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Model and Methods

Poly[n]catenanes were simulated using the coarse-grained bead-spring model of Kremer

and Grest,25 which has been used extensively in the literature, including several applications

to interlocking molecular architectures.10,14,26-29 All beads have mass M, diameter σ, and
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interact with one another via a purely-repulsive Lennard-Jones (LJ) potential:

U(r) = 4ε
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(S1)

where r is the separation distance between the two beads and the interaction is cut off at

rc = 2
1
6σ. Neighboring beads within covalently-bound segments are connected to one another

with a finitely extensible non-linear elastic (FENE) potential:

UFENE(r) = −1
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(S2)

with the maximum separation R0 = 1.5σ and stretching constant k = 30ε. To alter chain

stiffness, a cosine bond-angle bending potential was used with the form:

Ubend(θ) = kθ (1 + cos θ) (S3)

where θ is the angle between adjacent bonds in the molecules, and the bending constant

kθ is an adjustable parameter used to study flexible (kθ = 0.0), semi-flexible (kθ = 1.5),

and rigid (kθ = 10.0) chain segments. The simulation cell was a large cubic box with edge

length much longer than the end-to-end distance of the polymers studied and the molecules

were allowed to drift freely. Equations of motion were integrated for 109 production time

steps using a velocity-Verlet algorithm and a time step of 0.005τ where τ = σ
(
M
ε

) 1
2 is the

Lennard-Jones unit of time. All relaxation times (rates) are reported in terms of τ (1/τ).

Constant temperature and the effect of solvent fluctuations were included through the use

of a Langevin heat bath with temperature T = ε/kB and damping constant γ = 0.5τ−1.

All simulations were conducted using the GPU-accelerated, Python-wrapped MD engine

DASH.31 Poly[n]catenanes were prepared by placing n circular molecules of m beads along

the x -axis of the simulation box at distances/orientations ensuring an interlocking structure.

The molecules were then equilibrated for 2× 108 time-steps using the parameters described
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above. This equilibration period is roughly 10 times longer than the longest Rouse time

observed for any polymer in the study (∼ 105τ), ensuring that the systems are completely

decorrelated from their initial states prior to production simulations. Particle coordinates

were harvested every 200 time steps (1.0τ) for analysis. To analyze the rapid relaxations of

individual macrocycles and small ring/linear polymers, shorter simulations of 2 × 107 time

steps were performed and particle coordinates were harvested every 25 time steps (0.125τ).

To ensure adequate sampling of the three longest Rouse modes in the poly[n]catenanes, 10-

20 independent simulations of 109 time steps were performed for ring sizes of m = 10, 15,

20, and 30, calculating the Rouse modes on-the-fly every 2000 time-steps.

To determine how inertia impacts the systems, we conduced some additional simula-

tions using an over-damped Brownian dynamics model and an Euler-Maruyama integration

scheme. The relaxation rates W eff
p were not qualitatively different for either linear polymers

or poly[n]catenanes. However, the stretching exponents βp for linear polymers did not in-

crease to values greater than one at high mode number as in the inertial case; instead, they

remained relatively constant in the range 0.8-1.0, in agreement with results from unentangled

melts.17 The βp for poly[n]catenanes were mostly unchanged and still significantly reduced

compared to the linear case. In short, the presence or absence of inertia does not alter the

results in a meaningful way.

Rouse Theory and Calculation

In the Rouse theory of polymer dynamics,16 linear macromolecules are represented as

a series of N beads connected by harmonic springs with spring constant
3kBT

b2
, where b2

is the mean-squared segment length. The real, symmetric matrix describing the bonded

interactions between neighboring beads can be diagonalized to yield a set of N eigenvectors
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with associated eigenvalues given by:

λp = 4 sin2
( pπ

2N

)
(S4)

The eigenvectors constitute the columns of an orthogonal matrix which can be multiplied

with the set of monomer coordinates to yield a series of normal modes, given by the following

formula (for linear chains):

Xp =

(
2

N

)1/2 N∑
i=1

Ri cos

[
pπ

N

(
i− 1

2

)]
(S5)

where Xp is the pth Rouse mode (p > 0), and Ri is the position of the ith bead in the polymer.

The zeroth mode corresponds to the center-of-mass of the polymer and has been ignored in

this letter. The resulting Langevin equations for all Xp indicate that the autocorrelation

functions (ACFs) of the Rouse modes (which describe relaxations of segments of N/p beads)

decay as simple exponentials:

〈Xp(t) ·Xp(0)〉
〈X2

p〉
= exp

(
− t

τp

)
with τ−1

p =
12kBT sin2 (pπ/2N)

ζb2
(S6)

where ζ is the monomeric drag coefficient. Scaling the inverse relaxation time by the cor-

responding eigenvalue yields the monomeric relaxation rate which is independent of mode

number:

W =
1

λpτp
=

3kBT

ζb2
(S7)

In practice, a stretched exponential form (a.k.a. KWW function) describes the behavior of

the ACFs much better:

〈Xp(t) ·Xp(0)〉
〈X2

p〉
= exp

[
−
(
t

τp

)βp]
(S8)

The integral of the ACF, which defines an effective relaxation time, is given in terms of the

gamma function, τ effp = (τp/βp)Γ(1/βp). Substituting this value into Eq. S7 above yields
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the effective monomeric relaxation rate:

W eff
p =

1

τ effp λp
(S9)

Note that following standard practice in the literature,17-20 the ideal eigenvalues (given by

Eq. S4) are used in Eq. S9. When this approach is taken, any deviations from a constant,

mode-independent value correlate with deviations from ideal chain dynamics.

For ring polymers, the matrix describing the bonded interactions between beads has the

same form, but different boundary conditions. The resulting eigenvalues are the same as

in the linear case, but the odd modes vanish and even modes with p ≥ 2 have a degener-

acy of two. Thus, each eigenvalue corresponds to a two-dimensional eigenspace. A set of

eigenvectors can then be written:

Xp =


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)
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)
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2
− 2

(
1
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i=1

Ri (−1)i for p = N
2

(S10)

As in the case of linear chains, the zeroth mode corresponds to the polymer center of mass

and is not considered here. Also, the third row of Eq. S10 does not apply for odd N . These

results are equivalent to those given by Ceriotti et al. for the thermostatting of ring polymers

in path integral molecular dynamics.32 A detailed presentation of the Rouse theory for ring

polymers in discrete form - as well as the continuous limit - can be found in ref. 21. Clearly,

the eigenvectors within each eigenspace can be related to one another by a shift in the

indexing of the monomers (although not necessarily by an integer value). However, just as

the choice of the initial versus final chain end in linear polymers is arbitrary, the indexing

in a ring polymer is also arbitrary. Therefore, by symmetry arguments, it will not affect the
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averages of any quantities related to the Rouse modes, including the ACFs. Thus, only a

single mode is considered for each eigenspace; in analogy with the coordinate transformation

for linear chains and following previous works, the cosine transformation is chosen (first line

of Eq. S10).

For the highest modes of the linear polymer with meff = 3, the ACF shows some os-

cillatory behavior, presumably due to the increased importance of bonded interactions at

short length scales. Since τ effp is defined as the integral of the ACF, a stretched exponential

function overestimates the relaxation time in this regime since it cannot account for negative

values. Empirically, the following function is able to fit the data well:

〈Xp(t) ·Xp(0)〉
〈X2

p〉
= {cos [A ln (t+ 1)]} × exp

[(
t

τp

)βp]
(S11)

where A is an additional fitting parameter. This can be numerically integrated to yield a

more correct value of τ effp . This functional form was chosen on a purely empirical basis and

no physical significance should be attached to it. For modes where Eq. S11 is used to fit the

ACF, the features of the stretching exponents, βp, are not analyzed.

Throughout this letter, we have focused on the Rouse modes with p ≥ 1 as these describe

the internal relaxations of the molecule. As mentioned earlier, the zeroth mode corresponds

to the polymer center-of-mass, so there is no ”relaxation” per se, only diffusive motion. Since

our simulations do not account for hydrodynamic effects, the macromolecules should obey

normal diffusive behavior with the mean-squared displacement proportional to t1, which is

clearly seen for all poly[n]catenane species in Fig. S3. Furthermore, all polymers in this letter

have diffusion constants which agree quantitatively with the usual prediction D = kBT
Nζ

, as

seen in Fig. S4.

A key aspect of the Rouse theory is that the modes are statistically independent. This

orthogonality allows one to interpret mode relaxations as dynamical processes with well-

defined length scales (N/p) and enables the calculation of various material functions, such
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as shear stress relaxation modulus and dynamic structure factor. However, if there exist

significant cross-correlations between modes, such analysis are invalid and the Rouse modes

no longer have a straight-forward physical interpretation. Therefore, it is important to assess

whether or not the Rouse modes are indeed orthogonal in our systems. This is particularly

important since some authors have found significant cross-correlations at high mode number

for entangled melts of linear polymers i.e. in the presence of topological interactions.33

Following previous authors,34,35 we assess the orthogonality using a normalized correlation

product:

χpq =
|〈Xp ·Xq〉|√
〈X2

p〉〈X2
q〉

(S12)

which takes on a value of one for p = q and should be zero for p 6= q if the modes are orthogo-

nal. We compute these quantities for both sets of Rouse modes considered. For the modes of

individual rings within pol[n]catenanes, the mode p = 2 shows some coupling with the other

modes, with the largest correlations reaching χpq ≈ 0.1. However, since the amplitude of the

lower modes are much larger than the rest, the sum total of un-normalized cross-correlations

is still 2 orders of magnitude smaller than the self correlation in the low-p regime, so these

couplings are not likely to affect the relaxation behavior meaningfully in the region of inter-

est. Figure S5 shows the cross-correlations (Eq. S12) between macrocycle modes in the form

of a heat map for poly[n]catenanes with m = 30 and m = 100 beads per macrocycle. For

the second set of Rouse modes, corresponding to the entire poly[n]catenane chain or a linear

analogue, we observe non-zero coupling between pairs of modes with both even or both odd

mode numbers. The same trend has been observed repeatedly in the literature and results in

a checker-board pattern in the resulting cross-correlation heat map (Figure S6). In agreement

with literature results,33–35 the cross-correlations are always at least 1-2 orders of magnitude

smaller than the self-correlation, suggesting that the Rouse modes are indeed orthogonal

to within reasonable approximation. In general, poly[n]catenanes of all ring sizes exhibit

larger couplings at low mode number than do the linear analogues. However, at higher mode
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number, the couplings are suppressed and the modes become more orthogonal; this is clearly

seen in the resulting correlation heat map, which shows much more yellow/orange coloring

in the lower left (low mode number) than in the upper right (high mode number). So while

the Rouse analysis is indeed applicable to the entire polymer, the results will be particularly

useful at high mode number, which is where the most unusual dynamics are observed. In

summary, we may conclude that cross-correlations between modes cannot be responsible for

the qualitatively different relaxation behavior of poly[n]catenanes.

Static Properties

Here we present a few selected static properties of poly[n]catenanes and their linear

counterparts. Since this letter focuses on the dynamical behaviors, we discuss only those

properties which are useful for understanding and interpreting the dynamics. A more de-

tailed analysis of the structural characteristics has previously been performed by Pakula

and Jeszka.15 Table S2 shows various elementary quantities including mean segment length

between effective monomers (b), radius of gyration (Rg), and end-to-end distance (Ree) for

poly[n]catenanes and linear counterparts. Although mean effective bond lengths differ by

at most 2% between architectures, linear polymers have smaller end-to-end distance and

radius of gyration, which is probably caused by local chain swelling and excluded volume

effects. By design, macrocycles and the effective monomers in linear analogues have the

same segmental volume (b3), but the macrocycles contain many more beads (m > 3×meff ).

Because of this increased bead density, one may expect poly[n]catenanes to be more strongly

impacted by excluded volume and therefore stiffer than linear polymers. This leads to phys-

ically larger/longer molecules, which slows down the large length-scale dynamics; in the

main text, this expectation is borne out as linear chains tend to relax 50-80% faster than

poly[n]catenanes at the lowest modes. The same trend is evidenced by the local structure

of the polymers.
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To understand local chain structure, two additional quantities are calculated: the mean-

squared amplitudes of the Rouse modes and the mean-squared internal distances between

effective monomers. Physically, these quantities both represent the size of sub-chains, but

are calculated according to different means. For ideal chains, the Rouse mode amplitudes

are given by

〈X2
p〉 =

3kBT

kλp
=
b2

λp
(S13)

where k is the spring constant between neighboring beads. For chains with excluded volume

effects, the following scaling relation will hold in the asymptotic limit:35

λp〈X2
p〉 ∼

(
N

p

)2ν−1

(S14)

where ν is the Flory exponent. The scaled amplitudes for poly[n]catenanes and linear ana-

logues as a function of n/p are shown in Figs. S7 and S8, respectively. In all cases, there

is a positive slope at the largest length scales which suggests that the chains are not long

enough to reach the asymptotic limit and are therefore in some intermediate or crossover

regime. The values for poly[n]catenanes generally span a wider range than linear counter-

parts, indicating that they are subject to greater local stiffness effects. The linear polymers

also appear to level off more quickly at higher values of n/p, while the poly[n]catenanes seem

slower to reach their asymptotic limit.

The scaled Rouse mode amplitudes for individual macrocycles within poly[n]catenanes

can also be calculated and compared to free ring polymers and linear chains. The results

for macrocycles of size m = 100 and m = 30 are shown in Figs. S9 and S10, respectively,

and the results are qualitatively similar. At high mode numbers (short length scales), the

mode amplitudes vary according to the number of threadings, with poly[n]catenane chain

centers having the lowest amplitudes, followed by chain ends, and then free polymers. In this

regime, the dependence on N/p is identical for all systems. At the lowest mode, however, the

situation is reversed, with all three cyclic systems having amplitudes larger than the linear
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polymer. Furthermore, the magnitude of the modes now increases with increased threading,

contrary to the situation at high mode number. These data suggest that ring polymers and

catenane macrocycles are expanded at large length scales compared to linear chains, and

that the mechanical bonds magnify the effect.

The mean-square internal distances between effective monomers are another set of data

which describe the internal structure of polymer chains. They are qualitatively similar to

the Rouse mode amplitudes in that they quantify the size of sub-chains within the molecule.

For a polymer with N effective monomers, these data are calculated according to:

R2(n) =
1

N − n

N−n∑
i=1

〈
(Ri+n −Ri)

2
〉

(S15)

where n > 0, Ri is the position of effective monomer i, and the brackets 〈...〉 indicate an en-

semble average. The quantity R2 is typically divided by n so that ideal random walk statistics

correspond to a constant value. Figures S11 and S12 show these data for linear polymers and

poly[n]catenanes, respectively. As expected, all polymers are locally swollen at short length

scales, showing increasing values before leveling off at higher n. However, it is clear from

this data that linear polymers are considerably less expanded than poly[n]catenanes, which

is presumably a consequence of the lower bead density within each segment volume. The

transition to ”ideal” statistics at n ∼ 20 rings in the poly[n]catenanes is likely the result of

increased flexibility/mobility at the chain ends. Further normalization by the mean-squared

segment length b2 ≡ R2(1), allows for comparison of chain structure across architectures, as

shown in Fig. S13. In the case of linear chains with various values of meff , all curves con-

verge. However, for poly[n]catenanes, smaller macrocycles lead to greater relative swelling,

which would indicate enhanced excluded volume effects at short length scales and greater

overall stiffness, consistent with the observations from the Rouse mode amplitudes. These

data also support the conclusion that these polymers are not large enough to reach the

asymptotic scaling limit. Beyond these features, there are no other anomalies associated
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with poly[n]catenane structure at any length scale (so far as effective monomers are con-

cerned). Therefore, one would expect the dynamical properties at short length scales to be

consistent with those of an ordinary polymer with excluded volume. However, as described

in the main text, there are indeed qualitative differences in dynamics at short length scales

between poly[n]catenanes and linear polymers. We will show later that such differences can-

not be understood in terms of the static scaling properties, which are qualitatively similar

for all architectures considered.

Scaling of Relaxation Rates

Depending on the size of the effective monomer, W eff
p as determined from Eq. S9 can

be spread over 1-2 orders of magnitude, making comparisons between the various polymers

difficult (see Figs. 3a, S14). Therefore, some method of scaling these spectra must be

introduced. A straightforward approach is to leverage Eq. S7, which indicates that the

relaxation rates should be inversely proportional to b2 (which indicates the segment size) and

ζ, the drag coefficient of the monomer. This relationship suggests that multiplying W eff
p

by these quantities (or values directly proportional to them) would allow for comparisons

between polymers of different molecular weight and monomer size. In a Langevin dynamics

simulation, the drag coefficient for a relatively small molecule will be directly proportional

to the number of beads in the molecule so that the monomeric drag is proportional to either

m or meff for poly[n]catenanes and linear polymers, respectively. Meanwhile, mean values

of b2 can be obtained directly from simulation trajectories. Accordingly, a scaled relaxation

rate is defined as:

W scaled
p = m〈b2〉W eff

p (S16)

where the brackets indicate an average obtained from the simulation, and m and b2 depend

on the architecture in question. Applying this formula to the relaxation rates for both

linear polymers and poly[n]catenanes, the spectra are now much more comparable (Figs. S15
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and S16). Two features are immediately apparent: 1) the curves show a dependence on p

at low mode numbers, suggesting that they do not obey ideal Rouse dynamics, and 2) the

relaxation rates increase monotonically with the size of the effective monomer. Both of these

observations may be understood in terms of excluded volume effects, which can be included

using a dynamical scaling argument.

To begin this scaling argument, a similar analysis by Doi and Edwards1 is summarized,

considering only the case of linear polymers for the time being. In the Rouse theory, the

longest relaxation time for a group of N segments is given by:

τN ∝
ζb2N2

kBT
(S17)

Using a dimensional analysis, an expression can be crafted which contains the same physical

quantities as Eq. S17, but assumes no particular dependence on N , so that it may be applied

to non-ideal polymers:

τN ∝
ζb2

kBT
f(N) (S18)

The fraction has units of time, while the function f(N) is dimensionless. By lumping together

groups of κ segments, the following scaling transformation is introduced:

N → N/κ b→ κνb ζ → κζ (S19)

where ν is the scaling exponent. Since the relaxation time must be unaffected by the scaling

(i.e. independent of κ), insertion of Eq. S19 into Eq. S18 yields the form of f(N):

τN ∝ f(N) ∝ N2ν+1 (S20)

This result was first noted by de Gennes36 and confirmed by simulations37,38 some time ago.

Now roughly speaking, the pth Rouse mode describes relaxations of segments of N/p beads.

In keeping with the self-similar nature of polymers, it is assumed that Eq. S20 also holds for
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sub-chains, so that the Rouse relaxation times may be written as:

τp ∝
(
N

p

)2ν+1

(S21)

This same (approximate) scaling has been proposed before by Panja et al.35 Now for small

p, the eigenvalues are approximated as λp ∼ (p/N)2 (recall that we have used the ideal

eigenvalues given by Eq. S4 in the calculation of W eff
p ). This relation, along with Eqs. S7

and S21, indicates that the relaxation rates scale as

W ∼
(
N

p

)1−2ν

(S22)

in the small-p range. Later, it will be shown that for linear polymers, W eff
p ∼ p−0.12,

indicating a scaling exponent of 0.56, which is consistent with good solvent conditions (see

Fig. S17).

One may use similar arguments to understand why the scaled relaxation rates increase

as the effective monomer size increases. Consider the density of beads within the effective

monomer, ρ ∼ meff/b
3. Since b ∼ mν

eff , this density decreases with increasing meff in a

good solvent. Smaller bead densities allow for greater overlap between effective monomers,

which reduces the relative importance of excluded volume effects, leading to faster dynamics

in analogy with Eq S20. To quantitatively account for this effect, the dynamical scaling

argument is used again. In particular, it is clear that the relaxation time for a given chain

segment should not depend on the level of discretization, i.e. meff . However, such a de-

pendence is introduced into the relaxation rates W eff
p through the eigenvalues λp in Eq. S9,

since different discretizations yield different values of n/p and therefore different eigenvalues.

Furthermore, the values of ζ and b2 also depend on meff as already discussed. To under-

stand the effect of this discretization, consider a chain (or sub-chain) of N monomers with a

relaxation time τN which obeys Eq. S20. For a given effective monomer size meff , one may
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write: (
n

p

)
eff

=
N

meff

(S23)

which represents the number of effective monomers in the segment for a given discretization.

Using Eqs. S7, S16, S20, and S23, along with the small-p approximation for λp and the

relation b ∼ mν
eff , one finds:

W scaled
p ∝

(
N

meff

)1−2ν

(S24)

In good solvents, the scaling exponent will be greater than 1/2, so that W scaled
p increases

monotonically with meff , which is indeed the observed behavior. Eq. S24 indicates that one

may correct the relaxation spectra produced by Eq. S16 by multiplying the values of W scaled
p

by the denominator of the right-hand side of Eq. S24. The final result is:

Scaled W eff
p = m2−2ν

eff × 〈b
2〉 ×W eff

p (S25)

For large length scales (low mode number), the resulting spectra should collapse onto a

master curve for traditional linear polymers. Alternatively, one may exploit the power law

relationship by plotting W scaled
p (Eq. S16) as a function of (n/p) × (1/meff ), noting that

on a log-log plot, vertical and horizontal shifts of power law functions are effectively the

same thing. This approach provides a convenient test for the scaling procedure since it

does not require any prior knowledge concerning the value of ν; rather, the value may be

inferred if the spectra collapse onto a master curve (provided it is a straight line). The result

is indeed a master curve at large length scales, as shown for linear polymers in Fig. S17.

The slope of the linear portion at low mode number reveals the scaling exponent, ν =

0.56, consistent with good solvent conditions. This representation successfully accounts for

excluded volume effects introduced by the effective monomer size, allowing for comparisons

between polymers with different effective monomer sizes. However, this approach cannot be

expected to yield perfect agreement in all scenarios. In particular, for any real polymer chain,

the effective value of the scaling exponent will be non-constant at low molecular weight, which
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will introduce discrepancies into the results; clearly such errors are not too large, especially

at low mode number. Having developed a scaling methodology in the context of linear

polymers, the more delicate problem of poly[n]catenane systems must now be addressed.

Many of the assumptions invoked in the above argument cannot be readily applied to

poly[n]catenanes, in which the number of beads in an effective monomer (i.e. macrocycle),

m, has a true physical meaning and is not simply a parameter of the analysis. In general,

the scaling behaviors of poly[n]catenanes will be quite complicated. One can immediately

envision at least two different types of scaling: a familiar one involving changes in the number

of rings, and a new one involving changes in the size of the rings. In general, the latter will

violate self-similarity, thus precluding any straightforward scaling analysis. For instance, it

would be unreasonable to assume a priori that a [100]catenane with m = 5 will relax on the

same time scale as a [5]catenane with m = 100 just because they have the same molecular

weight. Such an assumption becomes even more dubious when the entanglement effects are

considered.

However, the simulations conducted here have indicated that for reasonably large cate-

nane segments, the relaxation times are not strongly dependent on the size of the macrocy-

cles, provided that the molecular weights are comparable. For example, when n = 25, the

values of τ1 for m = 10 and τ3 for m = 30 both describe relaxations of ∼250 beads and

differ by only ∼8%. As one might expect, the longer of the relaxation times corresponds to

the system with the smaller macrocycles, i.e. the one with the greater density of mechanical

bonds. Perhaps for the macrocycle and catenane sizes studied here, the polymer can be

thought of as a homogeneous coil of beads, allowing one to neglect the local structure of the

chain at large length scales. In this picture, the two varieties of scaling discussed above are

effectively the same. Naturally, in the limits of either very large or very small macrocycles,

this behavior would not hold. To proceed, we fit the scaling of b vs. m to a power law, finding

that ν = 0.658 in this regime (Fig. S18), somewhat larger than the ordinary good-solvent

value, which is unsurprising since the macrocycles are rather small. The scaled relaxation
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spectra are then calculated according to:

Scaled W eff
p = m0.684 × 〈b2〉 ×W eff

p (S26)

Having corrected for the excluded volume effect, the relaxation spectra for poly[n]catenanes

collapse onto a master curve at low mode number, similar to linear polymers. With this

scaling procedure in hand, the dynamics of catenanes with different macrocycle sizes can be

properly compared to study the effect of the mechanical bond (Fig. 3b).

It is worthwhile to comment on the physical significance of this scaling procedure and the

limits of its interpretation. The excluded volume arguments used above are only truly valid

in the large-scale asymptotic limit and even then are merely approximations. As discussed

in the previous section, the poly[n]catenanes studied here are not large enough to reach

this regime, at least in terms of static properties. While the connection between static and

dynamic scaling is not well defined, it can be safely assumed that these polymers (and indeed

their linear analogues) are in a crossover regime and therefore do not have a well-defined

value of the scaling exponent, ν, which can be formally applied to a dynamical scaling

analysis. Therefore, the excluded volume arguments, whose correctness is evidenced only

by their ability to converge the spectra, should not be taken as important results in this

letter. However, this does not affect the key findings of this letter: if the effects of excluded

volume were completely ignored and the spectra were only scaled according to segment size

and monomer drag (Eq. S16), the qualitative differences associated with decreasing ring

size would still be apparent, as demonstrated by Fig. S16. In fact, if we have eschewed

any theoretical basis for scaling the spectra and had simply shifted or normalized them in

an ad hoc manner, the same conclusions would have been reached. The scaling procedure

therefore represents only a means to rationalize the quantitative differences between the

spectra of poly[n]catenanes with various ring sizes, but it does not impact the qualitative

distinctions, which are the key findings.
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We also wish to emphasize the point that the n/p dependencies at high mode numbers

(short length scales) could not be expected merely on the basis of non-asymptotic behavior.

For a swollen polymer chain, the effective spring constant between segments is increased,

leading to faster dynamics. This effect can be easily seen in the case of linear polymers:

various static properties (see Figs. S7 and S11) show that the chains are swollen at small

length scales and accordingly show accelerated dynamics in this regime (Fig. S14). One

could account for these local stiffness effects by recognizing that (in the ideal case) both the

Rouse relaxation time and the mean-squared mode amplitudes are inversely proportional

to the effective spring constant, suggesting that the quantity W eff
p · λp〈X2

p 〉 (an effective

mobility) should be constant for all modes. Based on common scaling relations, this result

should also hold in the large-length scale limit for chains with excluded volume. This sort

of analysis combining static and dynamic simulation results has been attempted by many

researchers20, 33,39–42 with mixed results. In particular, Colmenero and coworkers20, 41,42 have

repeatedly shown that local stiffness cannot explain the deviations from ideal behavior at

high mode number and a mode-dependent friction coefficient must be introduced. A similar

observation was made in polymer melts and glasses employing the same molecular model

used here.40 However, it is unclear what physical factors influence this effective friction and

in what way, precluding further analysis. But even if we applied such a procedure, it would

not affect the results of this letter. As discussed above, poly[n]catenanes are swollen at

short length scales, as seen through the static properties (Figs. S8 and S12). However, the

relaxation rates do not show an upturn at high mode number as the linear polymers do.

In fact, for the smallest ring sizes m = 10 and 15, the relaxation rates actually decrease

at the shortest length scales, where the chains are the most swollen and should therefore

be most accelerated! Therefore, applying this kind of analysis would only emphasize the

differences between the various poly[n]catenanes at short length scales. In summary, even

though these poly[n]catenanes are in a crossover scaling regime (i.e. not in the asymptotic

limit), this cannot explain the differences in relaxation behavior which occur at small length
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scales along the polymer backbone.

Finally, the methodology for comparing poly[n]catenanes to their linear analogues is

discussed. The arguments presented above allow one to correct for excluded volume effects

for both linear polymers and poly[n]catenanes separately, but they do not readily indicate a

basis for comparing the two species to one another. Indeed, this analysis is based on the fact

that molecules with the same architecture and molecular weight must relax on the same time

scale, no matter the level of discretization or coarse-graining. However, this does not hold

across polymer architectures: poly[n]catenanes relax much faster than linear polymers of the

same molecular weight. This is not a particularly interesting result since the poly[n]catenanes

are far smaller in size than the linear polymers and therefore should relax faster; the same

phenomenon is well-known in the context of ring polymers. It is for this reason that linear

polymers and poly[n]catenanes are compared on the basis of segment length, as described

in the main text. Only Eq. S16 is applied, with the understanding that poly[n]catenanes

possess greater excluded volume effects than their linear counterparts, and that these effects

are not controlled for. This limitation is unimportant. As demonstrated above, any scaling

arguments used to account for excluded volume effects will result merely in a vertical shift

of the spectra, which does not change the qualitative character of the data. Indeed, the key

findings of this study are those qualitative differences in dynamics associated with the novel

poly[n]catenane architecture.
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Additional Figures and Tables

Figure S1: Representative subset of normalized Rouse mode ACFs for poly[n]catenane with
n = 25 and m = 10. Points are simulation data; dotted lines are fits to Eq. S8. The p = 24
curve crosses over the p = 15 curve at t ∼ 25τ due to the reduction in βp at high mode
number (cf. Fig. 5).

Figure S2: Stretching exponents for linear polymers plotted against an absolute length scale
(i.e. a specific number of beads). Deviations from ideal Rouse behavior occur on the scale
of ∼ 10 beads.
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Figure S3: Mean squared displacements of poly[n]catenane centers of mass as a function of
time for various ring sizes (m). All polymers diffuse normally with MSD ∝ t

Figure S4: Diffusion coefficient as a function of inverse molecular weight, 1/N . The red line
shows the expected dependence based on simulation parameters.
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Figure S5: Normalized correlations between Rouse modes for macrocycles within
poly[n]catenanes.
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Figure S6: Normalized correlations between Rouse modes of poly[n]catenanes and linear
polymers.
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Figure S7: Scaled Rouse mode amplitudes for linear polymers.

Figure S8: Scaled Rouse mode amplitudes for poly[n]catenanes.
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Figure S9: Scaled Rouse mode amplitudes for macrocycles within poly[n]catenanes (m =
30), compared to free ring polymers and linear chains.

Figure S10: Scaled Rouse mode amplitudes for macrocycles within poly[n]catenanes (m =
100), compared to free ring polymers and linear chains.
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Figure S11: Mean squared internal distances between effective monomers for linear polymers
of effective monomer size meff = 3 (red), 6 (green), and 9 (blue). The values increase
throughout the range of the function, indicating that these chains are not large enough to
reach the asymptotic limit. The tendency to level off also indicates that the chains are locally
swollen.

Figure S12: Mean squared internal distances between macrocycles for poly[n]catenanes of
ring size m = 10 (red), 15 (yellow), 20 (green), and 30 (blue). Similar to linear chains, these
polymers are locally swollen and are not large enough to reach a clear asymptotic limit.

25



Figure S13: Scaled mean squared internal distances between macrocycles for
poly[n]catenanes and linear analogues. The linear polymers (triangles) collapse to a master
curve, but poly[n]catenanes do not, indicating that smaller macrocycle sizes lead to greater
excluded volume effects.

Figure S14: Effective relaxation rates (Eq. S9) for linear polymers with 25 effective monomers
of size meff =3 (red), 4 (orange), 5 (cyan), 6 (green), 9 (blue), 12 (magenta).
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Figure S15: The relaxation spectra of linear polymers from Fig. S14 scaled according to
Eq. S16.

Figure S16: The relaxation spectra for poly[n]catenanes from Fig.3a scaled according to
Eq. S16.
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Figure S17: The relaxation spectra for linear polymers from Figure S4 shifted horizontally
according to Eq. S24. The slope of the line at low mode number corresponds to a scaling
exponent of 0.56, consistent with good solvent conditions.

Figure S18: Mean segment length b, as a function of m for poly[n]catenanes. Data points
are simulation data; dashed line is a power law fit.

28



Table S1: Rouse mode stretching exponents, βp, of various polymer architectures (m = 100)
as determined from the first Rouse mode analysis described in the main text.

Architecture p = 2 p = 4 p = 6

Linear Polymer 0.94 0.96 1.05

Ring Polymer 0.90 0.95 0.99

Poly[n]catenane
Chain End (i = 1)

0.76 0.87 0.90

Poly[n]catenane
Chain Center (i = 3)

0.69 0.77 0.85

Table S2: Static Properties of Selected Poly[n]catenanes and Linear Analogues

Property Poly[n ]catenane Linear Polymer

N 250 75
m or meff 10 3

b(σ) 1.87 1.90
〈R2

g〉
1/2 7.74 6.25

〈R2
ee〉

1/2 19.8 16.0

N 500 150
m or meff 20 6

b(σ) 2.93 3.00
〈R2

g〉
1/2 11.5 9.62

〈R2
ee〉

1/2 29.4 24.4

N 750 225
m or meff 30 9

b(σ) 3.73 3.70
〈R2

g〉
1/2 14.5 12.4

〈R2
ee〉

1/2 36.6 31.6
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