.D
15	Na ₂ S·9H ₂ O (1.5)	DMA	150	71
16	Na ₂ S·9H ₂ O (3.0)	DMA	150	79

^{*a*}Reaction Conditions: **5a** (0.5 mmol), **Sulfur reagents** (X equiv.), solvent (2.5 mL) for 9 h. ^{*b*}The yields were determined by LC analysis using biphenyl as the internal standard. ^{*c*}Isolated yields. ^{*d*}N.D. = no target product detected. ^{*e*}The reaction was conducted under argon atmosphere. ^{*f*}NMP = 1-Methyl-2-pyrrolidinone.

6. Radical-trapping experiments


7. Investigation of the Hydrogen Source in [1+3+1] cycloaddition Reaction

As shown as above, 2-(phenylmethylene-*d*)tetrahydrothiophene- $3,3-d_2$ **8** was formed in 58% yield when Na₂S 9H₂O was replaced by K₂S and D₂O. This result indicated that water was the hydrogen donor in the transformation. Then, The other two experiments showed that the reaction product **8** was achieved by the following reaction pathway.

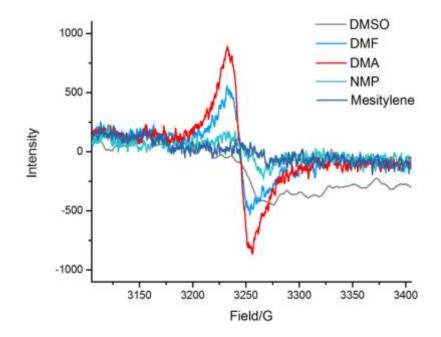
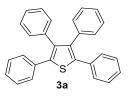
¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.38 – 7.27 (m, 2H), 7.25 – 7.10 (m, 2H), 6.46 (d, *J* = 19.3 Hz, 0.13H), 3.13 (dt, *J* = 45.6, 6.4 Hz, 2H), 2.87 – 2.67 (m, 0.37H), 2.07 (dt, *J* = 40.7, 6.4 Hz, 2H).

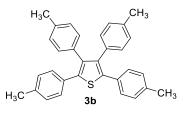
$$Na_2S + DMA \longrightarrow S_3^{-} + ne^{-}$$

8. ESR Experiments

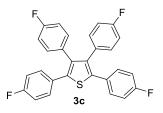
EPR Studies of Interaction between Na₂S[.]9H₂O and different solvents

Five dried tubes equipped with a stir bar were respectively loaded with Na₂S 9H₂O (1.0 mmol) in 2.5 mL DMSO, DMF, DMA, NMP and Mesitylene. They were all stirred at 25 °C. After 2 h, the solution samples were taken by five 0.3mm glass capillaries and analyzed by ESR. ESR spectra was recorded at room temperature on ESR spectrometer operated at 9150.300 MHz. Typical spectrometer parameters are shown as follows, Mod freq = 100 kHz, width = 0. 5000 mT; Field center = 325.571.000 mT, width = +/-15.000 mT; Sweep time = 30 s.

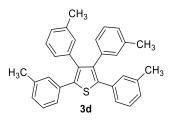




Figure 1. EPR spectra of solutions of Na₂S·9H₂O (1.0 mmol) in various solvents (2.5 mL) at 298 K.

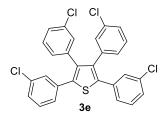
9. Spectroscopic Data of Compounds


2,3,4,5-tetraphenylthiophene (3a)

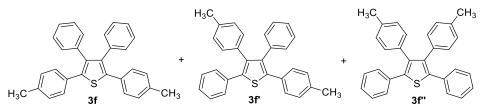
Yield = 69% (80.4 mg). White solid. Mp: 178.5-180.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.18(m, 10H), 7.14 – 7.08 (m, 6H), 6.96 (dd, J = 7.8, 1.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 138.7, 136.6, 134.4, 131.0, 129.4, 128.4, 128.0, 127.4, 126.7. IR (ATR): ν = 2923, 1596, 1494, 1441, 1030, 916, 793, 748, 706, 693 cm⁻¹; HRMS (EI): calcd. for C₂₈H₂₀S [M+H]⁺: 389.1364, found: 389.1358.


2,3,4,5-tetra-p-tolylthiophene (3b)

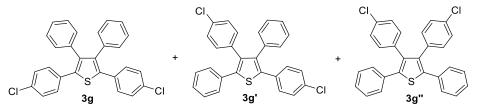
Yield = 81% (108.0 mg). Pale brown solid. **Mp**: 220.0-221.9 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.12 (d, J = 7.9 Hz, 4H), 7.01 (d, J = 8.0 Hz, 4H), 6.91 (d, J = 7.9 Hz, 4H), 6.84 (d, J = 7.8 Hz, 4H), 2.29 (s, 6H), 2.26 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 139.2, 138.1, 136.9, 136.0, 133.8, 131.8, 130.8, 129.1(5), 129.1(2), 128.7, 21.3(8), 21.3(1). **IR (ATR)**: v = 2920, 1514, 1495, 1182, 1019, 833, 733, 685 cm⁻¹; **HRMS** (EI): calcd. for C₃₂H₂₈S [M+H]⁺: 445.1990, found: 445.1989.


2,3,4,5-tetrakis(4-fluorophenyl)thiophene (3c)

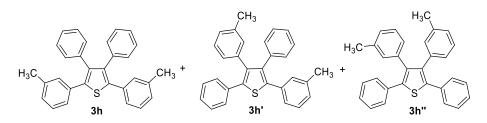
Yield = 28% (38.7 mg). White solid. **Mp**: 175.9-177.0 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.12 (m, 4H), 6.98 – 6.79 (m, 12H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.5, 163.1, 161.1, 160.7, 138.4, 137.8, 132.5, 132.4, 132.1, 132.0, 131.1, 131.0, 130.0(3), 129.9(9), 115.8 115.6, 115.4, 115.2. **IR** (**ATR**): v = 2921, 1602, 1491, 1220, 1160, 1013, 812, 547, 513 cm⁻¹; **HRMS** (EI): calcd. for C₂₈H₁₆F₄S [M+H]⁺: 461.0987, found: 461.0975.


2,3,4,5-tetra-m-tolylthiophene (3d)

Yield = 86% (114,7 mg). Brown solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 1.9 Hz, 2H), 7.11 – 6.93 (m, 10H), 6.80 (d, *J* = 8.8 Hz, 4H), 2.27 (s, 6H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 138.3, 137.9, 137.2, 136.7, 134.4, 131.7, 129.9, 128.2, 128.0(4), 127.9(5), 127.6, 127.3, 126.3, 21.5, 21.4. **IR** (ATR): v = 2918, 1601, 1451, 1091, 882, 779, 692, 483 cm⁻¹; **HRMS** (EI): calcd. for C₃₂H₂₈S [M+H]⁺: 445.1990, found: 445.1981.

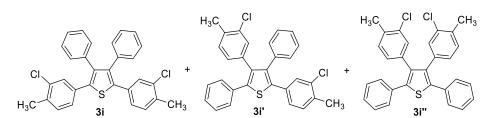

2,3,4,5-tetrakis(3-chlorophenyl)thiophene (3e)

Yield = 73% (115.3 mg). Reddish brown solid. **Mp**: 49.3-52.8 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.01 (m, 12H), 6.95 (t, *J* = 1.8 Hz, 2H), 6.84 (dt, *J* = 7.7, 1.4 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 138.5, 138.3, 137.4, 135.2, 134.5, 134.1, 130.6, 129.8, 129.6, 129.2 129.0, 128.0, 127.6, 127.4. **IR** (**ATR**): v = 2922, 1561, 1465, 1260, 1077, 883, 775, 697, 441 cm⁻¹; **HRMS** (EI): calcd. for C₂₈H₁₆Cl₄S [M+H]⁺: 524.9805, found: 524.9789.

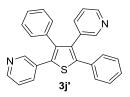

Mixture of 3,4-diphenyl-2,5-di-p-tolylthiophene (3f) and 2,4-diphenyl-3,5-di-p-tolylthiophene (3f') and 2,5-diphenyl-3,4-di-p-tolylthiophene (3f'')

Total yield = 51% (63.7 mg). White solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.17 (m, 5H), 7.14 – 7.06 (m, 5H), 7.04 – 6.93 (m, 4H), 6.90 (dd, *J* = 7.8, 5.1 Hz, 2H), 6.86 – 6.81 (m, 2H), 2.28 (s, 3H), 2.24 (d, *J* = 4.9 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 139.6, 139.5(5), 139.3, 139.2, 138.8, 138.4(4), 138.3(7), 138.0, 137.0(9), 137.0(7), 136.8(8), 136.8(2), 136.1(8), 136.1(5), 134.6(2), 134.6(1), 133.5(9), 133.5(4), 131.5, 131.0(3), 131.0(1), 130.8(2), 130.8(0), 129.3(4), 129.3(3), 129.2, 128.7(2), 128.7(0), 128.4, 127.9(4), 127.9(3), 127.2, 127.1(8), 126.6(1), 126.6(0), 21.3(7), 21.3(4), 21.3(0). **IR (ATR)**: v = 2919, 1672, 1542, 1484, 1181, 1072, 814, 751, 694 cm⁻¹; **HRMS** (EI): calcd. for C₃₀H₂₄S [M+H]⁺: 417.1677, found: 417.1678.

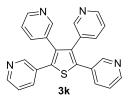
Mixture of 2,5-bis(4-chlorophenyl)-3,4-diphenylthiophene (3g) and 2,4-bis(4-chlorophenyl)-3,5-diphenylthiophene (3g') and 3,4-bis(4-chlorophenyl)-2,5-diphenylthiophene (3g'')


Total yield = 70% (96.1 mg). White solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.04 (m, 14H), 6.93 (dd, J = 7.6, 1.8 Hz, 2H), 6.86 (dd, J = 8.4, 1.0 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 140.1, 139.7, 139.4(1), 139.3(9), 138.2, 137.8, 137.5, 136.0(8), 136.0(3), 134.8, 134.7(6), 133.8(6), 133.8(5), 133.4(3), 133.4(1), 133.0, 132.8, 132.6(9), 132.6(8), 132.2, 130.8, 130.5, 129.4, 128.7, 128.6, 128.5, 128.3(2), 128.3(1), 128.2, 127.7(1), 127.6(9), 127.2, 127.0. **IR (ATR)**: $v = 2920, 1597, 1541, 1182, 1073, 833, 749, 696 \text{ cm}^{-1}$; **HRMS** (EI): calcd. for C₂₈H₂₈Cl₂S [M+H]⁺: 457.0585, found: 457.0578.

Mixture of 3,4-diphenyl-2,5-di-m-tolylthiophene (3h) and 2,4-diphenyl-3,5-di-m-tolylthiophene (3h') and 2,5-diphenyl-3,4-di-m-tolylthiophene (3h'')

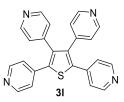

Total yield = 26% (32.5 mg). White solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.04 (m, 10H), 7.02 – 6.88 (m, 6H), 6.76 (d, *J* = 6.9 Hz, 2H), 2.22 (s, 3H), 2.10 (d, *J* = 3.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 139.8, 139.6(9), 139.6(2), 139.5, 138.7(2), 138.6(6), 138.3(6), 138.3(1), 138.0, 137.3, 137.2, 136.7(8), 136.7(3), 136.5(0), 136.4(6), 134.5(2), 134.5(0), 134.3, 131.7, 130.9(7), 130.9(6), 130.0, 129.2, 128.4, 128.2, 128.0(7), 128.0(4), 127.9(0), 127.8(5), 127.7(5), 127.7, 127.4(1), 127.3(8), 127.2, 126.6(4),

126.6(2), 126.4, 21.5, 21.4. **IR (ATR)**: v = 2924, 1742, 1601, 1442, 906, 751, 693, 440 cm⁻¹; **HRMS** (EI): calcd. for C₃₀H₂₄S [M+H]⁺: 417.1677, found: 417.1678.

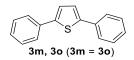

Mixture of 2,5-bis(3-chloro-4-methylphenyl)-3,4-diphenylthiophene (3i) and 2,4-bis(3-chloro-4-methylphenyl)-3,5-diphenylthiophene (3i') and 3,4-bis(3-chloro-4-methylphenyl)-2,5-diphenylthiophene (3i'')

Total yield = 75% (109.2 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.24 (m, 9H), 7.20 – 7.02 (m, 6H), 6.95 – 6.84 (m, 1H), 2.54 – 2.31 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.8, 139.2, 137.9, 137.7, 137.1(8), 137.1(6), 136.1(4), 136.0(8), 135.4(8), 135.4(4), 135.1(2), 135.0(9), 134.5, 134.3(8), 134.3(6), 133.9(2), 133.8(9), 133.8(8), 133.8(3), 133.4, 131.2(1), 131.1(9), 130.9, 130.7(8), 130.7(6), 130.6, 130.4(8), 129.4(6), 129.2(7), 129.2(4), 129.1(8), 128.5, 128.2, 128.1, 127.6(2), 127.5(8), 127.3(6), 127.3(5), 127.1, 127.0, 19.8(9), 19.8(7), 19.8(6). **IR (ATR)**: v = 2921, 1599, 1479, 1050, 882, 818, 753, 694, 442 cm⁻¹; **HRMS** (EI): calcd. for C₃₀H₂₂Cl₂S [M+H]⁺: 485.0898, found: 485.0888.

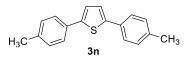
3,3'-(3,5-diphenylthiophene-2,4-diyl)dipyridine (3j')


Yield = 51% (59.7 mg). Yellow solid. Mp: 158.2-160.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 2.2 Hz, 1H), 8.45 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.38 (dd, *J* = 4.9, 1.7 Hz, 1H), 8.23 (d, *J* = 2.1 Hz, 1H), 7.46 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.25 (dq, *J* = 5.8, 3.6, 3.1 Hz, 6H), 7.20 – 7.11 (m, 4H), 7.05 (dd, *J* = 7.9, 4.8 Hz, 1H), 6.96 (dd, *J* = 7.5, 2.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 149.7, 148.4, 147.9, 141.2, 140.7, 138.2, 136.3, 135.8, 135.2, 135.1, 133.3, 132.2, 130.8, 130.2, 129.5, 128.8, 128.6, 128.1, 127.6, 123.2, 122.9. **IR** (**ATR**): v = 2921, 1562, 1403, 1260, 1073, 1021, 798, 757, 700, 593 cm⁻¹; **HRMS** (EI): calcd. for C₂₆H₁₈N₂S [M+H]⁺: 391.1269, found: 391.1276.

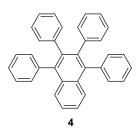
3,3',3'',3'''-(thiophene-2,3,4,5-tetrayl)tetrapyridine (3k)


Yield = 83% (97.7 mg). Yellow solid. Mp: 153.2-155.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.50 – 8.28 (m, 6H), 8.16 (d, J = 2.2 Hz, 2H), 7.42 (dt, J = 8.0, 2.0 Hz, 2H), 7.23 – 6.99 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 150.9, 149.6, 149.0, 148.6, 137.8, 137.4, 136.8, 136.3, 130.8, 129.0, 123.3, 123.2. IR

(ATR): v = 2923, 1562, 1479, 1405, 1181, 1022, 794, 710, 616 cm⁻¹; **HRMS** (EI): calcd. for C₂₄H₁₆N₄S [M+H]⁺: 393.1174, found: 393.1180.


4,4',4'',4'''-(thiophene-2,3,4,5-tetrayl)tetrapyridine (3l)

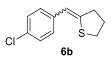
Yield = 73% (86.2 mg). Maroon solid. Mp: 234.2-236.7 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.49 − 8.32 (m, 8H), 7.07 − 6.97 (m, 4H), 6.88 − 6.73 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 150.2, 150.0, 142.6, 140.0, 138.9, 138.0, 125.0, 123.0. **IR (ATR)**: v = 2922, 1584, 1540, 1408, 1064, 990, 831, 724, 596, 515 cm⁻¹; **HRMS** (EI): calcd. for C₂₄H₁₆N₄S [M+H]⁺: 393.1174, found: 393.1175.


2,5-diphenylthiophene (3m, 3o)

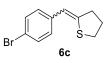
Yield = 27% (19.1 mg). Pale yellow solid. **Mp**: 142.3-143.6 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (dt, J = 8.2, 1.7 Hz, 4H), 7.42 – 7.36 (m, 4H), 7.33 – 7.26 (m, 4H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.8, 134.5, 129.1, 127.7, 125.8, 124.1. **IR (ATR)**: v = 2923, 1596, 1454, 1260, 1078, 1028, 804, 747, 684 cm⁻¹; **HRMS** (EI): calcd. for C₁₆H₁₂S [M+H]⁺: 237.0738, found: 237.0735.

2,5-di-p-tolylthiophene (3n)

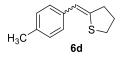
Yield = 36% (28.6 mg). Pale yellow solid. **Mp**: 162.3-163.9 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, J = 8.2 Hz, 4H), 7.24 – 7.15 (m, 6H), 2.36 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.4, 137.4, 131.8, 129.7, 125.6, 123.6, 21.3. **IR (ATR)**: v = 2913, 1498, 1455, 1277, 1125, 940, 821, 796 cm⁻¹; **HRMS** (EI): calcd. for C₁₈H₁₆S [M+H]⁺: 265.1051, found: 265.1055.


1,2,3,4-tetraphenylnaphthalene (4)

Total yield = 32% (41.5 mg). White solid. **Mp**: 191.9-193.2 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (dd, J = 6.5, 3.3 Hz, 2H), 7.37 (dd, J = 6.5, 3.3 Hz, 2H), 7.26 – 7.16 (m, 10H), 6.92 – 6.76 (m, 10H). ¹³C **NMR** (100 MHz, CDCl₃) δ 140.6, 139.7, 139.0, 138.5, 132.1, 131.4, 127.7, 127.1, 126.7, 126.6, 126.0, 125.5. **IR** (**ATR**): v = 1924, 1600, 1440, 1029, 743, 695, 582, 560, 500 cm⁻¹; **HRMS** (EI): calcd. for C₃₄H₂₄ [M+H]⁺: 433.1956, found: 433.1961.

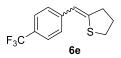

2-benzylidenetetrahydrothiophene (E/Z= 24:76) (6a)

Yield = 69% (60.8 mg). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.3 Hz, 1H), 7.35 – 7.24 (m, 2H), 7.24 – 7.10 (m, 1H), 6.46 (s, 0.76×1H), 6.42 (t, *J* = 1.9 Hz, 0.24×1H), 3.14 (t, *J* = 6.4 Hz, 0.76×2H), 3.03 (t, *J* = 6.4 Hz, 0.24×2H), 2.84 – 2.74 (m, 2H), 2.12 – 2.05 (m, 0.24×2H), 1.98 (p, *J* = 6.6 Hz, 0.76×2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 143.2, 138.4, 137.8, 128.3, 127.7(2), 127.6(7), 125.7(4), 125.6(6), 117.3, 117.1, 40.3, 35.7, 34.4, 33.0, 31.1, 28.4. **IR (ATR)**: v = 2928, 1613, 1489, 1442, 1256, 816, 749, 690, 627, 521 cm⁻¹; **HRMS** (EI): calcd. for C₁₁H₁₂S [M+H]⁺: 177.0738, found: 177.0736.

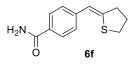

2-(4-chlorobenzylidene)tetrahydrothiophene (E/Z=5:95) (6b)

Yield = 72% (75.9 mg). White solid. **Mp**: 42.1-43.8 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 2H), 7.31 – 7.25 (m, 2H), 6.41 (s, 0.95×1H), 6.36 (s, 0.05×1H), 3.19 (t, *J* = 6.4 Hz, 0.95×2H), 3.07 (t, *J* = 6.4 Hz, 0.05×2H), 2.80 (td, *J* = 6.8, 1.5 Hz, 2H), 2.13 (p, *J* = 6.6 Hz, 0.05×2H), 2.02 (p, *J* = 6.6 Hz, 0.95×2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 144.3, 136.4, 131.1, 128.9, 128.5, 115.9, 40.4, 35.8, 28.5. **IR** (**ATR**): v = 2946, 2856, 1612, 1561, 1487, 1403, 1084, 1004, 862, 840, 690, 619 cm⁻¹; **HRMS** (EI): calcd. for C₁₁H₁₁ClS [M+H]⁺: 211.0348, found: 211.0347.

2-(4-bromobenzylidene)tetrahydrothiophene (E/Z= 23:77) (6c)


Yield = 66% (84.2 mg). White solid. **Mp**: 40.3-42.0 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.38 (m), 7.32 – 7.27 (m), 7.12 – 7.04 (m), 6.41 (s, 0.77×1H), 6.36 (t, *J* = 2.0 Hz, 0.23×1H), 3.20 (t, *J* = 6.4 Hz, 0.77×2H), 3.09 (t, *J* = 6.4 Hz, 0.23×2H), 2.87 – 2.76 (m, 2H), 2.15 (p, *J* = 6.6 Hz, 0.23×2H), 2.05 (p, *J* = 6.6 Hz, 0.77×2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.8, 144.5, 137.3, 136.8, 131.4(3), 131.4(0), 129.2(5), 129.2(3), 119.2(6), 119.2(1), 116.1(0), 115.9(6), 40.4, 35.9, 34.5, 33.1, 31.1, 28.5. **IR (ATR)**: v = 2926, 1610, 1482, 1398, 861, 838, 798, 666, 518, 444 cm⁻¹; **HRMS** (EI): calcd. for C₁₁H₁₁BrS [M+H]⁺: 254.9843, found: 254.9841.

2-(4-methylbenzylidene)tetrahydrothiophene (E/Z=13:87) (6d)


Yield = 52% (49.5 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.1 Hz), 7.20 – 7.12 (m), 6.48 (s, 0.87×1H), 6.43 (t, *J* = 2.0 Hz, 0.13×1H), 3.20 (t, *J* = 6.4 Hz, 0.87×2H), 3.09 (t, *J* = 6.4 Hz, 0.13×2H), 2.83 (td, *J* = 6.8, 1.5 Hz, 2H), 2.35 (s, 2H), 2.15 (p, *J* = 6.6 Hz, 0.13×2H), 2.05 (p, *J* = 6.6 Hz, 0.87×2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.4, 142.0, 135.7, 135.4, 135.3, 135.1, 129.1, 127.6(6),

127.6(2), 117.2, 117.0, 40.2, 35.6, 34.3, 32.9, 31.1, 28.5, 21.2(8), 21.2(2). **IR** (**ATR**): v = 2940, 1601, 1413, 1322, 1107, 1067, 964, 861, 656 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₄S [M+H]⁺: 191.0894, found: 191.0890.

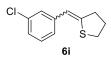
2-(4-(trifluoromethyl)benzylidene)tetrahydrothiophene (E/Z= 30:70) (6e)

Yield = 68% (83.1 mg). White solid. **Mp**: 47.2-48.1 °C. ¹**H NMR** (400 MHz, CDCl3) δ 7.62 – 7.46 (m), 7.28 (d, *J* = 8.2 Hz), 6.49 (s, 0.7×1H), 6.44 (s, 0.3×1H), 3.21 (t, *J* = 6.4 Hz, 0.7×2H), 3.08 (t, *J* = 6.4 Hz, 0.3×2H), 2.91 – 2.76 (m, 2H), 2.15 (p, *J* = 6.6 Hz, 0.3×2H), 2.04 (p, *J* = 6.6 Hz, 0.7×2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.2, 147.0, 141.8 (d, *J* = 1.3 Hz), 141.4, 129.5, 129.2, 128.6, 127.7(1), 127.6(7), 127.5, 127.2 (d, *J* = 32.1 Hz), 127.1, 126.8, 125.3 (q, *J* = 7.5 Hz), 124.5 (d, *J* = 270 Hz), 120.5, 115.9, 115.8, 40.6, 36.0, 34.7, 33.1, 31.2, 28.4. **IR (ATR)**: v = 2940, 1601, 1413, 1322, 1107, 1067, 964, 861, 656 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₁F₃S [M+H]⁺: 245.0612, found: 245.0608.

(Z)-4-((dihydrothiophen-2(3H)-ylidene)methyl)benzamide (6f)

Yield = 48% (52.6 mg). White solid. **Mp**: 165.3-166.1 °C. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.07 – 7.68 (m, 3H), 7.52 – 7.14 (m, 3H), 6.55 (s, 1H), 3.19 (s, 2H), 2.80 (s, 2H), 1.94 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.6, 146.3, 140.3, 131.0, 127.7, 126.7, 115.7, 40.0, 35.4, 28.0. **IR** (**ATR**): v = 3394, 3173, 1641, 1598, 1556, 1386, 866, 759, 630 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₃NOS [M+H]⁺: 220.0796, found: 220.0798.

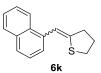
(Z)-2-(2-chlorobenzylidene)tetrahydrothiophene (6g)


Yield = 45% (47.4 mg). Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.35 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.09 (td, *J* = 7.7, 1.5 Hz, 1H), 6.76 (s, 1H), 3.18 (t, *J* = 6.4 Hz, 2H), 2.87 (td, *J* = 6.9, 1.6 Hz, 2H), 2.06 (p, *J* = 6.6 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.3, 135.8, 132.8, 129.5, 128.4, 127.0, 126.6, 113.3, 40.3, 35.4, 28.5. **IR** (**ATR**): v = 2925, 1607, 1433, 1256, 1034, 748, 692, 622, 469, 422 cm⁻¹; **HRMS** (EI): calcd. for C₁₁H₁₁ClS [M+H]⁺: 211.0348, found: 211.0350.

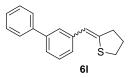
2-(2-methylbenzylidene)tetrahydrothiophene (E/Z= 18:82) (6h) Yield = 68% (64.7 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.7 Hz), 7.26 – 7.01


S14

(m), 6.52 (s, 0.82×1 H), 6.44 (s, 0.18×1 H), 3.09 (t, J = 6.4 Hz, 0.82×2 H), 3.05 (t, J = 6.4 Hz, 0.18×2 H), 2.79 (td, J = 6.8, 1.6 Hz, 0.82×2 H), 2.69 (td, J = 6.8, 2.1 Hz, 0.18×2 H), 2.28 (s, 0.82×3 H), 2.25 (s, 0.18×3 H), 2.02 (dp, J = 19.9, 6.6 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.2, 144.0, 137.5, 136.8, 135.7, 135.5, 123.0, 129.9, 128.1, 127.1, 126.2, 125.7, 125.6, 115.7, 114.6, 39.8, 34.9, 34.3, 33.1, 30.7, 28.6, 20.1. **IR** (**ATR**): v = 2947, 1597, 1481, 1256, 1007, 746, 718, 626, 647 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₄S [M+H]⁺: 191.0894, found: 191.0891.


(Z)-2-(3-chlorobenzylidene)tetrahydrothiophene (6i)

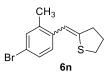
Yield = 30% (31.6 mg). Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (d, *J* = 1.6 Hz, 1H), 7.25 (dq, *J* = 13.8, 7.9 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 1H), 6.41 (s, 1H), 3.20 (t, *J* = 6.4 Hz, 2H), 2.83 (td, *J* = 6.8, 1.4 Hz, 2H), 2.04 (p, *J* = 6.6 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.4, 139.7, 134.3, 129.6, 127.6, 125.7, 125.7, 115.8, 40.5, 35.9, 28.5. **IR** (**ATR**): v = 2953, 1722, 1589, 1473, 1254, 1081, 773, 683, 651, 461 cm⁻¹; **HRMS** (EI): calcd. for C₁₁H₁₁ClS [M+H]⁺: 211.0348, found: 211.0344.


2-(3-methylbenzylidene)tetrahydrothiophene (E/Z=17:83) (6j)

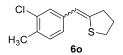
Yield = 68% (64.7 mg). Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.11 (m), 6.98 (dd, J = 23.7, 7.3 Hz), 6.42 (s, 0.83×1H), 6.38 (s, 0.17×1H), 3.13 (t, J = 6.4 Hz, 0.83×2H), 3.01 (t, J = 6.4 Hz, 0.17×2H), 2.78 (dtd, J = 8.4, 6.9, 1.8 Hz, 2H), 2.32 (d, J = 9.5 Hz, 3H), 2.11 – 2.03 (m, 0.17×2H), 1.97 (p, J = 6.6 Hz, 0.83×2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.3, 142.9, 137.7(2), 137.6(9), 130.0, 128.5, 128.4, 128.3, 128.2, 127.4, 126.5, 126.4, 126.2, 124.7, 117.2, 117.1, 40.2, 35.6, 34.3, 32.8, 31.1, 28.4, 21.6, 21.4. **IR (ATR)**: v = 2927, 1599, 1258, 1097, 818, 774, 693, 632, 459 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₄S [M+H]⁺: 191.0894, found: 191.0891.

2-(naphthalen-1-ylmethylene)tetrahydrothiophene (E/Z= 24:76) (6k)

Yield = 60% (67.9 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.87 (m, 1H), 7.71 – 7.60 (m, 2H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.31 (dddd, *J* = 14.0, 12.3, 7.2, 5.4 Hz, 3H), 6.91 (s, 0.76×1H), 6.81 (s, 0.24×1H), 2.92 (t, *J* = 6.4 Hz, 2H), 2.70 (td, *J* = 6.9, 1.6 Hz, 0.76×2H), 2.51 (td, *J* = 6.8, 2.1 Hz, 0.24×2H), 1.91 – 1.77 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.9, 145.9, 135.6, 135.0, 133.6(9), 133.6(0), 131.6, 131.3, 128.5, 128.4, 126.7(1), 126.6(5), 125.8(0), 125.7(6), 125.7(3), 125.6(2), 125.6(0), 125.5, 125.3, 125.2, 124.7, 124.0, 114.4, 113.4, 39.6, 34.7, 34.6, 33.3, 30.5, 28.6. **IR (ATR)**: v = 2928, 1588, 1394, 1254, 1007, 773, 635, 457 cm⁻¹; **HRMS** (EI): calcd. for C₁₅H₁₄S [M+H]⁺: 227.0894, found: 227.0890.


2-([1,1'-biphenyl]-4-ylmethylene)tetrahydrothiophene (E/Z= 15:85) (6l)

Yield = 76% (95.9 mg). White solid. **Mp**: 81.9-83.4 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (ddd, J = 25.3, 12.8, 4.8 Hz, 6H), 7.42 (t, J = 7.7 Hz, 2H), 7.36 – 7.27 (m, 1H), 6.52 (s, 0.85×1H), 6.47 (s, 0.15×1H), 3.22 (t, J = 6.4 Hz, 0.85×2H), 3.10 (t, J = 6.4 Hz, 0.15×2H), 2.87 (dtd, J = 8.2, 6.9, 1.8 Hz, 2H), 2.17 (p, J = 6.6 Hz, 0.15×2H), 2.06 (p, J = 6.6 Hz, 0.85×2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 145.9, 143.6, 141.0, 140.8, 138.3, 137.5, 137.0, 128.8, 128.1, 127.2, 127.1, 127.0(1), 126.9(7), 116.9, 116.7, 40.4, 35.8, 34.5, 33.0, 31.2, 28.5. **IR** (**ATR**): v = 2927, 1611, 1482, 1406, 1257, 1076, 1012, 864, 757, 687, 552, 500 cm⁻¹; **HRMS** (EI): calcd. for C₁₇H₁₆S [M+H]⁺: 253.1051, found: 253.1048.


3-((dihydrothiophen-2(3H)-ylidene)methyl)thiophene (E/Z=14:86) (6m)

Yield = 68% (62.0 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (ddd, J = 7.5, 6.9, 4.3 Hz), 7.15 (dd, J = 4.9, 1.3 Hz), 7.01 (dd, J = 5.0, 1.2 Hz), 6.96 (d, J = 2.7 Hz), 6.50 (s, 0.88×1H), 6.42 (t, J = 1.9 Hz, 0.12×1H), 3.16 (t, J = 6.4 Hz, 0.88×2H), 3.04 (t, J = 6.4 Hz, 0.12×2H), 2.83 – 2.68 (m, 2H), 2.07 (dp, J = 42.7, 6.7 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.4, 142.6, 139.6, 139.3, 128.1, 127.8, 124.9, 124.8, 120.5, 120.0, 111.7, 111.4, 39.4, 35.5, 34.5, 33.3, 31.0, 28.9. **IR (ATR)**: v = 2928, 1616, 1259, 1078, 1008, 815, 758, 624, 609, 448 cm⁻¹; **HRMS** (EI): calcd. for C₉H₁₀S₂ [M+H]⁺: 183.0302, found: 183.0304.

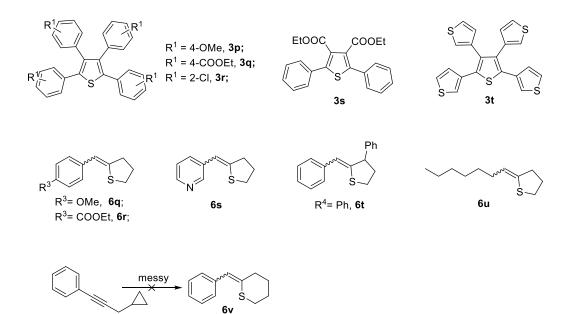
2-(4-bromo-2-methylbenzylidene)tetrahydrothiophene (E/Z= 21:79) (6n)

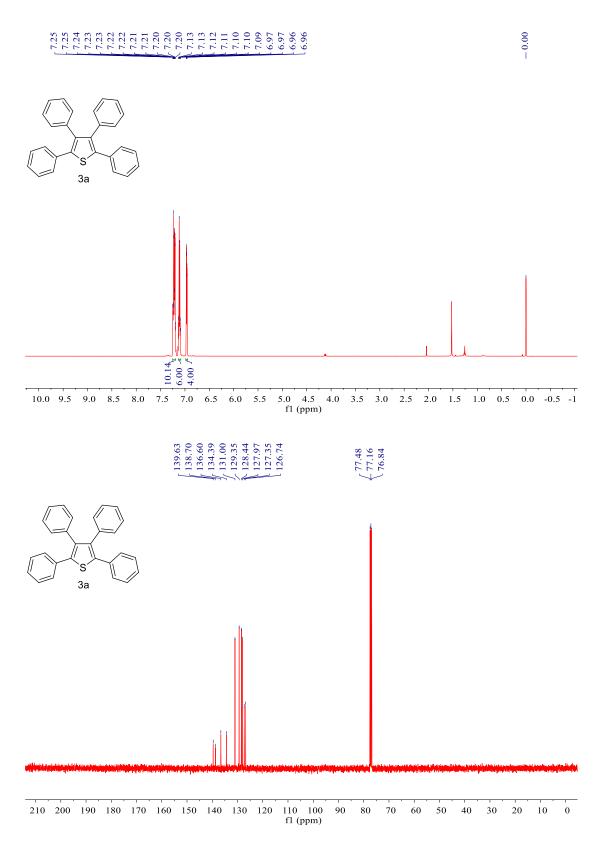
Yield = 65% (87.5 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.3 Hz), 7.37 – 7.15 (m, 2H), 7.01 (d, *J* = 8.1 Hz), 6.41 (s, 0.79×1H), 6.32 (s, 0.21×1H), 3.11 (t, *J* = 6.4 Hz, 0.79×2H), 3.06 (t, *J* = 6.4 Hz, 0.21×2H), 2.78 (td, *J* = 6.8, 1.6 Hz, 0.79×2H), 2.64 (td, *J* = 6.8, 2.1 Hz, 0.21×2H), 2.22 (d, *J* = 9.9 Hz, 3H), 2.12 – 1.93 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.4, 145.1, 137.9, 137.7, 136.4, 135.8, 132.6(4), 132.6(0), 129.5, 128.6(7), 128.6(0), 128.5, 119.5, 119.4, 114.4, 113.5, 39.9, 35.1, 34.3, 33.2, 30.7, 28.6, 19.9(2), 19.9(0). **IR (ATR)**: ν = 2929, 1610, 1475, 1256, 1121, 871, 824, 653, 551, 478 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₃BrS [M+H]⁺: 269.0000, found: 269.0002.

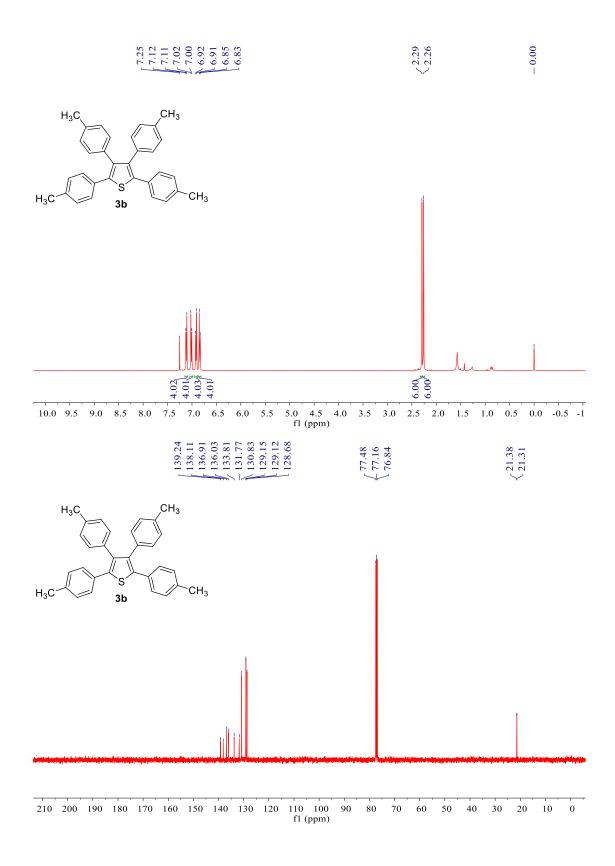
2-(3-chloro-4-methylbenzylidene)tetrahydrothiophene (E/Z=14:86) (60)

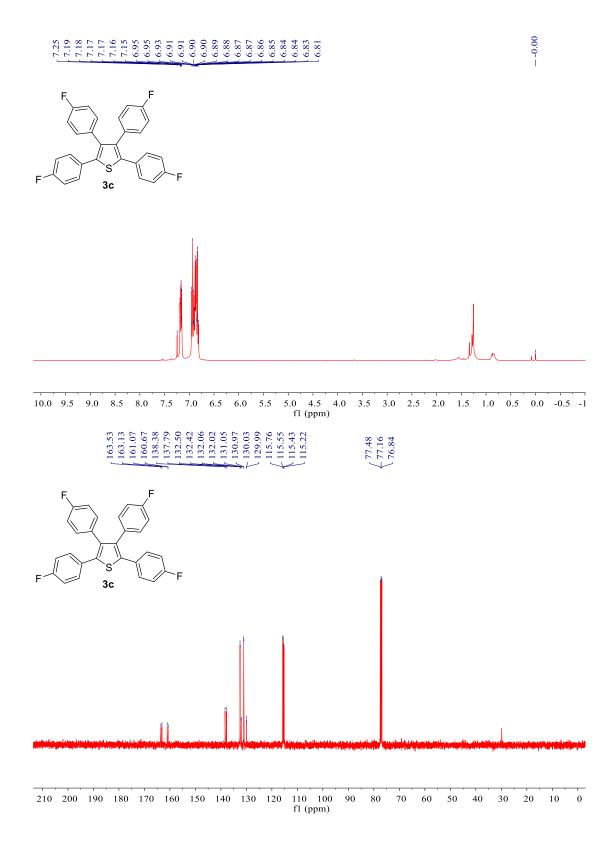
Yield = 57% (64.1 mg). White solid. **Mp**: 69.1-70.6 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 1.6 Hz), 7.24 – 7.08 (m, 2H), 6.96 (dd, J = 7.9, 1.6 Hz), 6.35 (s, 0.86×1H), 6.31 (s, 0.14×1H), 3.15 (t, J =

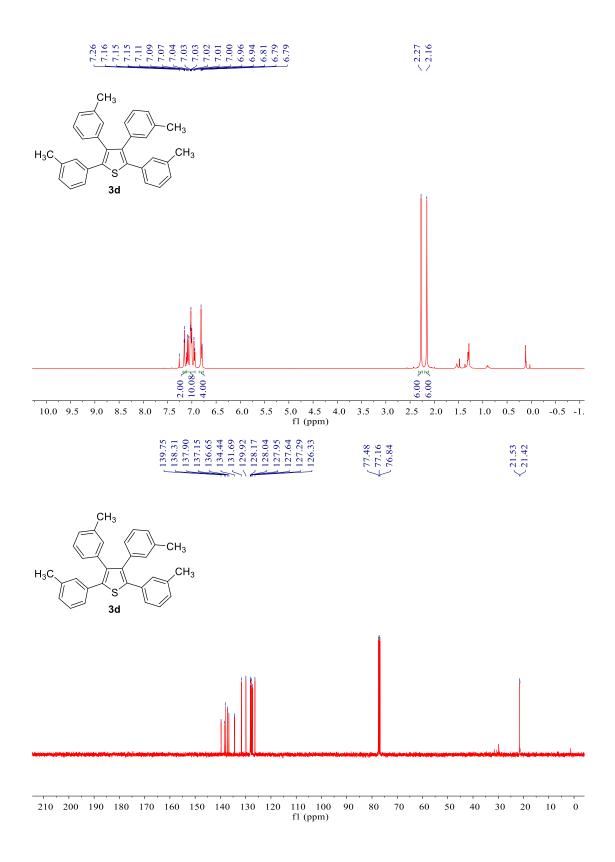
S16

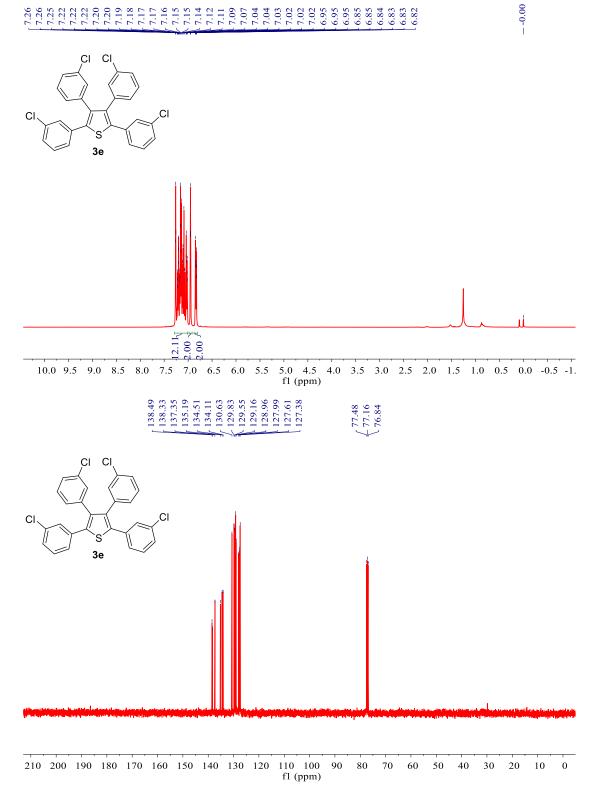

6.4 Hz, 0.86×2H), 3.04 (t, J = 6.4 Hz, 0.14×2H), 2.77 (ddd, J = 8.3, 5.9, 2.5 Hz, 2H), 2.37 – 2.31 (m, 3H), 2.05 (dp, J = 44.2, 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 144.1, 137.6, 137.2, 134.2(5), 134.2(2), 133.0(7), 133.0(2), 130.7, 128.0, 127.8, 126.0, 125.7(8), 115.7(4), 115.6, 40.2, 35.7, 34.4, 33.0, 31.1, 28.4, 19.7(8), 19.7(2). **IR (ATR)**: v = 2931, 1599, 1490, 1256, 1045, 882, 817, 582, 440 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₃ClS [M+H]⁺: 225.0505, found: 225.0499.

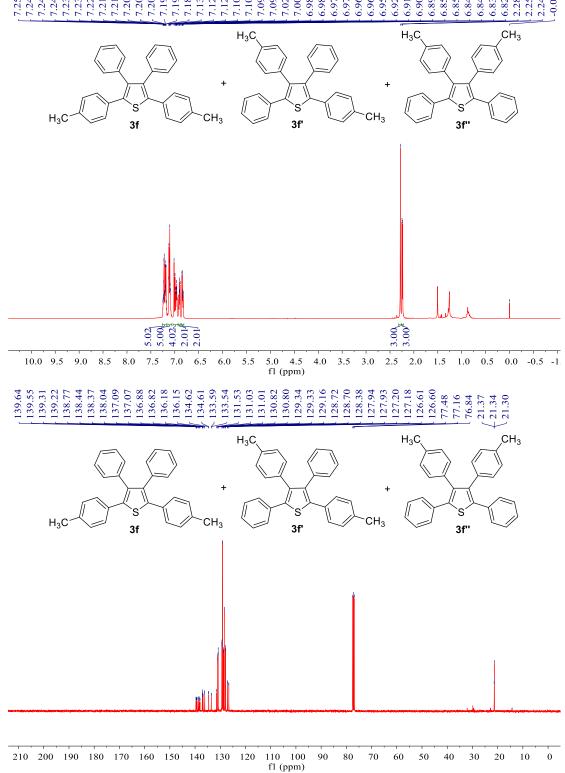

(Z)-2-benzylidene-3-methyltetrahydrothiophene (6p)

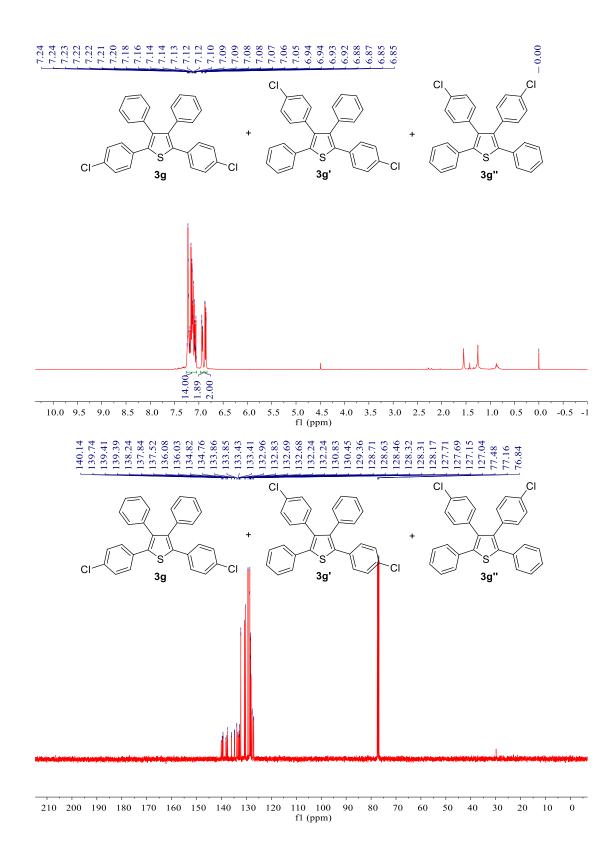

Yield = 36% (34.3 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 1H), 6.42 (s, 1H), 3.24 – 3.09 (m, 2H), 2.98 (dd, *J* = 13.3, 6.6 Hz, 1H), 2.22 (dq, *J* = 11.9, 5.9 Hz, 1H), 1.75 (ddd, *J* = 14.3, 12.4, 7.8 Hz, 1H), 1.32 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 137.4, 127.8, 127.4, 125.3, 115.9, 44.5, 35.9, 31.9, 18.4. **IR (ATR)**: ν = 2926, 1610, 1444, 1255, 1111, 750, 690, 665, 516 cm⁻¹; **HRMS** (EI): calcd. for C₁₂H₁₄S [M+H]⁺: 191.0894, found: 191.0896.

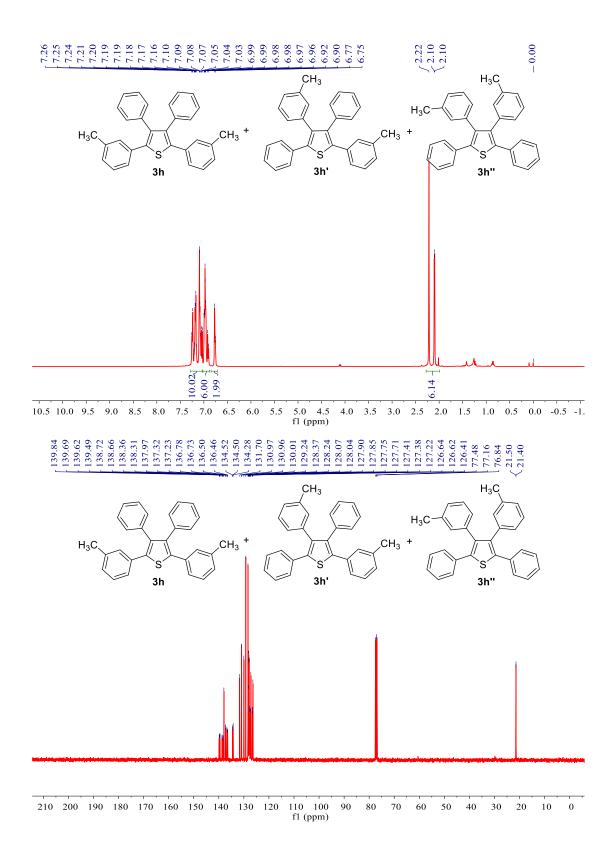

10. Unsuccessful examples

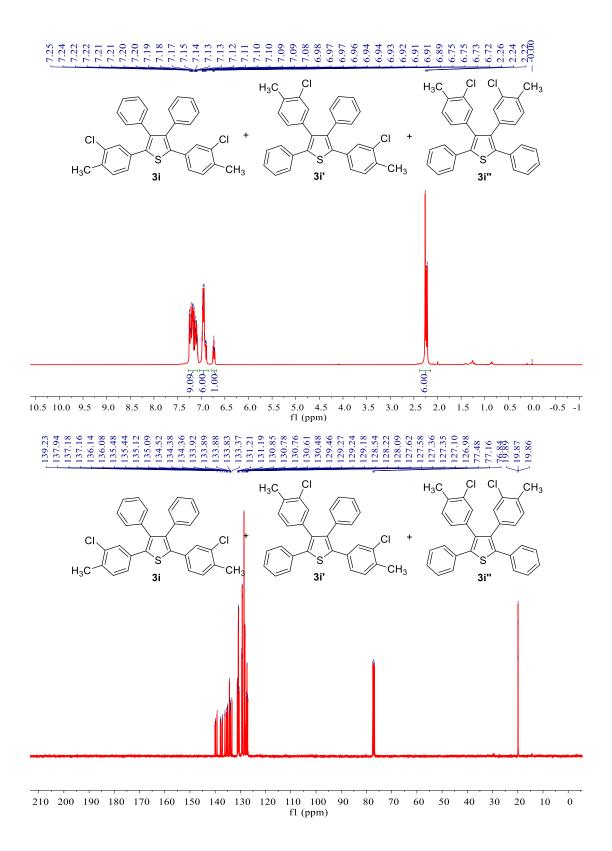


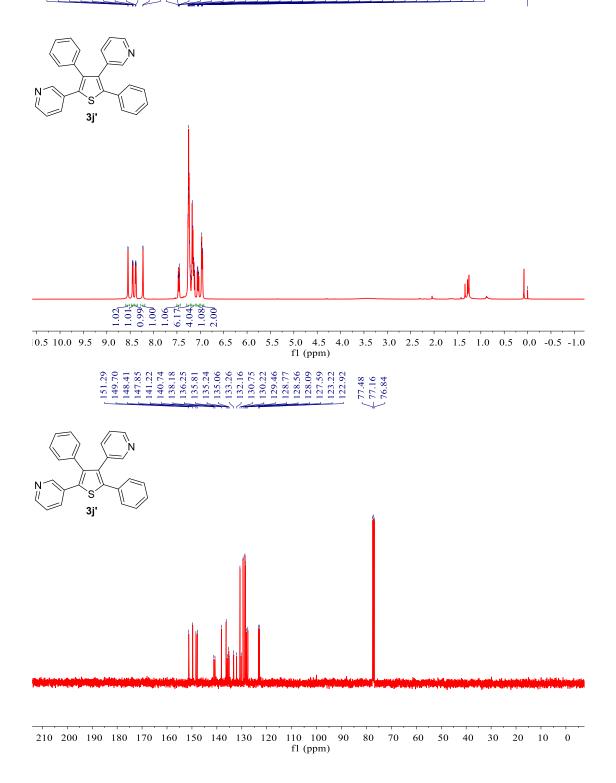

11. Copies of ¹H NMR and ¹³C NMR Spectra for Compounds

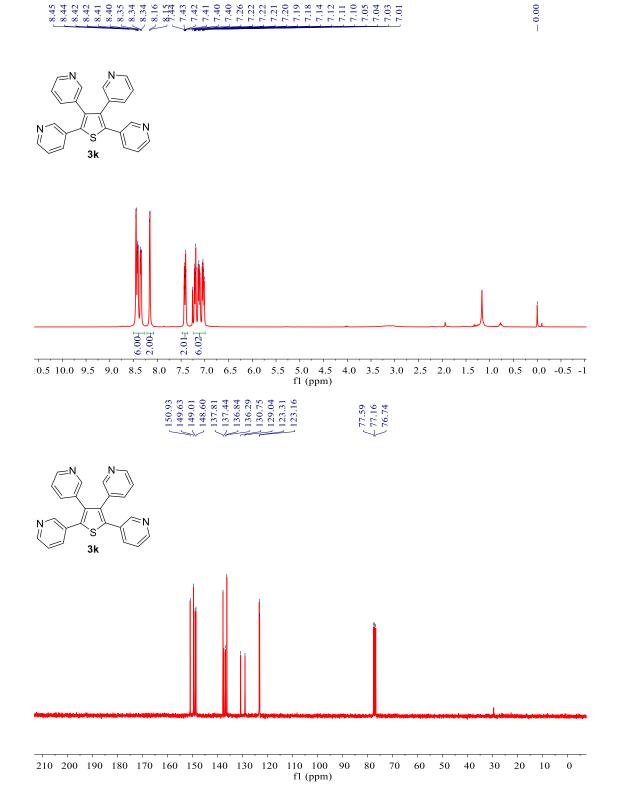


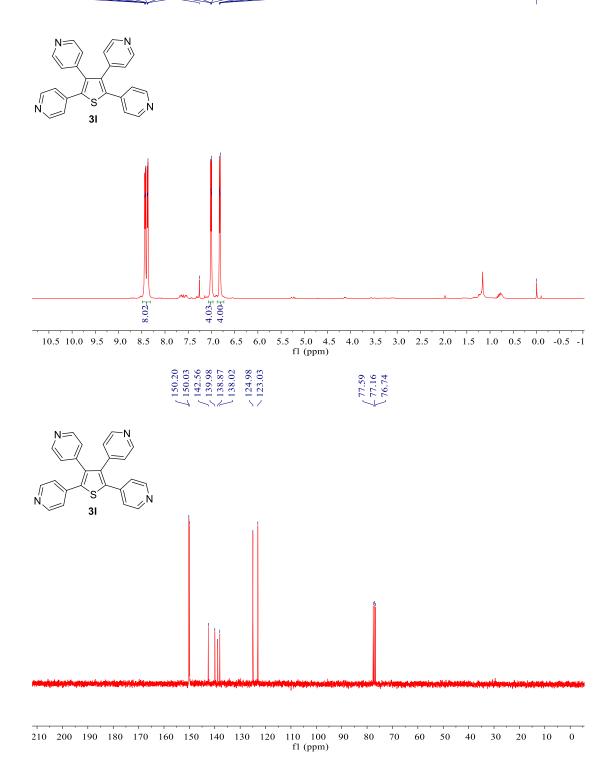


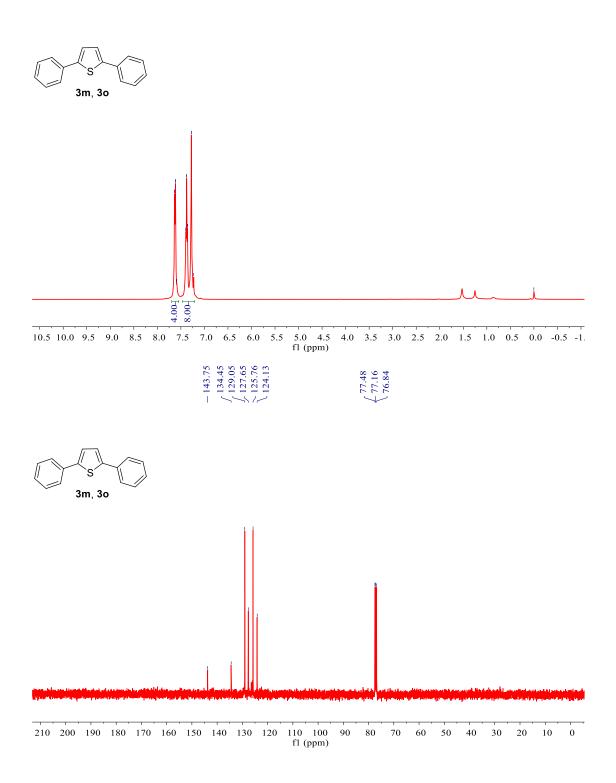


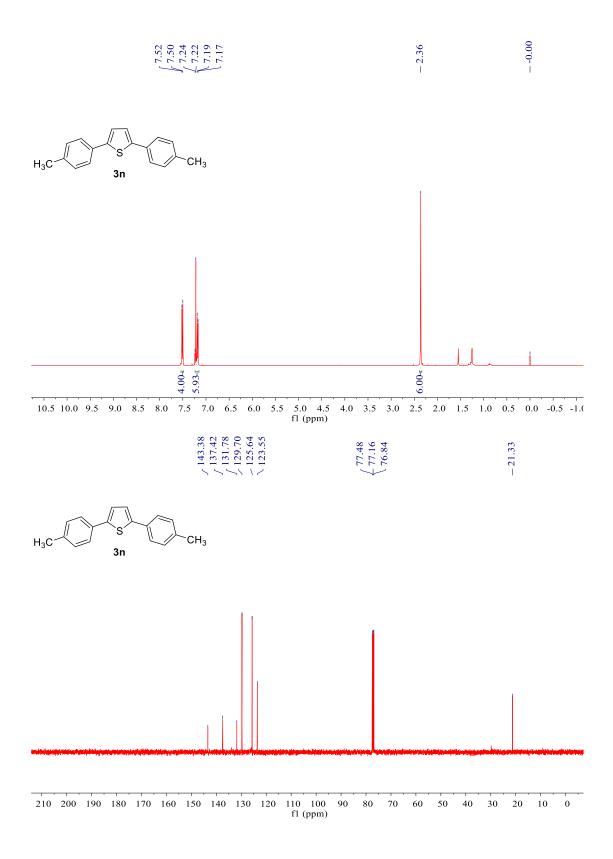


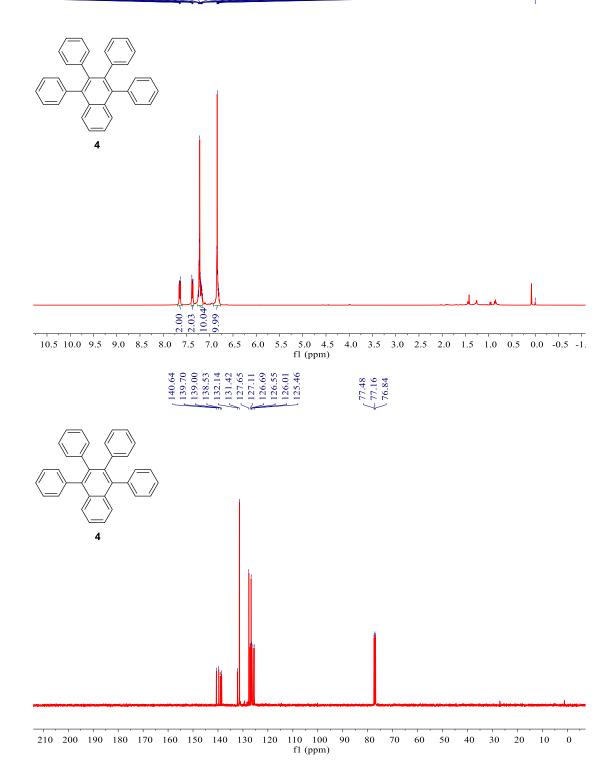


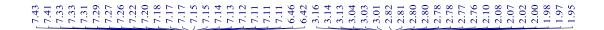

 $\begin{array}{c} 7.72\\$

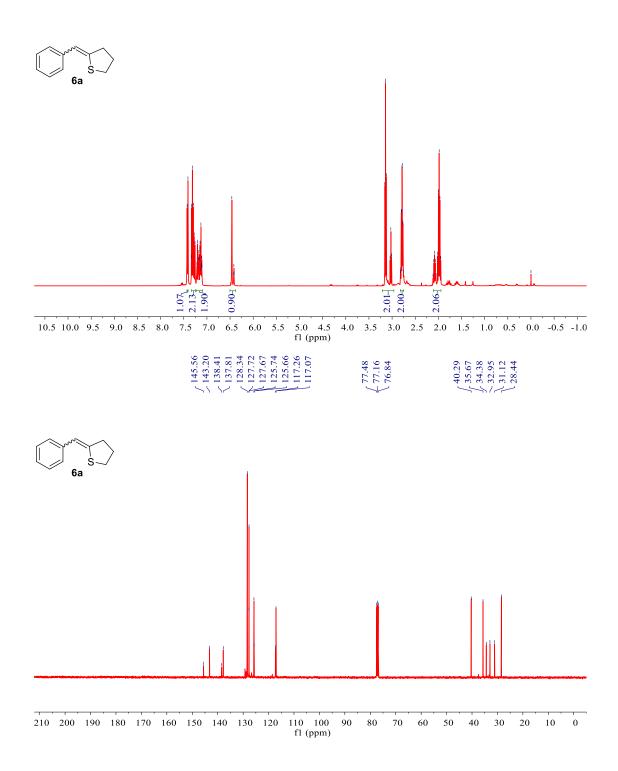


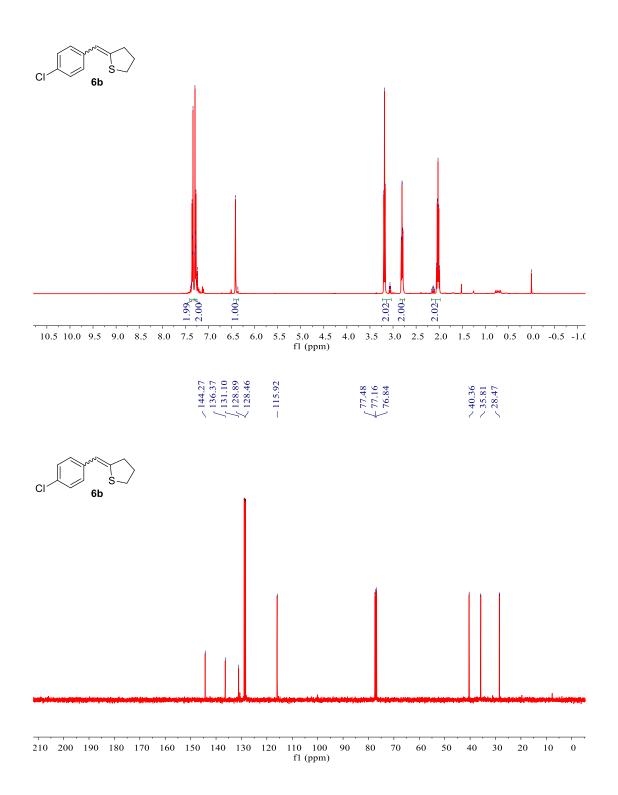

$\begin{array}{c} 8.44\\ 8.42\\ 8.42\\ 8.42\\ 8.42\\ 8.33\\ 8.33\\ 8.33\\ 8.33\\ 8.33\\ 8.33\\ 8.33\\ 7.02\\ 8.33\\ 7.02\\ 7.02\\ 7.00\\ 7.02\\ 6.83\\ 6.81\\$

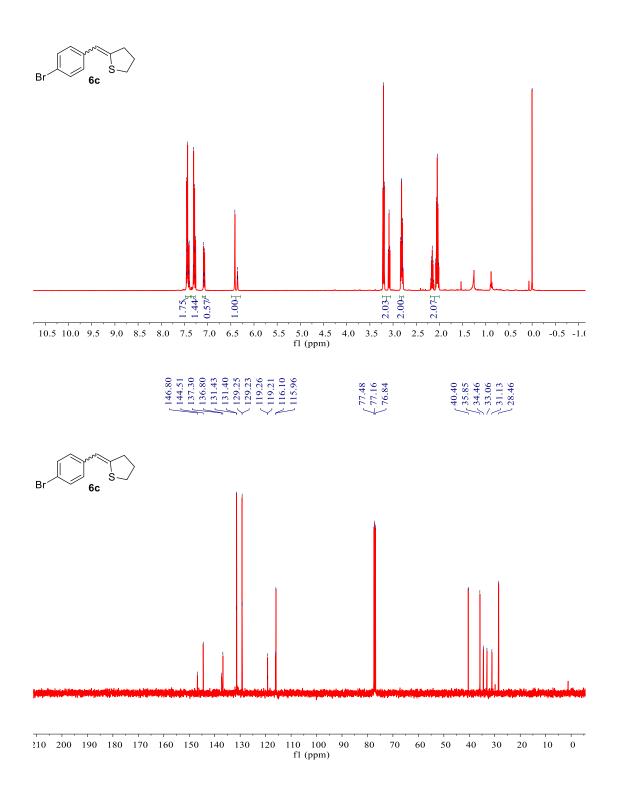

S29

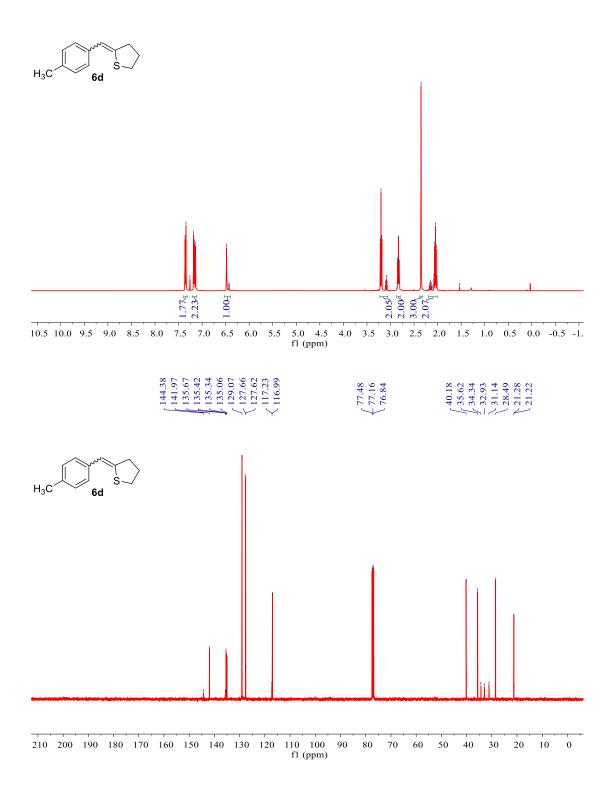

---0.00

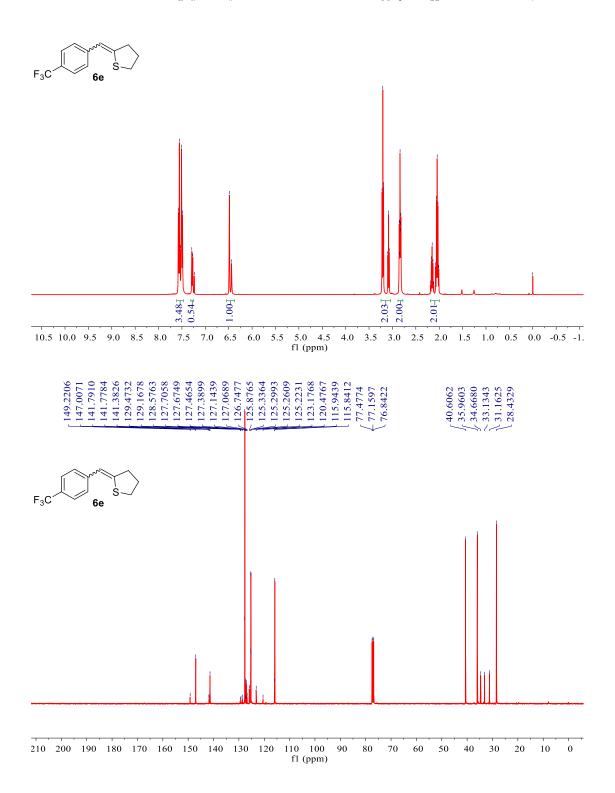


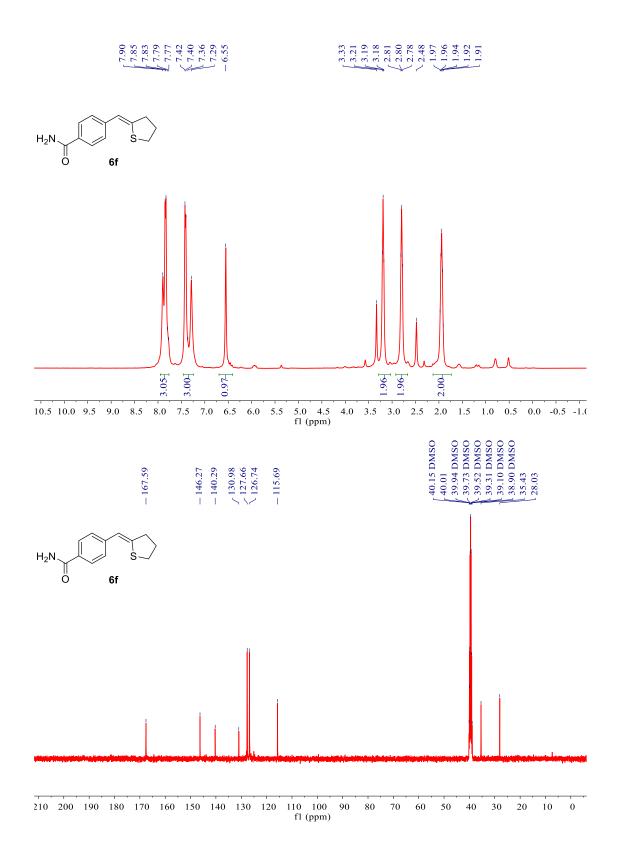

-0.00

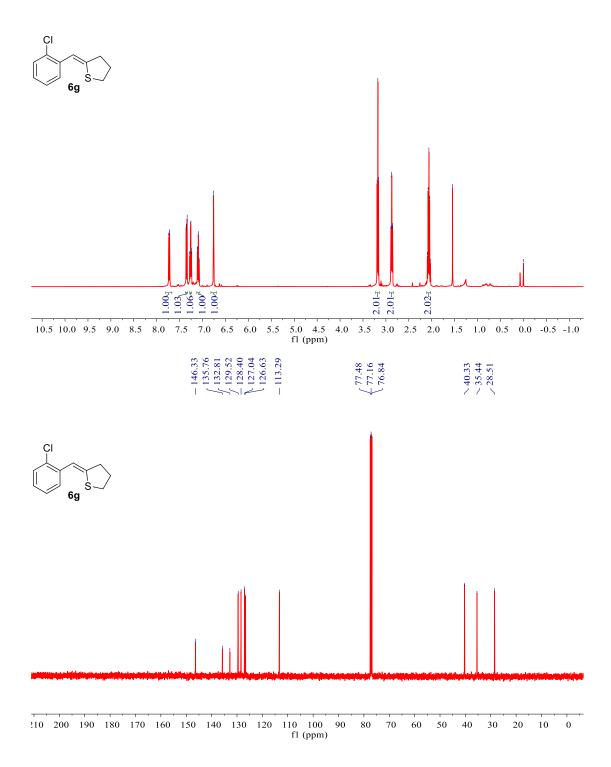


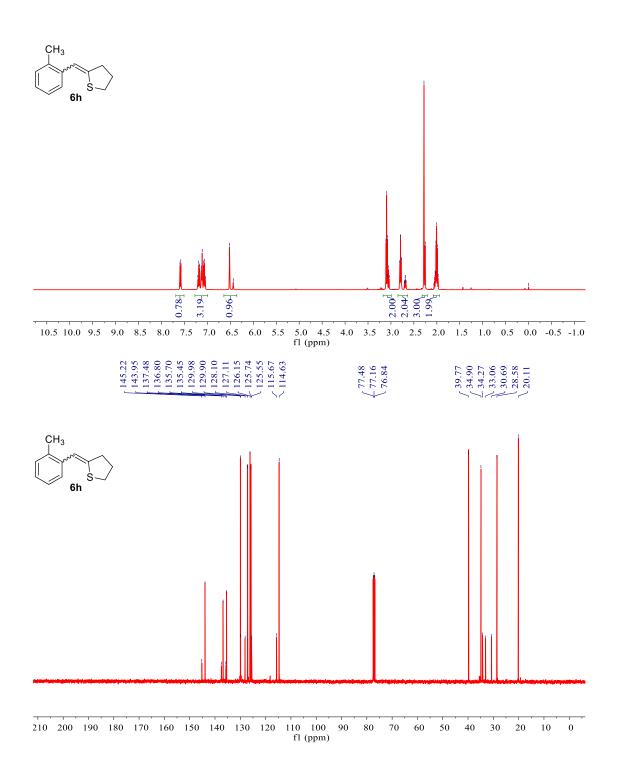

-0.00

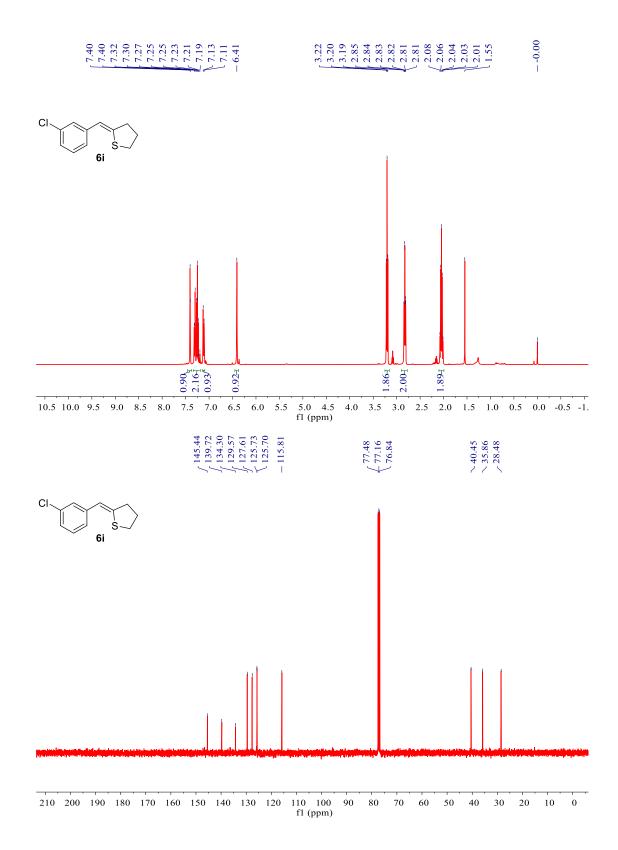


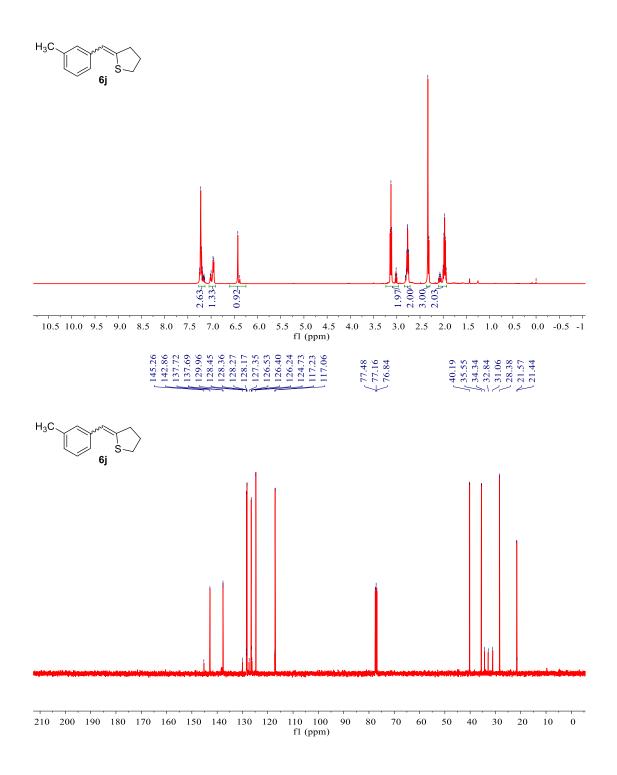


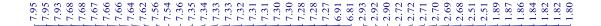


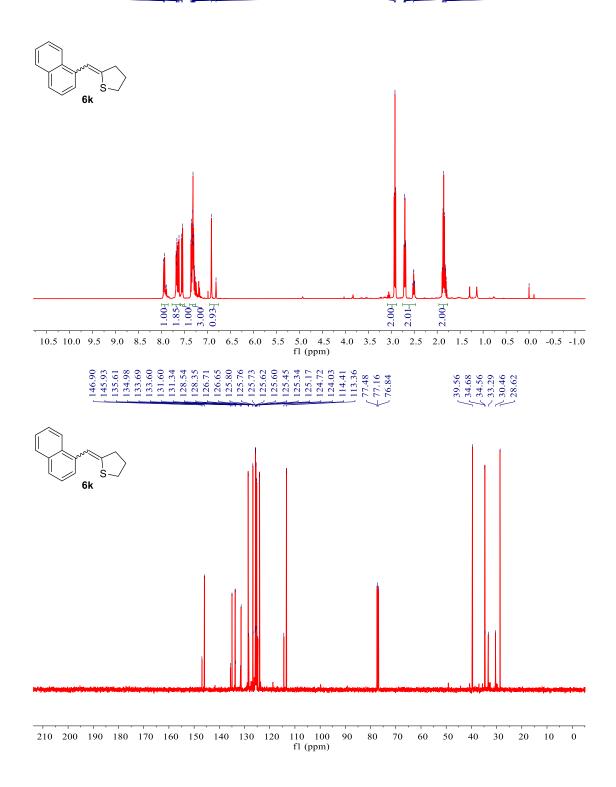


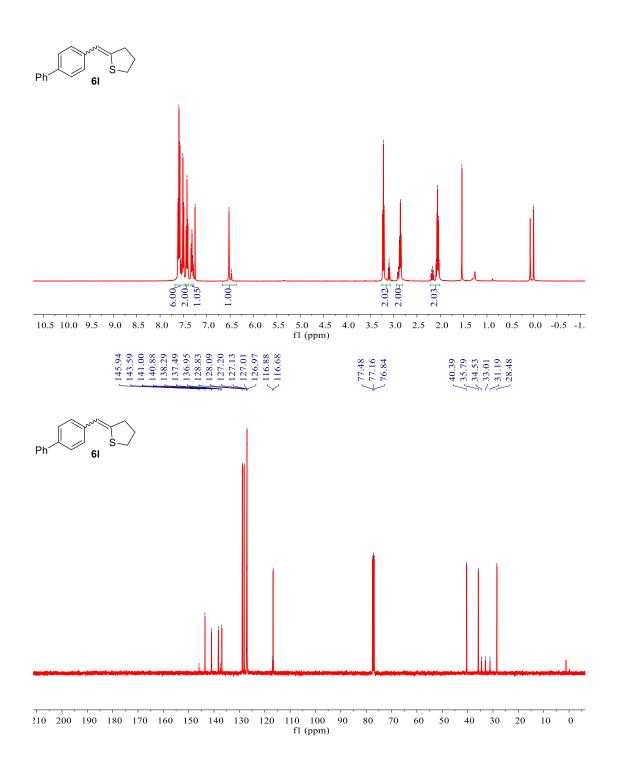


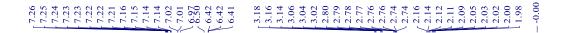


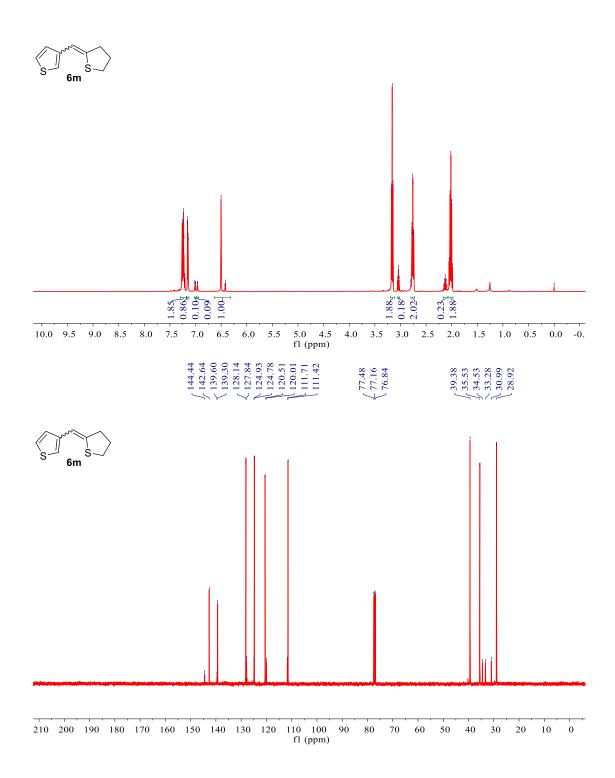


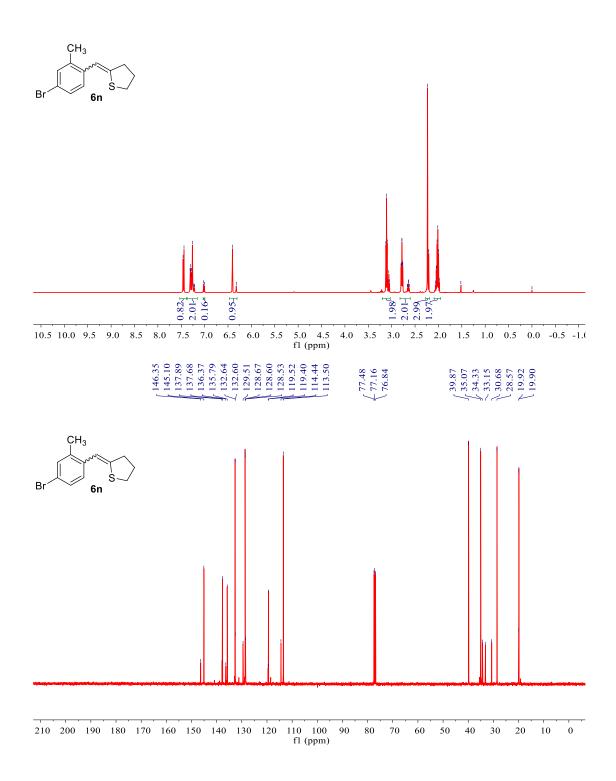


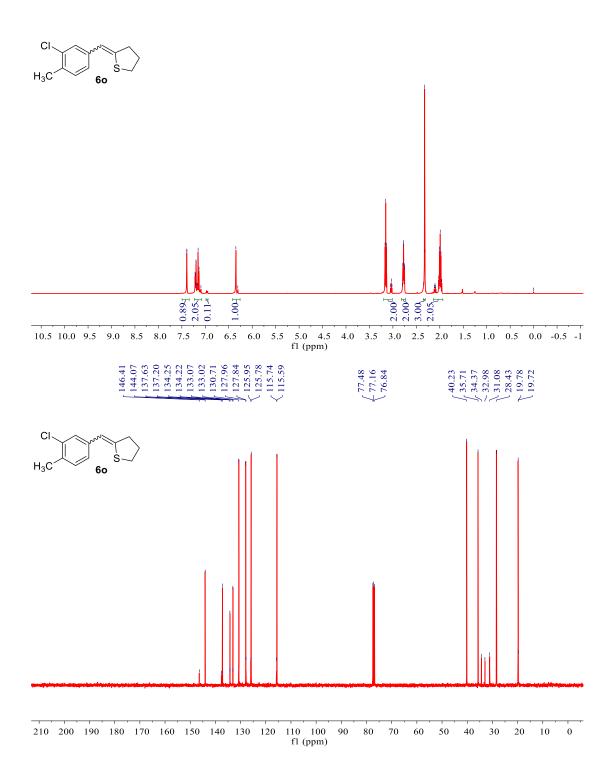


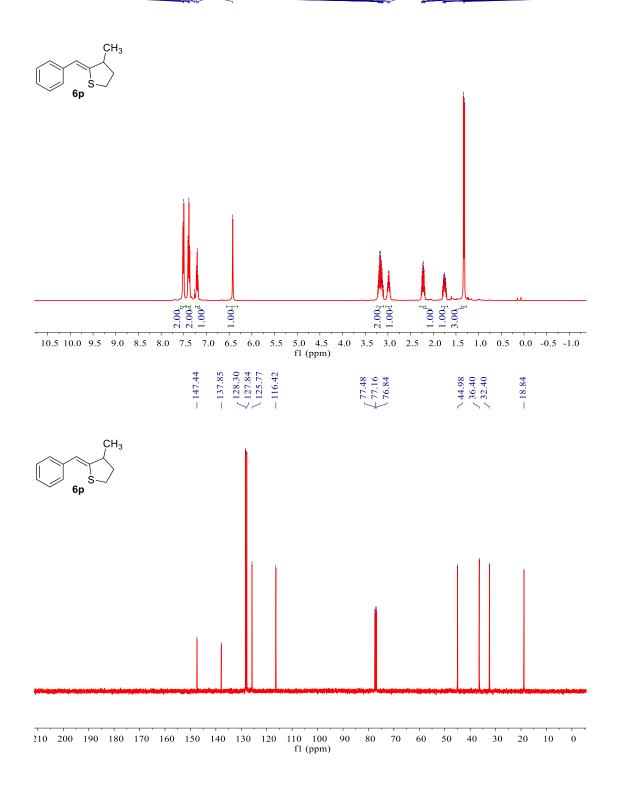


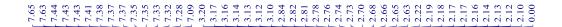


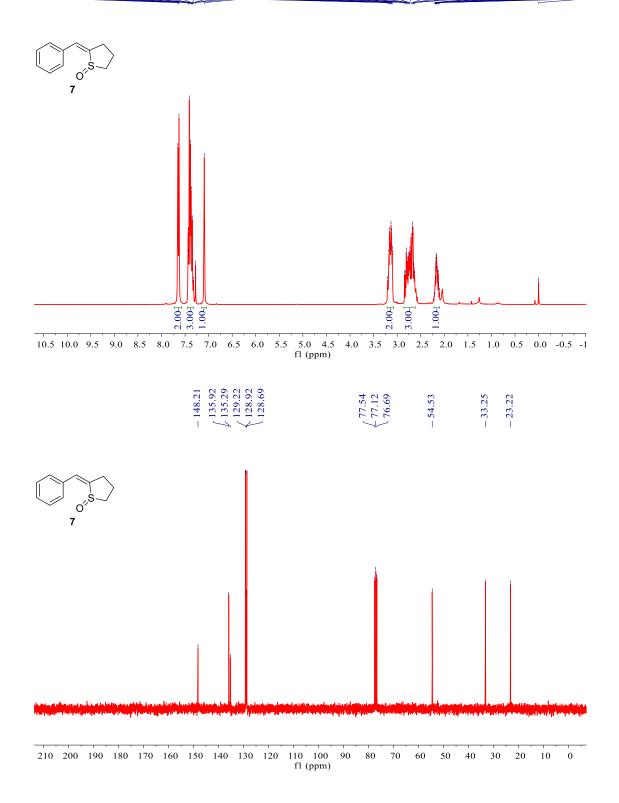


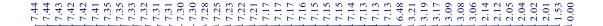

 $\begin{array}{c} 7.62\\ 7.75\\ 7.25\\$

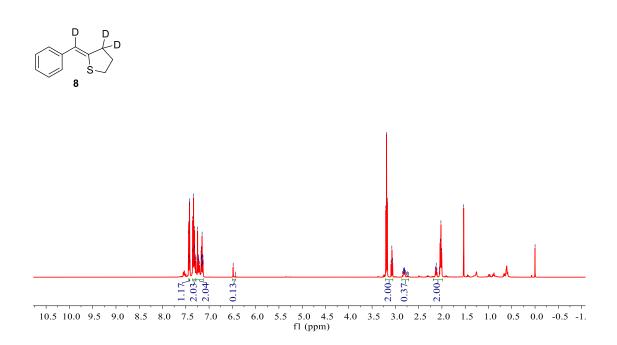


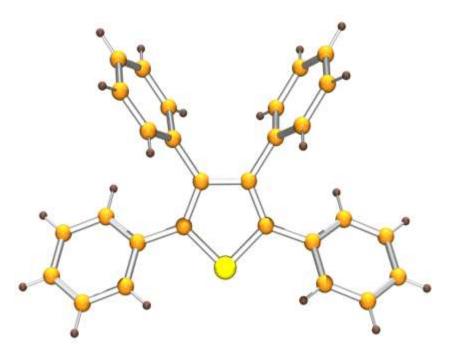




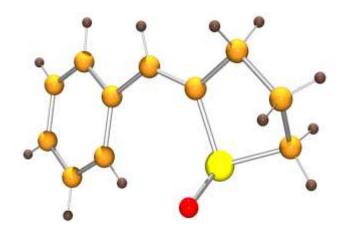

7.40 7.40 7.22 7.22 7.22 7.21 7.22 7.21 7.21 7.22 7.21 7.21 7.22 7.21 7.21 7.22







12. X-ray Structure of 3a and 7


12.1. X-ray Structure of 3a

CCDC 1840038 (**3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

12.2. X-ray Structure of 7

S50

CCDC 1840039 (7) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.