Nototronesides A-C, Three Triterpene Saponins with a 6/6/9 Fused Tricyclic Tetranordammarane Carbon Skeleton from the Leaves of *Panax notoginseng*

Xin-Yi Liu, Chuang-Jun Li*, Fang-You Chen, Jie Ma, Shuo Wang, Yu-He Yuan, Li Li, and Dong-Ming Zhang*

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.

*Corresponding author. *E-mail*: <u>lichuangjun@imm.ac.cn</u>; <u>zhangdm@imm.ac.cn</u>; Fax/Tel: +86-01063165227

Supporting Information

Table of contents

1. NMR assignment of nototronesides B-C (2-3)

Table S1. $^1\mathrm{H}$ (600 MHz) and $^{13}\mathrm{C}$ NMR (150 MHz) data of compounds 2 and 3 in $C_5D_5\mathrm{N}$

2. NMR assignment of Nototrone A (1a)

Table S2. ¹H (600 MHz) and ¹³C NMR (150 MHz) data of compound 1a

3. Key HMBC correlations of compounds 1a, 2 and 3

Figure S1. Key ¹H-¹HCOSY and HMBC correlations of compound 1a

Figure S2. Key HMBC correlations of compound 2

Figure S3. Key HMBC correlations of compound 3

4. General experimental procedures

5. Plant material

6. Extraction and isolation

7. Enzyme hydrolysis of 1

8. Acid hydrolysis and determination of absolute configurations of monosaccharides

9. Physico-chemical constant of compounds 1~3 and 1a.

- 10. ECD computation of nototrone A (1a).
- 11. X-ray Crystallographic Analysis of nototrone A (1a) (See Table S3)

Table S3: Crystal data and structure refinement for exp_5187

Figure S4. X-ray crystal structure of nototrone A (1a).

12. Neuroprotection Bioassays of compounds 1-3

Table S4. Neuroprotective activity of compounds **1-3** on PC12 cell model induced by serum deprivation (10.0 μ M, 1.0 μ M, and 0.1 μ M).

12. HRESI-MS, UV, IR, NMR spectra of nototronesides A-C (1-3)

Figure S5 The UV spectrum of nototroneside A (1) in CH₃OH

Figure S6. The IR spectrum of nototroneside A (1)

Figure S7. The HR-ESI-MS spectrum of nototroneside A (1)

Figure S8. The ¹H NMR spectrum of nototroneside A (1) in C_5D_5N (600 MHz) Figure S9. The 13 C NMR spectrum of nototroneside A (1) in C₅D₅N (150 MHz) Figure S10. The 13 C NMR spectrum of nototroneside A (1) in C₅D₅N (150 MHz) Figure S11. The DEPT135 spectrum of nototroneside A (1) in C₅D₅N (150 MHz) Figure S12. The HSQC spectrum of nototroneside A (1) in C₅D₅N (600 MHz) Figure S13. The HMBC spectrum of nototroneside A (1) in C₅D₅N (600 MHz) Figure S14. The HMBC spectrum of nototroneside A (1) in C₅D₅N (600 MHz) Figure S15. The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of nototroneside A (1) in C₅D₅N (600 MHz) Figure S16. The NOE spectrum of nototroneside A (1) in C₅D₅N (600 MHz) Figure S17. The 1D-TOCSY spectrum of nototroneside A (1) in C₅D₅N (600 MHz) Figure S18. The ¹H NMR spectrum of nototrone A (1a) in C_5D_5N (600 MHz) Figure S19. The ¹³C NMR spectrum of nototrone A (1a) in C₅D₅N (150 MHz) Figure S20. The DEPT135 spectrum of nototrone A (1a) in C₅D₅N (150 MHz) Figure S21. The DEPT90 spectrum of nototrone A (1a) in C₅D₅N (150 MHz) Figure S22. The HSQC spectrum of nototrone A (1a) in C₅D₅N (600 MHz) Figure S23. The HMBC spectrum of nototrone A (1a) in C₅D₅N (600 MHz) **Figure S24.** The ¹H-¹H COSY spectrum of nototrone A (1a) in C₅D₅N (600 MHz) Figure S25. The NOESY spectrum of nototrone A (1a) in C₅D₅N (600 MHz Figure S26. The TOCSY spectrum of nototrone A (1a) in C₅D₅N (600 MHz) Figure S27. The IR spectrum of nototrone A (1a) Figure S28. The HR-ESI-MS spectrum of nototrone A (1a) Figure S29. The UV spectrum of nototrone A (1a) in CH₃OH Figure S30. The CD spectrum of nototrone A (1a) in CH₃OH Figure S31. The ¹H NMR spectrum of nototroneside B (2) in C_5D_5N (600 MHz) Figure S32. The ¹³C NMR spectrum of nototroneside B (2) in C₅D₅N (150 MHz) Figure S33. The HSQC spectrum of nototroneside B (2) in C₅D₅N (600 MHz) Figure S34. The HMBC spectrum of nototroneside B (2) in C₅D₅N (600 MHz) Figure S35. The ¹H-¹H COSY spectrum of nototroneside B (2) in C₅D₅N (600 MHz) Figure S36. The TOCSY spectrum of nototroneside B (2) in C₅D₅N (600 MHz)

- Figure S37. The UV spectrum of nototroneside B (2) in CH₃OH
- Figure S38. The IR spectrum of nototroneside B (2)
- Figure S39. The HR-ESI-MS spectrum of nototroneside B (2)
- **Figure S40.** The ¹H NMR spectrum of nototroneside C (3) in C_5D_5N (600 MHz)
- Figure S41. The ¹³C NMR spectrum of nototroneside C (3) in C₅D₅N (150 MHz)
- Figure S42. The HSQC spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S43. The HMBC spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S44. The HMBC spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S45. The ¹H-¹H COSY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S46. The NOESY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S47. The TOCSY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S48. The ROESY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)
- Figure S49. The UV spectrum of nototroneside C (3)
- Figure S50. The IR spectrum of nototroneside C (3)
- Figure S51. The HR-ESI-MS spectrum of nototroneside C (3)

1. NMR assignment of nototronesides B and C (2 and 3)

		2		3
no.	δc	$\delta_{\rm H}(J \text{ in Hz})$	δc	$\delta_{\rm H}(J \text{ in Hz})$
1	40.2	1.95, m; 1.42, m	40.2	1.95, m; 1.43, m
2	26.6	2.33, m; 1.93, m	26.6	2.31, m; 1.92, m
3	88.7	3.53, dd, 4.2, 11.4	88.6	3.52, dd, 4.2, 11.4
4	39.9		39.9	
5	55.8	1.05, d, 12.0	55.8	1.06, d, 12.0
6	18.3	1.51, m; 1.36, m	18.2	1.57, m; 1.40, m
7	36.0	1.92, m; 1.13, m	36.0	1.94, m; 1.16, m
8	44.3		44.4	
9	47.8	1.68, m	47.9	1.69, m
10	38.9		38.9	
11	36.8	1.87, m; 1.62, m	36.7	1.87, m; 1.62, m
12	81.1	4.61, m	81.3	4.63, m
13	219.6		219.7	
14	154.4		154.4	
15	31.0	2.34, 2H, m	31.0	2.34, 2H, m
16	28.7	2.66, m; 2.35, m	28.7	2.61, m; 2.34, m
17	62.4	3.41, d, 9.0	63.3	3.41, d, 9.0
18	15.5	0.86, s	15.5	0.85, s
19	20.8	0.91, s	20.8	0.91, s
20	82.5		82.6	
21	17.9	1.51, s	18.0	1.50, s
22	30.9	2.03, q, 7.2;	30.9	2.04, q, 7.2;
		1.71, q, 7.2		1.71, q, 7.2
23	7.7	1.18, t, 7.2	7.8	1.18, t, 7.2
24	16.9	1.16, s	16.9	1.16, s
25	27.9	1.40, s	28.0	1.42, s
26	113.7	5.17, s; 4.98, s	113.7	5.17, s; 4.97, s
Glu1-1' (C-3)	105.1	5.04, d, 7.8	104.8	5.04, d, 7.8
2'	83.4	4.30, m	83.0	4.18, m
3'	78.4	4.35, m	77.8	4.17, m
4'	71.6	4.41, m	71.8	4.25, m
5'	78.1	3.97, m	77.95	3.90, m
6'	62.6	4.52, brd, 12.0;	62.8	4.52, brd, 11.4;
		4.32, dd, 12.0, 3.6		4.32, dd, 11.4, 3.6
Glu2-1"	106.1	5.43, d, 7.8	103.2	5.57, d, 7.8
2"	77.2	4.18, m	84.4	4.26, m
3″	78.0	4.28, m	78.3	4.00, m
4‴	71.6	4.18, m	71.2	4.12, m

Table S1. ^1H (600 MHz) and ^{13}C NMR (150MHz) data of compounds 2 and 3 in $C_5D_5\text{N}$

5″	78.5	4.19, m	77.9	4.32 ,m
6″	62.6	4.51, brd, 10.8;	62.9	4.51, brd, 11.4;
		4.38, dd, 10.8, 3.6		4.41, brd, 11.4
Xyl-1'''			106.4	5.45, d, 7.2
2'''			76.0	4.13, m
3‴			78.5	4.21, m
4‴			70.8	4.17, m
5‴			67.5	4.32, brd, 10.8;
				3.73, t, 10.8
Glu-1"" (C-20)	98.9	5.03, d, 7.2	98.9	4.98, d, 7.8
2''''	75.2	3.87, m	75.1	3.89, m
3''''	78.3	4.36, m	78.7	4.39, m
4''''	70.7	4.38, m	71.0	4.38, m
5''''	76.6	4.02, m	76.5	4.04, m
6''''	69.7	4.88, brd, 10.8;	69.7	4.87, brd, 11.4;
		4.45, dd, 10.8, 3.6		4.43, brd, 11.4
Xyl (Arab)-1'''''	105.9	4.88, d, 7.8	105.5	4.85, d, 6.6
2'''''	74.9	3.97, m	73.3	4.42, m
3'''''	78.3	4.10, m	74.3	4.17, m
4'''''	71.2	4.15, m	69.2	4.32, m
5'''''	67.1	4.30, m;	66.6	4.25, brd, 13.2
		3.60, t, 10.2		3.71, d, 13.2

NMR assignment of Nototrone A (1a)
able S2 . ¹ H (600 MHz) and ¹³ C NMR (150MHz) data of compound 1a in C_5D_5N

((
no.	δc	$\delta_{\rm H}(J \text{ in Hz})$
1	39.8	1.94, m; 1.30, m
2	27.7	1.89, m; 1.84, m
3	77.8	3.39, m
4	39.5	
5	55.7	0.90, brd, 9.6
6	18.5	1.56, brd, 12.6;
		1.45, td, 12.6, 3.6
7	36.3	1.71,dt, 13.2, 3.6;
		1.18, td, 13.2, 3.6
8	44.4	
9	47.8	1.67, m
10	39.2	
11	36.6	1.91, m; 1.63, m
12	81.2	4.69, d, 10.2

13	219.8	
14	154.3	
15	31.8	2.34, brd, 14.4;
		2.16, dd, 14.4, 13.2
16	29.3	2.48, m; 2.43, m
17	65.0	3.18, d, 10.2
18	15.5	0.89, s
19	20.8	0.95, s
20	75.0	
21	21.6	1.43, s
22	33.5	1.98, dq,7.2; 1.64, m
23	8.0	1.08, t, 7.2
24	16.4	1.04, s
25	28.5	1.26, s
26	114.0	5.24, s; 5.02, s

3. Key HMBC correlations of compounds 1a, 2 and 3

Figure S1. Key ¹H-¹HCOSY and HMBC correlations of compound 1a

Figure S2. Key HMBC correlations of compound 2

Figure S3. Key HMBC correlations of compound 3

4. General experimental procedures

Optical rotations were measured on a JASCO P2000 automatic digital polarimeter. UV spectrum was recorded on a JASCO V-650 spectrophotometer. IR spectrum was recorded on a Nicolet 5700 spectrometer using an FT-IR microscope transmission method. NMR spectra were acquired with Bruker AVIIIHD 600 and VNS-600spectrometers in Pyridine-d₅ and D₂O. HR-ESI-MS spectra were collected on an Agilent 1100 series LC/MSD ion trap mass spectrometer. GC was conducted on Agilent 7890A gas chromatograph. MPLC system was composed of two C-605 pumps (Büchi), a C-635 UV detector (Büchi), a C-660 fraction collector (Büchi), and an ODS column $(60 \times 600 \text{ mm}, 50 \mu\text{m}, 400 \text{ g}; \text{YMC})$. Semi-preparative HPLC was conducted using a Shimadzu LC-6AD instrument with an SPD-20A UV detector and an YMC-Pack ODS-A column (250×10 mm, 5 μ m). Preparative HPLC was also performed on a Shimadzu LC-6AD instrument with a YMC-Pack ODS-A column (250 \times 20 mm, 5 μ m). Column chromatography (CC) was performed with HPD macroporous resin, silica gel (100-200 mesh, Qingdao shenghai Chemical Inc., Qingdao, People's Republic of China). TLC was carried out on glass precoated silica gel GF254 plates. Spots were visualized under UV light or by spraying with 10% sulfuric acid in EtOH followed by heating. Preparative HPLC was carried out (YMC Co., Kyoto, Japan) (250 × 20 mm) with CH₃CN/H₂O 22:78 (system I), 20:80 (system II), 51:49 (system III) as mobile phase.

5. Plant material

The leaves of *P. notoginseng* were collected in Wenshan, Yunnan, China in May 2015. A voucher specimen (ID-S-2767) was identified by Professor Lin Ma from the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and deposited at the Herbarium of Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College.

6. Extraction and isolation

Dried leaves of *P. notoginseng* (25 kg) were extracted with ethanol (2 h \times 2) and water (2 h \times 2) successively. The water extract (SSQY) was applied to a macroporous

resin column (1000 mm×200 mm) and eluted with water, 25% ethanol, 50% ethanol and 95% ethanol in sequence to yield 3 parts, SSQY-A (298.5 g), SSQY-B (365.4 g), and SSQY-C (93.4 g). The SSQY-B was further eluted with EtOAc, acetone, acetone/ethanol (1:1), 70% ethanol, 50% ethanol in order through a diatomite column to afford SSQY-BP1~5. SSQY-BP3 (146.682 g), the acetone/ethanol (1:1) part, was fractionated by a silica gel column using isocratic elution of CHCl₃/CH₃OH/H₂O (6:4:0.5, 28L) to 28 parts. According to a TLC analysis, we mixed the 23rd part with 24th part as mixture A (8.460 g) and the 25th part to 27th part as mixture B (6.205 g). Mixture A was subjected to the RP-18 column chromatography (60 mm×600 mm) with gradient system (MeOH/H₂O, 40:60-75:25, 60 ml/min, 49 L) to yield 91 fractions, Fr. A1-A91. Fr. A33 was performed on HPLC by system II to get compound **1** (12 mg). Fr. A36 was performed on HPLC system I to obtain **2** (5 mg). Fr. A32 was performed on HPLC system II to give **3** (4 mg).

7. Enzyme hydrolysis of 1

Compound **1** (8.0 mg) was dissolved in water (5 ml) with snailase (12 mg, Beijing Biodee Biotechnology Co., ltd.) and stirred for 72 h at 37 °C. The reactant was extracted by EtOAc (3 ml × 3) when it performed a relatively high ratio of aglycone ($t_R = 22 \text{ min}$) on HPLC analysis. The EtOAc extract was purified on prepare HPLC (detected at 210 nm, CH₃CN/H₂O 51:49, 3 mL/min) to give **1a**.

8. Acid hydrolysis and determination of absolute configurations of monosaccharides

Compounds 1-3 (3.0 mg) were dissolved in 2.5 M HCl-H₂O (5 ml) and stirred for 10 h at 95 °C individually, then extracted by EtOAc (3 ml \times 3). The aqueous layers were concentrated and dried totally to give residues A-C, respectively. L-cysteine methyl ester hydrochloride (double weight of the residues, J&K Scientific Ltd.) was added to the A-C residues and then anhydrous pyridine to dissolve the mixture. The mixture was stirred at 60 °C for 2 h and then concentrated. N-trimethylsilylimidazole (about 1.5 ml, J&K Scientific Ltd.) was added to the dried reaction products afterwards

and stirred at 60 °C for 2 h. Then the reaction mixture was put into ice water (5 ml) and extracted with n-hexane (5 ml × 3). The n-hexane layers were analyzed by GC under the following conditions: capillary column, HP-5 (60 m × 0.32 mm); H₂ flame ionization detector; detector temperature, 280 °C; injection temperature, 200 °C, and injection volume, 4 μ L; initial temperature, 200 °C, and raised to 280 °C at 10 °C/min, final temperature maintained for 35 min; carrier gas, N₂ (1 mL/min); and split ratio, 1/50. The authentic samples, D-glucose (5 mg), L-glucose (5 mg), D-xylose (5 mg), L-xylose (5 mg), D-arabinose (5 mg) and L-arabinose (5 mg) were treated with the same method. Identification of the sugar moiety was carried out by comparison of its retention time (t_R): D-glucose 29.6 min, L-glucose 30.4 min, D-xylose and D-xylose were detected from the derivatives of A and B. D-glucose, L-arabinose and D-xylose were detected from the derivatives of C.

9. Physico-chemical constant of compounds 1~3 and 1a

Nototroneside A (1): Amorphous white powder; $[\alpha]_D^{20}$ -10.8 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 202.2 (3.1) nm; IR (microscope) v_{max} : 3383, 2933, 1708, 1387, 1076 cm⁻¹; ¹H and ¹³C NMR data see Table 1; HRESIMS *m/z* 1193.5578 [M + Na]⁺ (calcd for C₅₄H₉₀O₂₇Na, 1193.5562).

Nototroneside B (2): Amorphous white powder; $[\alpha]_D^{20}$ -7.5 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 202.2 (3.25) nm; IR (microscope) v_{max} : 3379, 2926, 1707, 1387, 1078 cm⁻¹; ¹H and ¹³C NMR data see Table S1; HRESIMS *m*/*z* 1061.5136 [M + Na]⁺ (calcd for C₄₉H₈₂O₂₃Na, 1061.5139).

Nototroneside C (**3**): Amorphous white powder; $[\alpha]_{D}^{20}$ -12.6 (*c* 0.08, MeOH); UV (MeOH) λ_{max} (log ε) 202.2 (3.53) nm; IR (microscope) v_{max} : 3386, 2933, 1706, 1387, 1080 cm⁻¹; ¹H and ¹³C NMR data see Table S1; HRESIMS *m/z* 1193.5525 [M + Na]⁺ (calcd for C₅₄H₉₀O₂₇Na, 1193.5562).

Nototrone A (1a): colorless crystal (in MeOH: H₂O); ¹H and ¹³C NMR data see Table S2; HRESIMS m/z 443.3146 [M + Na]⁺ (calcd for C₂₆H₄₄O₄Na, 443.3132). ECD

(MeOH) λ_{max} ($\Delta \varepsilon$) 299 nm (-3.43), 218 nm (-5.88); IR (microscope) v_{max} : 3413, 2927, 1707, 1381, 1041 cm⁻¹.

10. ECD computation of nototrone A (1a).

The conformers were further optimized at the B3LYP/6-31g (d,p) level in methanol. The energies, oscillator strengths, and rotational strengths of the first 100 electronic excitations were calculated using the TDDFT methodology at the B3LYP/6-31g (d,p) level. ECD spectra of the conformers were simulated using a Gaussian function with a half-bandwidth of 0.40 eV. The corresponding experimental ECD spectra of the **1a** were depicted by inverting that of calculated ECD spectra of **1aa** and **1ab**, respectively. All quantum computations were performed using Gaussian 09 program package, on an IBM cluster machine located at the High Performance Computing Center of Peking Union Medical College.

11. X-ray Crystallographic Analysis of nototrone A (1a) (See Table S3)

Single crystals of 1a ($C_{26}H_{44}O_4$) were recrystallized from MeOH-H₂O (v/v, 9:1) mounted in inert oil and transferred to the cold gas stream of the diffractometer. Crystal structure determination of crystal data $C_{26}H_{44}O_{4}$, M = 420.61orthorhombic, a =10.61438(13) Å, b =17.8619(2) Å, c =25.1750(3) Å, U = 4773.00(10) Å³, T = 105.1, space group P2₁2₁2₁ (no. 19), Z = 8, μ (Cu K α) = 0.600, 17819 reflections measured, 9029 unique ($R_{int} = 0.0275$) which were used in all calculations. The final $wR(F_2)$ was 0.1004 (all data). Crystallographic data (excluding structure factor tables) for 1 have been deposited at the Cambridge Crystallographic Data Center as supplementary publication (CCDC 1847574). Copies of the data can be obtained free of charge by application to CCDC, 12, Union Road, Cambridge CB21EZ, UK [Fax: (+44) 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk].

Identification code	exp_5187
Empirical formula	$C_{26}H_{44}O_4$
Formula weight	420.61
Temperature / K	105.1

 Table S3: Crystal data and structure refinement for exp_5187

Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a / Å, b / Å, c / Å	10.61438(13), 17.8619(2), 25.1750(3)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$	90, 90, 90
Volume / Å ³	4773.00(10)
Z	8
$\rho_{calc} / mg mm^{-3}$	1.171
μ / mm ⁻¹	0.600
F(000)	1856
Crystal size / mm ³	$0.250 \times 0.250 \times 0.240$
2Θ range for data collection	6.068 to 142.344 °
Index ranges	$-12 \le h \le 12, -14 \le k \le 21, -30 \le l \le 29$
Reflections collected	17819
Independent reflections	9029[R(int) = 0.0275 (inf-0.9Å)]
Data/restraints/parameters	9029/0/559
Goodness-of-fit on F ²	1.028
Final R indexes [I> 2σ (I) i.e. F _o > 4σ (F _o)]	$R_1 = 0.0388, wR_2 = 0.0979$
Final R indexes [all data]	$R_1 = 0.0414, wR_2 = 0.1004$
Largest diff. peak/hole / e Å ⁻³	0.240/-0.208
Flack Parameters	0.01(8)
Completeness	0.999

Figure S4. X-ray crystal structure of 1a.

12. Neuroprotection Bioassays of compounds 1-3

Pheochromocytoma (PC12) cells were incubated in DMEM supplied with 5% fetal bovine serum and 5% equine serum as basic medium. PC12 cells in logarithmic phase were cultured at a density of 5000 cells per well in a 96-well microtiter plate. After 24h incubation, the medium of model group was changed to DMEM without serum. Test compounds dissolved in dimethyl sulfoxide (DMSO) were added to each well for >1000 fold dilution in the model medium at the same time. Each sample was tested in triplicate. After the incubation at 37 °C in 5% CO₂ for 24 h, 10 μ L of MTT (5 mg/ml) was added to each well and incubated for another 4 h, then liquid in the wells was removed. DMSO (100 μ l) was added to each well. The absorbance was recorded on a microplate reader (Bio-Rad model 550) at a wavelength of 570 nm. Analysis of variance (ANOVA) followed by Newman-Keuls post hoc test were performed to assess the differences between the relevant control and each experimental group. P-values of < 0.05, < 0.01 and < 0.001 were regarded as statistically significant. Data were expressed as mean ± SEM as indicated.

Table S4. Neuroprotective activity of compounds **1-3** on PC12 cell model induced by serum deprivation (10.0 μ M, 1.0 μ M, and 0.1 μ M).

group	Cell viability (100%)
Control	100
Free-serum	61.58
NGF	101.6 ***
1 (10 µM)	53.33
1 (1.0 µM)	75.76
1 (0.10 µM)	71.66
2 (10 µM)	74.2
2 (1.0 µM)	79.33*
2 (0.10 µM)	69.9
3 (10 µM)	52.28
3 (1.0 µM)	72.41
3 (0.10 µM)	68.07

* P < 0.05, ** P < 0.01, *** P< 0.001

Figure S5. The UV spectrum of nototroneside A (1) in CH₃OH

Figure S6. The IR spectrum of nototroneside A (1)

Agilent Technologies

Page 1 of 2 Printed at: 10:28 AM on: 4/29/2016

m/z	lon	Formula	Abundance										
1193.55/8	(M+Na)+	C54 H90 Na O27	388029.7	j									
Best	Formula (M)	Ion Formula	Score	Cross Sco	Mass	Calc Mass	Calc m/z	Diff (opm)	Abs Diff (nom)	Mase March	Abund Matein	Persona Manut	0.00
2	C54 H90 O27	C54 H90 Na Q2/	99.93		1170 5686	1170.5669	1193,5562	-1 47	142	00 02	Sound Maturi	Spacing watch	UBE
T .	C51 H94 O27 \$	C51 H94 Na O27 S	99.6		1170.5686	1170 5703	1193 5595	1.44	144	09.93	38.92	99.94	1
5 F	C60 H86 NZ O21	C60 H86 N2 Na O21	99.52		1170 5695	1170 5723	1102 5615	2.15	2.45	33.33	38.72	99.99	
i T	C49 H90 N2 O29	C49 H90 N2 Na O29	99.43		1100 5585	1170 5620	1100 5001	3.15	3.15	99.64	98,96	99.93	1
Γ	C58 H90 022 S	C58 H90 Na O22 S	00.16	-	1420 5 682	1170.5623	1193.5521	-4.87	4.8/	99.15	99.47	99.95	
1	C45 H94 N2 029 S	C46 H04 N0 N- 000 C	33.30		11/0.5955	1170.5644	193,5537	-3.58	3.58	99.54	98.54	99.99	14
	0101104142 023 3	C40 H94 N2 Na U29 S	99.29		1170.5637	1170.5663	1193.5655	-2.02	2.02	99.85	97.75	99.99	
1	C55 H94 O22 S2	C55 H94 Na O22 S2	98.74	1.	1170.5637	1170.5678	1193.557	-0.72	0.72	99.98	95.62	100	
Γ'	C50 H94 N2 O24 S2	C50 H94 N2 Na O24 S2	98.45		170.5637	1170.5638	1193,553	-4.17	4 17	00.37	05.61		
F	C48 H98 O27 S2	C48 H98 Na O27 S2	98,13		170 5687	1170 5737	1103 5620	4.20	4.00	33.37	30.01	99.99	
1	C52 H98 O22 S3	C52 H98 Na O22 S3	97.75		1170 56 87	1170 5712	1193.5028	4.23	4.29	99.34	94.78	99.99	
1.12	C47 H08 N2 024 82	047 100 10 10 001 00			11/0.000/	11/0.0/12	1193.5604	2.14	2.14	99.83	90.67	99.98	
	047 1136 142 024 33	C4/ H98 N2 N8 U24 S3	97.12		1170.5687	1170.5672	1193.5564	-1.31	1.31	99.94	90.07	99.96	
	C59 H94 O17 S3	C59 H94 Na O17 S3	97.12		1170.5687	1170.5653	1193.5545	-2.87	2.87	99.7	97.44	00.00	

MS Formula Results: + Scan (5.518 min) Sub (2016042901.d)

page 1

Figure S7. The HR-ESI-MS spectrum of nototroneside A (1)

•

Figure S8. The ¹H NMR spectrum of nototroneside A (1) in C_5D_5N (600 MHz)

Figure S9. The 13 C NMR spectrum of nototroneside A (1) in C₅D₅N (150 MHz)

Figure S10. The 13 C NMR spectrum of nototroneside A (1) in C₅D₅N (150 MHz)

Figure S11. The DEPT135 spectrum of nototroneside A (1) in C₅D₅N (150 MHz)

Figure S12. The HSQC spectrum of nototroneside A (1) in C₅D₅N (600 MHz)

Figure S13. The HMBC spectrum of nototroneside A (1) in C₅D₅N (600 MHz)

Figure S14. The HMBC spectrum of nototroneside A (1) in C_5D_5N (600 MHz)

Figure S15. The ¹H-¹H COSY spectrum of nototroneside A (1) in C₅D₅N (600 MHz)

Figure S16. The NOE spectrum of nototroneside A (1) in C₅D₅N (600 MHz)

Figure S17. The 1D-TOCSY spectrum of nototroneside A (1) in C₅D₅N (600 MHz)

Figure S18. The ¹H NMR spectrum of nototrone A (1a) in C₅D₅N (600 MHz)

Figure S19. The ¹³C NMR spectrum of nototrone A (1a) in C₅D₅N (150 MHz)

Figure S20. The DEPT spectrum of nototrone A (1a) in C₅D₅N (150 MHz)

Figure S22. The HSQC spectrum of nototrone A (1a) in C₅D₅N (600 MHz)

Figure S23. The HMBC spectrum of nototrone A (1a) in C₅D₅N (600 MHz)

Figure S24. The ¹H-¹H COSY spectrum of nototrone A (**1a**) in C₅D₅N (600 MHz)

Figure S25. The NOESY spectrum of nototrone A (1a) in C_5D_5N (600 MHz)

Figure S26. The TOCSY spectrum of nototrone A (1a) in C₅D₅N (600 MHz)

Figure S27. The IR spectrum of nototrone A (1a)

Agilent Technologies

Page 1 of 2 Printed at: 10:45 AM on: 12/27/2016

m/z	lon	Formula	Abundance	P									
443.3111	(M+Na)+	C26 H44 Na O4	417268 3										
Best	Formula (M)	Ion Formula	Score	Cross Sco	Mass	Calc Mass	Calc m/z	Diff (opm)	Abs Diff (nom)	Mass Matri	Abund Mateh	Contraction	
2	C26 H44 O4	C26 H44 Na O4	99.65	22122	420.3219	420 324	443 3132	4.91	4.91	00 27	ADUNO Match	Spacing Match	DB
100	C21 H44 N2 O6	C21 H44 N2 Na O6	99.22		420 2219	0015 005	443 3003	4.07	4.01	53.27	39.93	99.98	
-	C22 H49 N2 C C2	010111010	JUILE		420.3213	420.3155	443.3092	-4.07	4.6/	99.34	98.37	100	
	022 FH8 N2 U S2	C22 H48 N2 Na O S2	973		420.3219	420.3208	443.31	-2.62	2.62	99 79	91.5	30.26	

MS Formula Results: + Scan (8.140 min) Sub (2016122701.d)

Figure S28. The HR-ESI-MS spectrum of nototrone A (1a)

Figure S29. The UV spectrum of nototrone A (1a)

″Н

1a

Ĥ

Ĥ

HO

Figure S30. The CD spectrum of nototrone A (1a)

Figure S31. The ¹H NMR spectrum of nototroneside B (2) in C₅D₅N (600 MHz)

Figure S32. The ¹³C NMR spectrum of nototroneside B (2) in C₅D₅N (150 MHz)

Figure S 33. The HSQC spectrum of nototroneside B (2) in C₅D₅N (600 MHz)

Figure S34. The HMBC spectrum of nototroneside B (2) in C₅D₅N (600 MHz)

Figure S35. The ¹H-¹H COSY spectrum of nototroneside B (2) in C₅D₅N (600 MHz)

Figure S36. The TOCSY spectrum of nototroneside B (2) in C₅D₅N (600 MHz)

Figure S37. The UV spectrum of nototroneside B (2) in CH₃OH

Figure S38. The IR spectrum of nototroneside B (2)

Page 1 of 1

O Agilent Technologies

Printed at: 12:08 PM on: 5/8/2017

-	mvz	lon	Formula	Abundance											
	1061.51364	(M+Na)+	C49 H82 Na O23	498654											
E	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Match	Mass Match	m/z	OBE
	17	C49 H82 O23	C49 H82 Na O23	1061.51391	99.95	100 march 100	1038.52431	1038.52469	0.36	0 36	99.88	99.93	100	1061.51364	9
· [F	C44 H82 N2 O25	C44 H82 N2 Na O25	1061.50989	99.64	S	1038.52433	1038.52067	-3.53	3.53	99.54	99.95	99.56	1061.51364	5
• [F	C53 H82 O18 S	C53 H82 Na O18 5	1061.51141	99.42	alle a	1038.52433	1038.52219	-2.07	2.07	98.25	99.99	99.85	1061.51364	13
•	F	C46 H86 023 S	C46 H86 Na O23 S	1061 51728	99.41		1038.52434	1038.52806	3.59	3.59	98.72	99,99	99.54	1061.51364	4
	F	C41 H85 N2 O25 S	C41 H86 N2 Na O25 S	1061.51326	99.32	1000	1038.52435	1038.52404	-0.3	D.3	97.64	99.99	100	1061.51364	0
· [F	C48 H82 N2 O20 S	C48 H82 N2 Na O20 S	1061.50738	99.11	Strange -	1038.52435	1038.51816	-5.95	5.95	98.98	99.99	98.75	1061.51364	9
· [r	C56 H78 O18	C56 H78 Na Q18	1061.50804	99.01		1038.52432	1038.51882	-5.3	5.3	98.26	99.92	99.01	1061.51364	18
•	F	C55 H78 N2 O17	C55 H78 N2 Na O17	1061.51927	99	1	1038.52433	1038.53005	5.51	5.51	98.35	99.93	98.93	1061.51364	18
· [T T	C59 H78 N2 O12 S	C59 H78 N2 Na C12 S	1061.51677	98.67		1038.52434	1038.52755	3.08	3.08	95.92	99.99	99.66	1061.51384	22
	T T	C50 H86 O18 S2	C50 H86 Na 018 S2	1061.51478	98.64		1038.52435	1038.52556	1.16	1.16	95.35	99.98	99.95	1061.51354	8
	- F	C62 H74 N2 O12	C62 H74 N2 Na D12	1061.5134	98.56		1038.52433	1038.52418	-0.14	0.14	95.01	\$9.92	100	1061.51384	27
	17	C45 H86 N2 O20 52	C45 H86 N2 Na O20 S2	1061.51076	98.55	1	1038.52437	1038.52153	-2.73	2.73	95.39	99.97	99.74	1061.51364	4
• Г	-	C57 H82 O13 S2	C57 H82 Na O13 S2	1061.50891	97.89		1038.52435	1038.51968	-4.49	4.49	93.81	99.99	99.29	1061.51364	17
	T	C66 H74 N2 O7 S	C66 H74 N2 Na O7 S	1061.51089	97.61	N	1038.52434	1038.52167	-2.57	2.57	92.03	99.98	99.77	1061.51364	31
+	1.	C67 H74 O10	C67 H74 Na O10	1061.51742	97.57		1038.52432	1038.5282	3.74	3.74	92.41	\$9.91	99.5	1061.51364	31
+	100	C63 H78 N2 O7 S2	C63 H78 N2 Na O7 S2	1061.51427	97.44		1038.52436	1038 52504	0.66	0.66	91.07	99.99	99.98	1061.51364	26
	E .	C54 H86 O13 S3	C54 H86 Na O13 S3	1061.51228	97.05		1038.52436	1038.52306	-1.26	1.26	89.81	99.95	99.94	1061.51364	12
+	-	C49 H85 N2 O15 S3	C49 H86 N2 Na O15 53	1061.50825	96.85		1038.52438	1038.51903	-5.15	5.15	90.6	99.94	99.06	1061.51364	8
	5	C71 H74 O5 S	C71 H74 Na O5 S	1061.51492	96 85		1038.52433	1038.5257	1.31	1.31	89.11	\$9.97	99.94	1061 51364	35
+	5	C47 H90 O18 S3	C47 H90 Na O18 53	1061.51815	96.84	Contraction of the second	1038.52437	1038.52893	4.39	4 39	90.14	99.93	99.32	1061.51364	3
+	1	C69 H70 N2 O7	C69 H70 N2 Na O7	1061.50752	96.73		1038.52433	1038.5183	-5.8	5.8	90.62	99.92	98.81	1061.51364	36
· [E	C74 H70 O5	C74 H70 Na O5	1061.51155	96.38	1	1038.52432	1038.52233	-1.92	1.92	87.64	99.9	99.87	1061.51364	40
- [T'	C68 H78 O5 S2	C68 H78 Na O5 S2	1061.51829	96.34		1038.52434	1038.52907	4.55	4.55	88.41	99.99	99.27	1061.51364	30
•	F .	C60 H82 N2 O7 S3	C60 H62 N2 Na 07 S3	1061.51764	96.33	1000	1038.52437	1038.52842	3.9	3.9	88.09	99.97	99.46	1061.51364	21
	(T=)	C70 H74 N2 02 S2	C70 H74 N2 Na O2 52	1061.50839	95.85		1038.52435	1038.51917	-4.99	4.99	86.96	99.99	99.12	1061.51364	35
. [175	C57 H78 N2 O2 S3	C67 H78 N2 Na D2 S3	1061.51176	95.58		1038.52436	1038.52254	-1.75	1.75	84.73	99.98	99.89	1061.51364	30
. [T T	C75 H74 S2	C75 H74 Na S2	1061.51241	95.39		1038.52434	1038.52319	-1.11	1.11	83.95	99.99	99.96	1061.51364	39
· [1 1	C78 H70 S	C78 H70 Na S	1061.50904	95.17	1	1038.52433	1038.51982	-4.34	4.34	84.23	99.97	99.33	1061.51364	44
	T	C72 H78 S3	C72 H78 Na S3	1061.51579	94.78		1038.52435	1038.52555	2.13	2.13	82	99.99	99.84	1061.51364	34

MS Formula Results: + Scan (6.582 min) Sub (2016042902.d)

Figure S39. The HR-ESI-MS spectrum of nototroneside B (2)

Figure S40. The ¹H NMR spectrum of nototroneside C (**3**) in C₅D₅N (600 MHz)

Figure S42. The HSQC spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S43. The HMBC spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S44. The HMBC spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S45. The ¹H-¹H COSY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S46. The NOESY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S47. The TOCSY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S48. The ROESY spectrum of nototroneside C (3) in C₅D₅N (600 MHz)

Figure S49.The UV spectrum of nototroneside C (3)

Figure S50. The IR spectrum of nototroneside C (3)

Qualitative Analysis Report

C Agilent Technologies

Page 1 of 2

Printed at: 10:43 AM on: 4/10/2017

MS Formula Results: + Scan (7.997 min) Sub (2017041001.d)	MS Formula Results:	+ Scan (7.997 min)	Sub (2017041001.d)
---	---------------------	--------------------	--------------------

-	m/z	Ion	Formula	Abundance	1									
	1193.5525	(M+Na)+	C54 H90 Na O27	964952.6	1									
	Best	Formula (M)	Ion Formuta	Score	Cross Sco	Mass	Calc Mass	Calc m/z	Diff (pom)	Abs Diff (ppm)	Mass Match	Abund Match	Spacing Match	DBE
•	2	C54 H90 O27	C54 H90 Na O27	99.76		1170.5631	1170.5669	1193.5562	3.26	3.26	99.52	99.85	99.96	UBE
	F	C61 H86 O22	C61 H86 Na O22	99.8		1170 5631	1170.5611	1193.5503	-1.76	1.76	28.66	99.52	99.95	10
	F	C62 H82 N4 O18	C62 H82 N4 Na O18	99.69		1170.5632	1170.5624	1193.5516	-0.64	0.64	99.99	00.00	00.00	74
•		C49 H90 N2 O29	C49 H90 N2 Na O29	99.68		1170.5631	1170.5629	1193.5521	-0.19	0.19	100	08.03	99.96	24
+	F	C55 H86 N4 O23	C55 H86 N4 Na O23	99.64		1170.5632	1170.5683	1193.5575	4.38	4.38	99.31	99.92	90.97	
	F 1	C58 H90 O22 S	C58 H90 Na O22 S	99.64		1170.5632	1170.5644	1193,5537	1.1	1.1	99.96	08.81	99.90	15
	5	C53 H90 N2 O24 S	C53 H90 N2 Na O24 S	99.59		1170.5632	1170.5604	1193.5496	-2.35	2 35	00.0	08.01	99.99	14
+	1	C59 H86 N4 O18 S	C59 H86 N4 Na O18 S	99.57		1170.5632	1170.5658	1193.555	2.22	2 22	99.92	90.3	99.99	10
· • i	5	C56 H86 N2 O24	C56 H86 N2 Na O24	99.51		1170.5631	1170.5571	1193,5463	-5.21	5.21	99.02	90.79	99.99	19
	F	C67 H82 N2 O16	C67 H82 N2 Na O16	99.19		1170.5631	1170.5664	1193,5557	2.81	2.81	99.72	97.59	99.96	15
	- F	C65 H86 O17 S	C65 H86 Na 017 S	99		1170.5€32	1170.5586	1193,5478	-3.92	3.92	99.45	97.09	99.95	28
- 1	r	C46 H94 N2 O29 S	C46 H94 N2 Na O29 S	99		1170.5632	1170.5663	1193,5555	2.66	2.66	99.75	96.01	99.99	23
- [C66 H82 N4 O13 S	C66 H82 N4 Na 013 S	98.99		1170,5632	1170,5599	1193 5491	.2.8	28	99.77	96.07	00.00	
- × (-	C44 H90 N4 O31	C44 H90 N4 Na O31	98.88		1170.5632	1170.5589	1193.5481	-3.64	3.64	99.52	00.01	00.07	20
- 1	- T	C48 H90 N4 O26 S	C48 H90 N4 Na O26 S	98.88		1170,5632	1170.5564	1193 5456	-5.81	5.81	98.79	00.91	00.00	2
	-	C64 H86 N2 O16 S	C64 H86 N2 Na O16 S	98.78		1170.5632	1170.5698	1193.559	5.67	5.67	98.85	97.67	99.99	
		C50 H94 N2 O24 S2	C50 H94 N2 Na O24 S2	98.61		1170.5632	1170.5638	1193.553	0.5	0.5	99 99	95.19	00.08	- 23
		C71 H82 N2 O11 S	C71 H82 N2 Na O11 S	98.58		1170.5632	1170.5639	1193.5532	0.65	0.65	99.98	95.08	99.90	
· - [C62 H90 O17 S2	C62 H90 Na O17 S2	98.54		1170,5632	1170.5619	1193.5512	-1.06	1.06	99.96	94.96	99.99	10
- E		C63 H86 N4 O13 S2	C63 H86 N4 Na O13 S2	98 53		1170.5632	1170.5633	1193.5525	0.06	0.06	100	94.88	99.99	22
· [1	C69 H78 N4 O13	C69 H78 N4 Na O13	98.49		1170.5632	1170 5565	1193.5458	-5.65	5.65	38.80	96 66	00.05	23
. [1	C55 H94 O22 S2	C55 H94 Na O22 S2	98.46		1170.5632	1170 5678	1193.557	3.96	3.96	99.44	95.57	00.02	
	1-	C57 H90 N2 O19 S2	C57 H90 N2 Na O19 S2	98.44		1170.5532	1170 5579	1193,5471	-4.51	4.51	99.27	95.78	99.90	
- * [L	C56 H90 N4 O18 S2	C56 H90 N4 Na O18 S2	98.43		1170.5632	1170.5692	1193.5584	5.07	5.07	99.08	96.05	00.09	14
· [-	C74 H78 N2 O11	C74 H78 N2 Na O11	98.4		1170.5531	1170.5605	1193.5498	-2.2	22	99.83	94 74	00.00	97
· [1-	C45 H94 N4 O26 S2	C45 H94 N4 Na O26 S2	98.08		1170.5632	1170.5598	1193.549	-2.96	2.96	99.69	93.84	99.97	3/
+ [r~	C68 H86 N2 O11 S2	C68 H86 N2 Na O11 S2	97.86		1170 5632	1170.5673	1193 5565	3.51	3.61	99.56	03.26	00.00	27
• [P**	C79 H78 O9	C79 H78 Na O9	97.83		1170.5631	1170.5646	1193 5538	1.24	1.24	99.94	93.25	39.99	27
· [E*	C76 H82 O9 S	C76 H82 Na O9 S	97.68		1170.5632	1170,568	1193 5572	41	4.1	00 4	92.00	00.08	
· [1	C70 H82 N4 O8 S2	C70 H82 N4 Na O8 S2	97.41		1170.5632	1170.5574	1193 5466	4 95	4 95	99.12	92.65	99.90	30
- F		C80 H74 N4 O5	C80 H74 N4 Na O5	97.4		1170.5632	1120.5659	1193 5551	2.37	2 37	00.9	01.09	00.05	40
· [1	C54 H94 N2 O19 S3	C54 H94 N2 Na O19 S3	97.36		1170.5632	1170.5613	1193.5505	-1.65	1.65	99.66	90.95	09.90	40
• E		C78 H78 N2 O6 S	C78 H78 N2 Na O6 S	97.28		1170 5632	1170.5581	1193.5473	-4.36	4.36	99.32	91.64	99.98	41
· [-	C60 H90 N4 O13 S3	C60 H90 N4 Na O13 S3	97.25		1170 5632	1170.5667	1193,5559	2.92	2 92	00.00	90.92	99.97	10
• [C59 H94 O17 S3	C59 H94 Na O17 S3	97.25		1170.5632	1170.5653	1193.5545	1.8	18	99.88	90.59	99.97	13
• E	F	C77 H78 N4 O5 S	C77 H78 N4 Na O5 S	97.23		1170 5632	1170.5693	1153.5585	5.23	5.23	99.02	91.93	99.98	41

Figure S51. The HR-ESI-MS spectrum of nototroneside C (3)

