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Figure S1.  Morphological characteristics of polymer-SWCNT superstructure composites.  (a) 
Schematic illustrating single-handed helical wrapping of a SWCNT surface with arylene-
ethynylene polymer.  (b) Depiction of chiral semiconducting S-PBN(b)-Ph4 polymer used in 
these studies. (c) TEM image highlighting single-chain nanotube wrapping at a fixed helical 
pitch length. (d) A MD simulation of a chiral polymer wrapping of the SWNT surface.  
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Table S1.  Solvent dielectric constant and peak PL emission wavelengths for band-edge exciton 
(E11) and defect states (E11* and E11*-) for 4-methoxybenzene-functionalized (6,5) SWCNTs 
wrapped with S-PBn(b)-Ph4 polymer. 
 

 
 
 
Figure S2.  Reconvolution fitting of defect-state PL deay.  Examples given for 4-
methoxybenzene-functionalized (6,5) SWCNTs suspended in H2O for the two emission bands 
highlighted in a) centered at 1150 nm (E11*, black) and 1270 nm (E11*-, blue).  b) PL decay 
traces for E11* (black) and E11*- (blue).  Fits to decays (red) using a biexponential reconvolution 
model are overlaid, with instrument response function (IRF) shown in gray.  Residuals for the 
two fits are shown below. 
 

Dielectric 
constant

E11 (nm) E11*(nm) E11*-(nm)

H2O 80 1013 1162 1283

D2O 80 1011 1164 1284

DMF 36.7 1011 1162 1284

MeOH 32.7 1011 1167 1284

THF 7.58 1008 1153 1285

Toluene+THF 3 1008 1157 1284

BP: 1150 nm

BP:1270 nm

a b
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Figure S3.  Schematic of the potential energy surface and computational parameters from which 
reorganization energies associated with defect-state excitation (∆E2) and emission (∆E1) were 
calculated. 
 
 
 
 

Configuration 
Eabs  

(eV) 

Eemis 

(eV) 

Absorption 

Transition 

Dipole 

Emission 

Transition 

Dipole 

Radiative 

Lifetime 

(ns) 

ΔE1 

(eV) 

ΔE2 

(eV) 

Ortho 
L30 1.6082 1.4025 36.2 36.2 1.68 0.101 0.104 

L90 1.8384 1.6536 40.1 38.7 0.90 0.095 0.089 

 
Table S2.  TDDFT results for 4-mexthoxybenzene-functionalized (6,5) SWCNTs, including 
energies of absorption and emission, transition dipoles, radiative lifetimes, and reorganization 
energies calculated from excited state parameters for the experimentally relevant species.  Aryl 
functionalization of SWCNTs generates different binding configurations on the SWCNT surface, 
designated by their orientation with respect to the SWCNT axis.1 The ortho-L30 configuration is 
attributed to the E11*- emission features, while the ortho-L90 configuration is attributed to E11*.  
See ref. 1 for a complete description of possible binding configurations. 
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I.  Dependence of Radiative Relaxation Rate on Electronic State, Corresponding Oscillator 
Strength, and Solvent Dielectric Constant. 
 
The magnitude of the transition dipole moment of the trapped exciton negatively correlates with 
the trapping energy, that is the stronger is the trapping the weaker is the transition dipole 
moment. This phenomenon, readily observed in DFT calculations (see Table S2) is rationalized 
as follows. The exciton wavefunction can be represented as Ψ𝑥𝑥 = 𝜙𝜙𝑥𝑥(𝑅𝑅)𝜑𝜑(𝑟𝑟𝑒𝑒ℎ), where 𝜙𝜙𝑥𝑥(𝑅𝑅) 
with 𝑅𝑅 = (𝑟𝑟𝑒𝑒 + 𝑟𝑟ℎ)/2 encodes the center-of-mass motion of the bound electron-hole pair, and 
𝜑𝜑(𝑟𝑟𝑒𝑒ℎ) encodes the relative motion of the electron and the hole within the center-of-mass frame 
(𝑟𝑟𝑒𝑒ℎ = 𝑟𝑟𝑒𝑒 − 𝑟𝑟ℎ). A photon carries essentially zero momentum and therefore can only couple to 
excitonic transitions via the zero-momentum Fourier component of the exciton envelope 
wavefunction 𝜙𝜙𝑥𝑥(𝑅𝑅).2-4  We refer to the spatial extent of 𝜙𝜙𝑥𝑥(𝑅𝑅) in a SWCNT as the exciton 
localization radius, 𝑅𝑅𝑥𝑥. Within the effective mass approximation for the exciton, the trapping 
energy should be proportional to 1/𝑅𝑅𝑥𝑥2. The amplitude of the zero-momentum Fourier 
component of 𝜙𝜙𝑥𝑥(𝑅𝑅) is proportional to ∫𝜙𝜙𝑥𝑥(𝑅𝑅)𝑑𝑑𝑅𝑅 ∼ �𝑅𝑅𝑥𝑥. Therefore, an exciton sitting in a 
deeper trap (and so emitting at longer wavelengths) is more weakly coupled to photons, which 
increases its radiative lifetime. 
 
The rate of radiative recombination is given by 𝑘𝑘𝑟𝑟 ∝ (ℏ𝜔𝜔)3|𝑑𝑑|2,5 where ℏ𝜔𝜔 is the transition 
energy and 𝑑𝑑 is the transition dipole. Therefore, even if the magnitude of the transition dipole 
does not depend on the exciton trapping energy, the radiative lifetime would still increase when 
the PL energy decreases. These two factors both result in higher PL lifetimes at longer emission 
wavelength, which qualitatively agrees with the trends seen in Figure 3 of the main text. 
However, DFT calculations suggest that the magnitude of the PL lifetime for the systems of 
interest is expected to be on the order of nanoseconds (Table S2) and the observed PL lifetimes 
in Figure 3 are at least a factor of 10 smaller. The radiative recombination channel thus 
contributes negligibly to the observed exciton relaxation lifetimes and the wavelength 
dependence of the radiative lifetime cannot be the source of the observed wavelength 
dependence in Figure 3. 
 
To finish the discussion on the radiative lifetime, we briefly consider the effect of the dielectric 
screening on the exciton-photon coupling. This effect comes from three different factors: (i) the 
radiative recombination rate increases with the dielectric permittivity of the solvent, 𝜖𝜖, because 
the photon density of state increases with 𝜖𝜖,6 (ii) the difference in effective dielectric 
permittivities of SWCNT and solvent can result in dielectric screening of the photon electric 
field,7 and (iii) screening of the electron-hole Coulomb interaction results in the average 
electron-hole distance becoming a function of the dielectric permittivity of solvent, which in turn 
affects the exciton oscillator strength.8 In practice, however, the effect of dielectric permittivity 
on the radiative recombination rate is rather weak when all three factors are considered. 
Specifically, it is 𝑘𝑘𝑟𝑟 ∝ √𝜖𝜖 for the first factor.6 The second factor actually does not affect 𝑘𝑘𝑟𝑟 for 
excitons polarized along the SWCNT axis (the case for all states considered here) because the 
excitonic transitions corresponding to these excitons only couple to photons through the electric 
field parallel to the tube axis. The magnitude of such electric field is not affected by the 
SWCNT-solvent interface because they are parallel.7 As for the third factor, the radiative 
recombination rate is approximately inversely proportional to the mean electron-hole separation 
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distance 𝐿𝐿𝑒𝑒ℎ, which in turn is linearly proportional to the dielectric permittivity of the solvent.8 
The key observation is that for each of these factors the dielectric permittivity must be evaluated 
at optical frequencies. This is rather obvious for the first two factors,6,9 and can be shown to be 
true for excitons in materials where electrons and holes have similar effective masses,10 as is the 
case for SWCNTs. Collecting all the three factors together, 𝑘𝑘𝑟𝑟 ∝ √𝜖𝜖 × 1 × 1

𝜖𝜖
= 1

√𝜖𝜖
, and 

accounting for the fact that for all the considered solvents the dielectric permittivity at optical 
wavelengths is bound to a narrow range between 1.7 and 2.2, one obtains at most ~20% 
variations in the radiative lifetimes in different solvents. This weak variation cannot of course 
affect the conclusion made above that the radiative recombination channel contributes negligibly 
to the observed PL lifetimes. 
 
 
II.  Electronic-to-Vibrational Energy Transfer (EVET). 
 
In this section we discuss the efficiency of the electronic-to-vibrational energy transfer (EVET) 
from a SWCNT to the surrounding solvent. The accurate evaluation of an EVET rate in such a 
system is a very complex task since the emitter (SWCNT) is extended, that is the characteristic 
(average) distance between emitter’s atoms and the solvent can be significantly smaller than the 
exciton localization length. In what follows, we will not attempt to evaluate the EVET rate 
accurately, but rather introduce the general framework and then obtain an approximate 
expression for the rate using plausible semi-quantitative arguments. 
 
General expression for EVET rate. According to Bohr’s correspondence principle between 
quantum and classical mechanics, a two-state quantum emitter can be thought of as a classical 
oscillating dipole. Such a dipole generates an electric field around itself (we do not consider 
retardation effects here and work in the near-field zone) that polarizes the medium (e.g., solvent). 
This polarization induces an electric field, which in turn acts on the original dipole. Specifically, 
the dot product of the induced electric field on the instantaneous electric current of the oscillating 
dipole moment is the time derivative of the energy of the oscillating dipole. Typically, this time 
derivative is negative (when averaged over the period of oscillations) meaning that the 
oscillating dipole loses energy to the medium via this “self-interaction”. The following general 
expression gives the relaxation rate of the emitter due to these energy losses (derivation is 
omitted) 
 

𝛤𝛤 = −2
ℏ
∫ 𝑑𝑑𝑥𝑥3𝑑𝑑𝑥𝑥′3 𝜌𝜌10(𝑥𝑥)𝑉𝑉′′(𝑥𝑥, 𝑥𝑥′;𝜔𝜔)𝜌𝜌10(𝑥𝑥′),   (1) 

 
where 𝜌𝜌10(𝑥𝑥) is the amplitude of the oscillating charge density of the emitter. From the more 
rigorous quantum mechanical perspective, this is a spatially distributed transition charge density 
 

𝜌𝜌10(𝑥𝑥) = ⟨1|𝜌𝜌�(𝑥𝑥)|0⟩,      (2) 
 

where 𝜌𝜌�(𝑥𝑥) is the operator of charge density; |0⟩ and |1⟩ are, respectively, the ground and 
electronic excited states of the two-state emitter. The Green’s function of the Poisson problem 
(the exact total electric field potential at position 𝑥𝑥 induced by a unit charge located at position 
𝑥𝑥′) is denoted by 𝑉𝑉(𝑥𝑥, 𝑥𝑥′;𝜔𝜔), and 𝑉𝑉′′ stands for its imaginary part. Angular frequency of the 
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oscillating dipole is 𝜔𝜔, and correspondingly 𝐸𝐸10 = ℏ𝜔𝜔 is the energy gap between the ground and 
excited states of the quantum emitter. The Green’s function of the Poisson problem depends on 
this frequency since dielectric functions are 𝜔𝜔-dependent. In particular, the imaginary part of the 
Green’s function is only non-vanishing if the imaginary part of the dielectric function at this 
frequency is not zero. As is seen, Eq. (1) represents a self-interaction, where the transition 
density of the emitter interacts with itself via the induced electric field potential.  Eq. (1) can be 
accurately derived considering how a “bare” quantum-mechanical (many-body) Green’s function 
of the two-state emitter is being “dressed” by the interaction with the environment. Such 
“dressing” can be represented by a self-energy term that shifts the “bare” energy of the emitter. 
Accordingly, the real part of the self-energy is a simple real energy shift, which is small and is 
typically neglected. The imaginary part of the self-energy, which is interpreted as the decay rate, 
is Eq. (1). 
 
If the quantum emitter can be approximated as a pointwise dipole, then Eq. (1) reduces to the 
following well-known expression9 
 

𝛤𝛤𝑝𝑝𝑝𝑝 = 2
ℏ
𝑑𝑑10𝐺𝐺′′𝑑𝑑10,     (3) 

 
where 𝑑𝑑10 is the transition dipole moment of the emitter, and 𝐺𝐺 is the electric field produced by a 
pointwise dipole at the position of this dipole.  Eq. (1) describes the rate of energy transfer from 
the electronic excited state of the emitter to arbitrary excitations of the medium, as long as these 
latter excitations are captured by the frequency-dependent complex dielectric function of the 
medium. In this paper, we are interested in the energy transfer to combination vibrational bends, 
which render certain polar solvents (e.g., water)11 absorptive (i.e., imaginary part of the dielectric 
function does not vanish) at optical wavelengths of 1000-1300 nm (~0.95-1.2 eV). 
 
EVET for “large” semiconductor nano-sized systems. Single-particle wavefunctions for 
semiconductor nano-sized systems (e.g., semiconductor quantum dot, SWCNT) can often be 
accurately represented, within the so-called envelope function approximation, as a product of the 
slowly varying envelope function and the rapidly oscillating bulk part. The former part encodes 
quantum confinement. The latter part comes from the bulk Bloch function, which is periodic 
over a bulk unit cell and knows nothing about quantum confinement. This approximation is 
accurate as long as the exciton localization size is much larger than the bulk lattice constant. For 
example, in colloidal semiconductor quantum dots (QD) the exciton localization size is typically 
the same as the QD size, which could be several nanometers. Under these conditions, the 
envelope function approximation applies.12 In covalently functionalized semiconductor 
SWCNTs, the localization size of the trapped exciton can be on the order of several nanometers 
(see Figure S5 in Supporting Information for Ref. 1) which is significantly larger than the 
carbon-carbon distance (the effective lattice constant in this material), so the envelope function 
approximation again applies. 
 
We assume that our nano-sized systems are “large” in the sense that they are made up of a large 
number of bulk unit cells, so that the envelope function approximation is accurate. Under this 
approximation, the transition charge density can be thought of as being composed by a large 
number of small dipoles, where each dipole represents a particular bulk unit cell within a nano-
sized system. If the “size” of each such small dipole (i.e., the size of the bulk unit cell) is smaller 
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than the characteristic distance between these dipoles and the medium, the transition charge 
density 𝜌𝜌10(𝑥𝑥) can be related to the continuous smoothly varying dipole density 𝑃𝑃10(𝑥𝑥) as 
𝜌𝜌10(𝑥𝑥) = −𝛻𝛻𝑥𝑥𝑃𝑃10(𝑥𝑥). The EVET rate is then given by 
 

𝛤𝛤 = −2
ℏ
∫ 𝑑𝑑𝑥𝑥3𝑑𝑑𝑥𝑥′3 𝑃𝑃10(𝑥𝑥) 𝜕𝜕

𝜕𝜕𝑥𝑥
𝜕𝜕
𝜕𝜕𝑥𝑥′

𝑉𝑉′′(𝑥𝑥, 𝑥𝑥′;𝜔𝜔)𝑃𝑃10(𝑥𝑥′).  (4) 
 

Additionally, if the characteristic distance between the dipoles and the medium is larger, or at 
least comparable to the size of the exciton localization, substituting the entire 𝑃𝑃10(𝑥𝑥) with its 
pointwise dipole approximation 𝑃𝑃10(𝑥𝑥) → 𝛿𝛿(𝑥𝑥)𝑑𝑑10, where 𝑑𝑑10 = ∫ 𝑑𝑑𝑥𝑥 𝑃𝑃10(𝑥𝑥), should be a 
reasonable approximation. This approximation leads to Eq. (3). For a spherical semiconductor 
quantum dot (QD), both assumptions above are applicable, so the point dipole approximation, 
Eq. (3), can be expected to produce a reasonable approximate to the EVET rate. Solving the 
Poisson problem in the spherical geometry yields (derivation is not shown here) 
 

𝛤𝛤𝑝𝑝𝑝𝑝 = ℏ−1 |𝑝𝑝10|2

𝑅𝑅3
12𝜖𝜖𝑠𝑠′′

�𝜖𝜖𝑄𝑄𝑄𝑄+2𝜖𝜖𝑠𝑠′�
2,     (5) 

 
where 𝑅𝑅 and 𝑑𝑑10 are the radius and transition dipole moment of the QD, respectively. Solvent 
dielectric function is 𝜖𝜖𝑠𝑠(𝜔𝜔) = 𝜖𝜖𝑠𝑠′(𝜔𝜔) + 𝑖𝑖𝜖𝜖𝑠𝑠′′(𝜔𝜔), where, as above, 𝜔𝜔 corresponds to the transition 
energy. The QD dielectric function 𝜖𝜖𝑄𝑄𝑄𝑄 is assumed real. Eq. (5) is exactly what was obtained in 
Ref. 11 for a spherical semiconductor QD. 
 
The assumption above that the characteristic distance between the small dipole and the solvent 
medium is larger (or at least comparable to) the exciton localization size, allowed us to get from 
Eq. (4) to Eq. (5). This assumption is reasonable for spherical QDs, but is not valid for SWCNTs 
in a solvent. Indeed, the size of the bulk unit cell is on the order of the C-C distance (~1.4Å) and 
the distance between the SWCNT surface and the solvent (water) is ~3 Å.13,14 Therefore, the 
slowly varying transition dipole density should still be a reasonable approximation. However, the 
effective size of the system (the localization size of the trapped exciton sitting near an sp3 defect 
of the functionalized SWCNT) can be on the order of several nanometers (see Figure S5 in 
Supporting Information for Ref. 1), which is significantly larger than the small dipole-to-solvent 
distance. Under these conditions, the system becomes extended: the transition density of the 
trapped exciton cannot be represented as a point dipole and the full Eq. (4) or Eq. (1) must be 
used instead of Eq. (3). Comparing surface-to-solvent distance of ~3 Å to the exciton localization 
size of ~3-5 nm,1 one has an aspect ratio, or degree of extendedness, of ~10. In the section to 
follow we consider the simplest possible 1D-extended model of EVET, where the effect of the 
extendedness can be observed and quantified. In particular, we will see that the effect of this 1D 
extendedness can be approximately captured within that simplest model by introducing an extra 
scaling prefactor into Eq. (3). We then add that prefactor to Eq. (5) to evaluate the EVET rate in 
the case of the functionalized SWCNT. 
 
1D system near flat interface. Eq. (3) depends quadratically on the magnitude of the transition 
dipole. This means that if we split a single point dipole into two of equal magnitude and separate 
them sufficiently so that they do not interact, the effective EVET rate becomes two times 
smaller. We, therefore, expect that “spreading” a dipole by going from a point dipole to an 
extended system diminishes the EVET rate. To quantify this effect, we consider a simple model 
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of a 1D emitter sitting in vacuum parallel to a flat dielectric interface. The distance between the 
emitter and the surface of the dielectric (of dielectric constant 𝜖𝜖) is denoted by ℎ.  The transition 
dipole density of the emitter is given by 𝑃𝑃10(𝑥𝑥) = 𝐿𝐿−1𝑓𝑓(𝑥𝑥/𝐿𝐿) polarized along 𝑡𝑡ℎ𝑒𝑒 𝑥𝑥-direction, 
where 𝑓𝑓(𝑥𝑥) is a smooth normalized (∫ 𝑑𝑑𝑥𝑥 𝑓𝑓(𝑥𝑥) = 1) function, which is maximized at 𝑥𝑥 ∼ 0 and 
decays quickly when |𝑥𝑥| ≳ 1. Because of the normalization condition the overall transition 
dipole is of unit magnitude. 
 
The electrostatic problem in this case is analytically solvable by the method of image charges 
yielding the Green’s function of the Poisson equation along the 1D emitter as 
 

𝑉𝑉(𝑥𝑥, 𝑥𝑥′) = 1
|𝑥𝑥−𝑥𝑥′|

− 𝜖𝜖−1
𝜖𝜖+1

1
�4ℎ2+(𝑥𝑥−𝑥𝑥′)2

,    (6) 

 
where the first r.h.s. term is the direct through-vacuum interaction and the second r.h.s. term is 
the induced electrostatic potential. This latter term has a non-vanishing imaginary part, so the 
non-trivial part of the evaluation of the EVET rate for this model reduces to evaluation of the 
following integral 
 

𝐼𝐼 = ∫ 𝑑𝑑𝑥𝑥∞
−∞ ∫ 𝑑𝑑𝑥𝑥′∞

−∞  
𝜕𝜕𝑥𝑥𝑃𝑃10(𝑥𝑥)𝜕𝜕𝑥𝑥′𝑃𝑃10(𝑥𝑥′)

�4ℎ2+(𝑥𝑥−𝑥𝑥′)2
.    (7) 

 

The Fourier transform of the kernel is ∫ 𝑑𝑑𝑥𝑥∞
−∞  𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥

√4ℎ2+𝑥𝑥2
= 2𝐾𝐾0(2|𝑘𝑘|ℎ), where 𝐾𝐾0 is the modified 

spherical Bessel function of the second kind. Using this identity, the integral above transforms 
into 
 

𝐼𝐼 = 2
𝜋𝜋𝐿𝐿3 ∫ 𝑑𝑑𝑘𝑘 𝐾𝐾0(2𝑘𝑘ℎ/𝐿𝐿)𝑘𝑘2|𝑓𝑓(𝑘𝑘)|2∞

0 ,    (8) 
 

where 𝑓𝑓(𝑘𝑘) is the Fourier transform of 𝑓𝑓(𝑥𝑥) introduced above. As is seen, the integral essentially 
depends on the ratio ℎ/𝐿𝐿, so we consider two limiting cases. If 𝐿𝐿 is small (ℎ/𝐿𝐿 ≫ 1), 𝐾𝐾0 decays 
very rapidly and the integral becomes 
 

𝐼𝐼 ≈ 2|𝑓𝑓(𝑘𝑘=0)|2

𝜋𝜋𝐿𝐿3 ∫ 𝑑𝑑𝑘𝑘 𝐾𝐾0 �
2𝑘𝑘ℎ
𝐿𝐿
� 𝑘𝑘2∞

0 = 𝑓𝑓(𝑘𝑘=0)
8ℎ3

= 1
8ℎ3

.  (9) 
 

This result assumes the Coulomb interaction potential of two parallel point dipoles that are 
perpendicular to the vector of length 2ℎ that connects them. Physically it corresponds to the 
limiting case of the point dipole losing its energy via EVET thru interaction with its own image 
dipole. 
 
When 𝐿𝐿 is large (ℎ/𝐿𝐿 ≪ 1), we approximate the modified Bessel function as 𝐾𝐾0 �

2𝑘𝑘ℎ
𝐿𝐿
� ≈

ln �𝑘𝑘ℎ
𝐿𝐿
� − 𝛾𝛾, where 𝛾𝛾 ≈ 0.577 is the Euler-Mascheroni constant. This is a slowly varying 

function and 𝑘𝑘𝑓𝑓(𝑘𝑘) peaks at 𝑘𝑘 ∼ 1, giving 
 

𝐼𝐼 ≈ 2
𝜋𝜋𝐿𝐿3

�ln �ℎ
𝐿𝐿
� − 𝛾𝛾�∫ 𝑑𝑑𝑘𝑘 𝑘𝑘2|𝑓𝑓(𝑘𝑘)|2 ∼∞

0
1
𝐿𝐿3
�ln �ℎ

𝐿𝐿
� − 𝛾𝛾�.  (10) 
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Here the similarity sign “~” means that the expression is known up to a numerical prefactor of 
the order 1. Figure S4 compares the results of the exact numerical evaluation of Eq. (8), using 
various approximations, where the dipole density distribution function is taken as 𝑓𝑓(𝑥𝑥) =
𝜋𝜋−1/2𝑒𝑒−𝑥𝑥2. 
 

 
 
Figure S4. Exact numerical result for Eq. (8) is shown by thick black line. Dashed red line is Eq. (11). 
 
 
The numerical result is shown by the thick black line. The integral is normalized by multiplying 
it by 8ℎ3 so that it converges to 1 (thin dashed black line) when 𝐿𝐿 is small, Eq. (9). Accurate 
large-𝐿𝐿 asymptotics, shown by thick dashed red line, can be obtained from Eq. (10) by evaluating 
the integral in the right-hand side exactly (since 𝑓𝑓(𝑥𝑥) is now specified), which yields 
 

𝐼𝐼 = �2
𝜋𝜋
1
𝐿𝐿3
�ln � 𝐿𝐿

√2ℎ
� − 𝛾𝛾�.    (11) 

 
Finally, we attempt to approximate the numerical result by scaling the pointwise dipole result, 
Eq. (9), with a certain power of ℎ/𝐿𝐿, i.e., we have 𝐼𝐼 ≈ 1

8ℎ3
�ℎ
𝐿𝐿
�
𝛼𝛼

. Results for 𝛼𝛼 = 1,2,3 are shown 
by thin solid blue, magenta and red lines, respectively (Figure S4). Of these, 𝛼𝛼 = 2 agrees best 
with the numerical results at 𝐿𝐿/ℎ ∼ 10, which is exactly the aspect ratio of the “extended” dipole 
we are interested in (see above). This means that for the “extendedness” of ∼ 10 the approximate 
expression for the EVET rate for the considered simple 1D model can be obtained by first 
evaluating the rate as if the dipole is pointwise, and then scaling the rate down by multiplying it 
with (ℎ/𝐿𝐿)2  to account for the extendedness. 
 
It is clear that if the localization length of a trapped exciton in a functionalized SWCNT were 
very small, then one would be able to use Eq. (5) directly. This is not the case. We modify Eq. 
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(5) by multiplying it by the same scaling factor of (ℎ/𝐿𝐿)2 , which was found to work well in the 
case of the simple 1D model. Therefore, we assume that the EVET rate for the trapped exciton in 
SWCNT is given by 
 

𝛤𝛤 = �𝑅𝑅𝑠𝑠
𝑅𝑅𝑥𝑥
�
2
𝛤𝛤𝑝𝑝𝑝𝑝,     (12) 

 
where 𝑅𝑅𝑥𝑥 is the localization “radius” of the exciton, and 𝑅𝑅𝑠𝑠 is the solvation radius (distance from 
the SWCNT surface to the first solvation shell). As an expression for 𝛤𝛤𝑝𝑝𝑝𝑝 we take Eq. (5). 
Dielectric screening by a 1D system (i.e., SWCNT) is non-local in a sense that the effective 
dielectric function of screening in the proximity of the 1D object is distance-dependent and 
converges to the dielectric function of the medium at distances larger than the effective diameter 
of the 1D system. Since the characteristic exciton size is typically significantly larger than the 
SWCNT diameter, even for a trapped exciton, the effective dielectric constant can be considered 
to be that of the medium. Under these conditions, one has uniform dielectric screening and the 
expression for the EVET rate of the trapped exciton in SWCNT becomes 
 

𝛤𝛤𝑝𝑝𝑝𝑝 = |𝑝𝑝10|2

𝑅𝑅𝑠𝑠3
4𝜖𝜖𝑠𝑠′′
3𝜖𝜖′𝑠𝑠

2 ,     (13) 
 
 
III.  Derivation of Expression for Long Lifetime Component Amplitude. 
 
To rationalize the observed dependence of the long lifetime component amplitude on wavelength 
and the solvent, shown in Figure 6 in the main text, we solve for the dynamics of the relaxation 
of trapped exciton within a simple two-state model. The lowest state of the two-level system is 
assumed to be the bright trapped excitonic state, as found in Ref. [3] and also in this work (see 
Table S3 and Figure S5 below). We denote the rate constant of the exciton recombination from 
this bright state by 𝑘𝑘. Exciton from the higher-laying dark trapped state relaxes to the bright state 
with rate constant 𝑘𝑘0. The reverse process of up-conversion from the bright to dark trapped state 
has the rate constant of 𝑘𝑘0′ = 𝑘𝑘0𝑒𝑒−𝜖𝜖/𝑘𝑘𝑘𝑘, where 𝜖𝜖 is the energy separation between the two states. 
The direct exciton recombination from the dark state is assumed absent for the time being. The 
corresponding equations for the time evolution of populations of the two states are: 
 

𝑝𝑝𝑝𝑝𝑑𝑑
𝑝𝑝𝑑𝑑

= −𝑘𝑘0𝑝𝑝𝑝𝑝 + 𝑘𝑘0′ 𝑝𝑝𝑏𝑏,     (14a) 
 

𝑝𝑝𝑝𝑝𝑏𝑏
𝑝𝑝𝑑𝑑

= 𝑘𝑘0𝑝𝑝𝑝𝑝 − (𝑘𝑘 + 𝑘𝑘0′ )𝑝𝑝𝑏𝑏.    (14b) 
 

This system of linear ordinary differential equations can be solved exactly, and the general 
solution is a biexponential decay of the form 
 

�
𝑝𝑝𝑏𝑏(𝑡𝑡)
𝑝𝑝𝑝𝑝(𝑡𝑡)� = �𝐴𝐴𝑠𝑠𝐵𝐵𝑠𝑠

� 𝑒𝑒−𝑑𝑑/𝜏𝜏𝑠𝑠 + �𝐴𝐴𝑙𝑙𝐵𝐵𝑙𝑙
� 𝑒𝑒−𝑑𝑑/𝜏𝜏𝑙𝑙,   (15) 
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where the short and long decay times, 𝜏𝜏𝑠𝑠 and 𝜏𝜏𝑙𝑙, respectively, are given by combinations of rate 
constants in Eq. (14). Amplitudes 𝐴𝐴𝑠𝑠,𝐴𝐴𝑙𝑙 ,𝐵𝐵𝑠𝑠,𝐵𝐵𝑙𝑙 are combinations of the rate constants and the 
initial populations of the dark and bright states, 𝑝𝑝𝑝𝑝0 and 1 − 𝑝𝑝𝑝𝑝0, respectively. Eq. (15), with all 
the amplitudes and decay times expressed via initial populations and rate constants, becomes 
rather long and complicated. Instead, we provide here physically transparent solutions for the 
two limiting cases of very small and very large 𝑘𝑘. 
 
 

Configuration: Pristine Ortho 
L30 L90 

State Transition Energy (eV) 
1 1.85 1.61 1.84 
2 1.88 1.74 1.85 
3 1.94 1.84 1.88 
4 1.95 1.88 1.94 
5 1.95 1.91 1.95 
6 1.97 1.98 1.99 
7 1.99 1.98 1.99 
8 1.99 1.99 2.00 
9 2.01 1.99 2.01 
10 2.05 2.01 2.04 
11 2.05 2.05 2.07 
12 2.10 2.07 2.09 
13 2.11 2.09 2.10 
14 2.13 2.10 2.12 
15 2.13 2.12 2.13 
    
Spectroscopic Feature: E11*- E11* 
Well Depth (eV): 0.36 0.13 
Splitting (eV): 0.13 0.01 
 
 
Table S3.  Calculated energies of transition for the experimentally relevant functionalization 
configurations of (6,5) SWCNTs functionalized with 4-bromobenzene that generate the emission 
features. Transitions were computed using TDDFT from the optimized ground state geometries.  
Values highlighted in yellow represent the lowest energy bright state for each species.  The well 
depth is defined as the difference between the energies of the bright transition for the 
functionalized system vs. that of pristine.  The reported splitting is defined as the difference 
between the energies of the lowest energy bright state and the adjacent higher-energy dark state.  
Functionalization configurations that generate the deepest wells also exhibit the highest bright-
dark state splitting.  The ortho-L30 configuration is attributed to the E11*- emission features, while 
the ortho-L90 configuration is attributed to E11*.1 
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Figure S5.  Calculated energies of transition for each experimentally relevant functionalization 
configuration of (6,5) SWCNTs functionalized with 4-bromobenzene.  Transitions were 
computed using TDDFT from the optimized ground state geometries.  The bold states 
highlighted in yellow represent the lowest-energy bright transition for each functionalization 
configuration.  Those species that generate the deepest wells also exhibit the highest bright-dark 
state splitting.  The ortho-L30 configuration is attributed to the E11*- emission features, while the 
ortho-L90 configuration is attributed to E11*.1 
 
 
 
Low-𝒌𝒌 limit. In the limit of slow recombination (𝑘𝑘 ≪ 𝑘𝑘0), the short and long decay times are 
given by 1/𝜏𝜏𝑠𝑠 = 𝑘𝑘0(1 + 𝛾𝛾) and 1/𝜏𝜏𝑙𝑙 = 𝑘𝑘/(1 + 𝛾𝛾), where 𝛾𝛾 = 𝑒𝑒−𝜖𝜖/𝑘𝑘𝑘𝑘 is the Boltzmann factor. 
The normalized amplitude of the long decay component of the bright state is �̃�𝐴𝑙𝑙 = 𝐴𝐴𝑙𝑙

𝐴𝐴𝑠𝑠+𝐴𝐴𝑙𝑙
=

1
(1−𝑝𝑝𝑑𝑑

0)(1+𝛾𝛾)
. Physically, this corresponds to the following two stages of the exciton relaxation 

dynamics. First, the exciton population is rapidly equilibrated within the two states with the time 
constant of 𝜏𝜏𝑠𝑠, so that 𝑝𝑝𝑑𝑑

𝑝𝑝𝑏𝑏
= 𝛾𝛾. Then, slowly, the exciton recombines via 𝑘𝑘. If recombination 

occurred from both the bright and dark state with the same rate constant 𝑘𝑘, the slow decay time 
would be 1

𝜏𝜏𝑙𝑙
= 𝑘𝑘. However, we assumed that the recombination only happens from the bright 

exciton state. Since equilibration is rapid, the ratio of population of the bright state to the total 
exciton population is 1/(1 + 𝛾𝛾) at any moment of the slow recombination. Accordingly, the 
slow decay time is given by 1

𝜏𝜏𝑙𝑙
= 𝑘𝑘

1+𝛾𝛾
. 
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Immediately upon completion of the first relaxation stage the population of the bright state is 
1/(1 + 𝛾𝛾), and therefore 𝐴𝐴𝑙𝑙 = 1/(1 + 𝛾𝛾). However, the initial population of the bright state is 
1 − 𝑝𝑝𝑝𝑝0 = 𝐴𝐴𝑠𝑠 + 𝐴𝐴𝑙𝑙. Therefore, the normalized amplitude of the long decay component of the 
bright state is �̃�𝐴𝑙𝑙 = 1

(1−𝑝𝑝𝑑𝑑
0)(1+𝛾𝛾)

. 
 
 
Large-𝒌𝒌 limit. In the limit of very rapid recombination (𝑘𝑘 ≫ 𝑘𝑘0), the short and long decay times 
are given by 1

𝜏𝜏𝑠𝑠
= 𝑘𝑘 + 𝛾𝛾𝑘𝑘0 and 1

𝜏𝜏𝑙𝑙
= 𝑘𝑘0. Physically, it means that at the first very rapid stage there 

occurs an almost complete depletion of the bright state. Since the outflow rate constants for the 
bright state are 𝑘𝑘 and 𝑘𝑘0′ = 𝛾𝛾𝑘𝑘0, the resulting effective rate constant of such depletion is 𝑘𝑘 +
𝛾𝛾𝑘𝑘0, and hence 𝜏𝜏𝑠𝑠 provided above. At the second stage, whatever exciton population is trapped 
in the dark state relaxes to the bright state with the rate constant 𝑘𝑘0, and then almost 
instantaneously recombines with 𝑘𝑘. The bottleneck for this two-step second stage is the first slow 
step, so 𝜏𝜏𝑙𝑙 = 1/𝑘𝑘0. 
 
The normalized amplitude of the long decay component of the bright state in this limiting case is 
 

�̃�𝐴𝑙𝑙 = 𝛾𝛾 𝑘𝑘02

𝑘𝑘2
+ 𝑘𝑘0(𝑘𝑘+𝑘𝑘0−𝛾𝛾𝑘𝑘0)

𝑘𝑘2(1−𝑝𝑝𝑑𝑑)
𝑝𝑝𝑝𝑝.     (16) 

 
The first r.h.s. term in this expression is easy to understand if we set 𝑝𝑝𝑝𝑝 to zero. Then, during the 
rapid depletion stage a small fraction of the bright state population undergoes up-conversion to 
the dark state. This fraction is 𝑘𝑘0′ 𝜏𝜏𝑠𝑠 ≈ 𝛾𝛾 𝑘𝑘0

𝑘𝑘
. This resulting population of the dark state now 

undergoes relaxation to the bright one, and then almost instantaneously recombines. Since the 
recombination is assumed rapid, we can apply the quasi-steady-state-approximation for the 
population of the bright state by setting the inflow and outflow rates for the bright state to be the 
same. This results in the following relation between the instantaneous populations of the bright 
and dark states: 𝑝𝑝𝑏𝑏 = 𝑘𝑘0

𝑘𝑘
𝑝𝑝𝑝𝑝. Since the population of the dark state after the initial rapid stage was 

𝛾𝛾 𝑘𝑘0
𝑘𝑘

, the resulting normalized amplitude of the second component is of course �̃�𝐴𝑙𝑙 = 𝛾𝛾 𝑘𝑘02

𝑘𝑘2
. In the 

case of non-zero initial population of the dark state, and, therefore, non-unit initial population of 
the bright state, this expression is corrected by an extra term, resulting in Eq. (16). 
 
Degenerate dark states and recombination from dark states. The model above can be 
generalized to the case of not a single but 𝑛𝑛 > 1 degenerate dark states (still with single bright 
state though), if the rate constants for up- and down-conversion between individual dark and 
bright states are still 𝑘𝑘0′  and 𝑘𝑘0, respectively. Under these conditions, this new model can be 
reduced to the previous two-state one, Eq. (14), if the substitution 𝛾𝛾 → 𝑛𝑛𝛾𝛾, and therefore 𝑘𝑘0′ →
𝑛𝑛𝑘𝑘0′  is performed, and the down-conversion rate constant 𝑘𝑘0 remains intact. One can readily see 
that the ratio of equilibrium populations is now 𝑝𝑝𝑑𝑑

𝑝𝑝𝑏𝑏
= 𝑛𝑛𝛾𝛾, that is the detailed balance is satisfied 

since 𝑝𝑝𝑝𝑝 is now understood as the total population of all 𝑛𝑛 dark states. Therefore, all the 
expressions for the amplitudes and decay times, derived above for the two-state model, are 
correct for the single-bright-𝑛𝑛-dark-states model if we now treat 𝛾𝛾 as not just a Boltzmann factor 
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but 𝛾𝛾 = 𝑛𝑛𝑒𝑒−𝜖𝜖/𝑘𝑘𝑘𝑘 instead. In practice, it means that at sufficiently low dark-bright energy splitting 
𝛾𝛾 can be larger than 1. 
 
Finally, we note that the general solution, Eq. (15), and, therefore, all the above results for 
limiting cases can be modified exactly if, in addition to all the processes encoded by Eq. (14), we 
also have an extra recombination channel with identical rate constant 𝑘𝑘′ for the bright and all the 
dark states (e.g., MPD). This amounts to simple multiplication of 𝑝𝑝𝑝𝑝(𝑡𝑡) and 𝑝𝑝𝑏𝑏(𝑡𝑡) in Eq. (15) by 
𝑒𝑒−𝑘𝑘′𝑑𝑑. Therefore, the inclusion of such an extra channel change shortens the decay times, but 
leaves the component amplitudes intact. 
 
 
III. Synthesis of S-PBn(b)-Ph4 Polymer 
 
Instrumentation. Free, unbound polymer in each polymer/SWNT sample was removed using a 
GE/ÄKTApurifier HPLC system (GE Healthcare Bio-Science AB, Björkgatan, Uppsala, 
Sweden) equipped with two preparative columns (160x16 mm each; stationary phase: sephacryl 
S-500 and S-200) connected in a series. The HPLC system uses three-wavelength detection, 
which distinguishes fractions that contain SWNTs. Electronic spectra were recorded on a Varian 
5000.   NMR spectra were recorded on either a 400 or 500 MHz AC-Bruker spectrometer.  

Chemical shifts for 
1
H NMR spectra are relative to residual protium in deuterated solvent 

(CDCl3 = 7.26 ppm, D2O = 4.75 ppm).  All J values are reported in Hertz. MALDI-TOF mass 
spectroscopic data were obtained with a Perspective Voyager DE instrument (Department of 
Chemistry, Duke University). Microwave-assisted reactions were performed using an Emrys 
Personal Chemistry System (Biotage).  

6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol (S-1, see Scheme 1): To a two neck round bottom 
flask fitted with addition funnel, [1,1'-binaphthalene]-2,2'-diol (15.0 g, 52.4 mmol) was added, 
dissolved in methylene chloride (~400 mL) and cooled to -78°C.  Bromine (7.3mL, 141.5 mmol) 
was diluted in methylene chloride (100 mL) and added to the addition funnel.  The bromine 
mixture was added dropwise.  The reaction was allowed to warm to room temperature and stirred 
overnight.  Reaction was cooled to 0°C and quenched with Na2SO3.  The mixture was allowed to 
stir for 1h.  The organic layer was separated and washed with brine (3 x 200 mL) dried over 
Na2SO4 and concentrated in vacuo.  No further purification was needed. Product was obtained as 
an off white crystalline powder (24.5 g, 50% yield): 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 
2.0 Hz, 2H), 7.88 (d, J = 8.9 Hz, 2H), 7.40 – 7.34 (m, 4H), 6.95 (d, J = 9.0 Hz, 2H), 5.02 (s, 2H). 
MS (MALDI-TOF) m/z: 442.73 [(M+H+), calcd 443.00]. 
 
15,20-dibromo-7-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-4H,10H-5,9-
(metheno)dinaphtho[2,1-b:1',2'-d][1,6]dioxacyclotridecine (S-2): To a round bottom flask 
was added S-1 (5.46 g, 12.75 mmol) dissolved in degassed dimethylformamide (300 mL).  The 
mixture was heated to 80°C.  1,3-bis(bromomethyl)-5-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzene was taken up in degassed dimethylformamide (50 mL) 
and added to the prepared mixture over 16h using a syringe pump.  After an additional 8h, 
saturated brine (300 mL) was added, then extracted with EtOAc (3 x 200 mL).  The combined 
organic layers were dried over Na2SO4 and concentrated in vacuo.  The crude product was 
purified by column chromatography on silica gel (CH2Cl2/MeOH : 95/5) to afford product as a 
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yellow crystalline solid (4.22 g , 58% yield): 1H NMR (400 MHz, CDCl3) δ 7.95 (d, 2H, J = 2.4 
Hz), 7.782 (d, 2H, J = 8.8 Hz), 7.408 (d, 2H, J = 8.8 Hz), 7.331 (d, 2H, J = 2.0 Hz), 7.308 (d, 2H, 
J = 2.0 Hz), 7.059 (d, 2H, J = 8.8 Hz), 6.977 (broad s, 1H), 6.453 (d, 2H, J = 1.2 Hz), 5.169 (d, 
2H, J = 12.4 Hz), 4.997 (d, 2H, J = 12.4 Hz), 4.001-3.887 (m, 2H, J = 4.4 Hz), 3.737 (t, 2H, J = 
4.4 Hz), 3.660-3.619 (m, 6H, 3.550-3.257 (m, 2H), 3.30 (s, 3H) ). MS (MALDI-TOF) m/z: 
706.53 [(M+H+), calcd 707.14]. 
 
((20-ethynyl-7-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-4H,10H-5,9-
(metheno)dinaphtho[2,1-b:1',2'-d][1,6]dioxacyclotridecin-15-yl)ethynyl)triisopropylsilane 
(S-3): To a round bottom flask was added S-2 (5.0 g, 7.1 mmol), 
tetrakis(triphenylphosphine)palladium(0) (1.6 g, 1.4 mmol), and copper(I) iodide (138 mg, 0.7 
mmol).  A solution of THF (150 mL), diisopropylamine (50 mL), and (triisopropylsilyl)acetylene 
(9.5 mL, 42.6 mmol) was degassed using a freeze, pump, thaw (3x) technique and then 
cannulated into the flask.  The reaction was heated to 60°C and stirred for 20h.  After cooling to 
room temperature, saturated brine (200 mL) was added and extracted with EtOAc (3 x 200 mL).  
The combined organic layers were dried over over Na2SO4 and concentrated in vacuo.  The 
crude product was purified by column chromatography on silica gel (EtOAc/CH2Cl2/hexane : 
4/3/3) to afford product as a yellow-brown crystalline solid (4.6 g , 72% yield): 1H NMR (400 
MHz, CDCl3) δ 7.951 (d, 2H, J = 1.6 Hz), 7.815 (d, 2H, J = 9.2 Hz), 7.388 (d, J = 8.8 Hz), 7.302 
(dd, 2H, J = 8.8 Hz, 1.6 Hz ), 7.134 (d, 2H, J = 8.8 Hz), 6.964 ( br s, 1H), 6.438 (s, 2H), 5.166 (d, 
2H, J = 12.4 Hz), 4.977 (d, 2H, J = 12.4 Hz), 3.997-3.902 (m, 2H), 3.737 (t, 2H, J = 4.4 Hz), 
3.661- 3.585 (m, 6H), 3.547-3.524 (m, 2H), 3.32 (s, 3H), 1.168-1.068 (m, 42H) ). MS (MALDI-
TOF) m/z: 912.94 [(M+H+), calcd 911.58]. 
 
15,20-diethynyl-7-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-4H,10H-5,9-
(metheno)dinaphtho[2,1-b:1',2'-d][1,6]dioxacyclotridecine (S-4): To a round bottom flask 
was added S-3 (1.5 g, 1.6 mmol) dissolved in THF (100 mL).  The solution was cooled to 0°C.  
A solution of tetra-n-butylammonium fluoride (3.5 mL, 3.5 mmol) was added dropwise.  The 
mixture was stirred for 10m, warmed to room temperature and stirred an additional 5m.  A 
mixture of methanol (10 mL) and water (0.1 mL) was added to quench the reaction.  Mixture 
was dried in vacuo and purified by column chromatography on silica gel (CH2Cl2/MeOH : 95/5) 
to afford product as a yellow-brown oil that was immediately used in the next reaction (958 mg , 
~99% yield). 
 
((((7-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-4H,11H-5,9-(metheno)dinaphtho[2,1-b:1',2'-
d][1,7]dioxacyclotridecine-15,20-diyl)bis(ethyne-2,1-diyl))bis(2,5-bis(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)-4,1-phenylene))bis(ethyne-2,1-diyl))bis(triisopropylsilane) 
(S-5): To a round bottom flask was added S-4 (160 mg, 0.27 mmol), ((4-iodo-2,5-bis(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)phenyl)ethynyl)triisopropylsilane (565 mg, 0.8 mmol), 
tetrakis(triphenylphosphine)palladium(0) (70 mg, 0.06 mmol), and copper(I) iodide (10 mg, 0.03 
mmol).  A solution of THF (100 mL) and diisopropylamine (25 mL) was degassed using a 
freeze, pump, thaw (3x) technique and cannulated into the reaction flask.  Mixture was heated to 
60°C for 20h then allowed to cool to room temperature.  The mixture was filtered through a plug 
of celite and concentrated in vacuo.  Crude product was purified by column chromatography on 
silica gel (CH2Cl2/MeOH : 95/5) to afford product as a brown solid (440 mg , ~99% yield): 1H 
NMR (400 MHz, CDCl3) δ 7.98 (s, 2H), 7.84 (d, 2H), 7.41 (d, 2H), 7.33 (d, 2H), 7.17 (d, 2H), 
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7.04 (s, 1H), 7.01 (s, 2H), 6.98 (s, 2H), 6.45 (s, 2H), 5.19 (d, 2H), 5.00 (d, 2H), 4.16 (m, 10H), 
3.87 (m, 10H), 3.77 (m, 10H), 3.50-3.67 (m, 30H), 3.34 (s, 9H), 3.28 (s, 6H), 1.03 (36H) ). MS 
(MALDI-TOF) m/z: 1757.86 [(M+H+), calcd 1759.00]. 

15,20-bis((4-ethynyl-2,5-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)ethynyl)-7-(2-(2-
(2-methoxyethoxy)ethoxy)ethoxy)-4H,11H-5,9-(metheno)dinaphtho[2,1-b:1',2'-
d][1,7]dioxacyclotridecine (S-6): To a round bottom flask was S-5 (225 mg, 0.14 mmol) 
dissolved in THF (100 mL).  The solution was cooled to 0°C.  A solution of tetra-n-
butylammonium fluoride (0.3 mL, 0.31 mmol) was added dropwise.  The mixture was stirred for 
10m, warmed to room temperature and stirred an additional 5m.  A mixture of methanol (10 mL) 
and water (0.1 mL) was added to quench the reaction.  Mixture was dried in vacuo and purified 
by column chromatography on silica gel (CH2Cl2/MeOH : 95/10) to afford product as a yellow-
brown oily solid that was immediately used in the next reaction (174 mg , ~99% yield). 
 
Polymer S-PBn(b)-Ph4 (S-7): To a microwave vial was added S-6 (174 mg, 0.14 mmol), 
3,3',3'',3'''-(4,4'-dibromo-[1,1'-biphenyl]-2,2',5,5'-tetrayl)tetrakis(propane-1-sulfonate) (101 mg, 
0.13 mmol), tetrakis(triphenylphosphine)palladium(0) (29 mg, 0.025 mmol), and copper(I) 
iodide (3 mg, 0.013 mmol).  The vial was purged and back filled with Argon (3 x 30 min).  A 
solution of DMF (9 mL), water (6 mL), and diisopropylamine (3 mL) was degassed by gently 
bubbling argon through the solution while stirring for 3h.  Solvent mixture was cannulated into 
vial and heated by microwave to 160°C for 1h.  Mixture was then heated by oil bath at 70°C for 
20h.  The mixture was heated an additional 2h after the addition of polymer cap (100 mg) 
dissolved in degassed DMSO (10 mL).  The mixture was allowed to cool to room temperature 
and basified with a solution of NaCl / K2CO3 (1/1).  The mixture was added to a solution of 
Acetone / Et2O / MeOH (5/4/1).  The resulting precipitate was collected by filtration and washed 
with Acetone / Et2O / MeOH solution (5/4/1).  The precipitate was purified using size exclusion 
chromatography.  The purified product (9 mg, ~3% yield) was taken up in a water / MeOH 
mixture (7/3 : 6 mL). 
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Scheme 1.  Synthetic route to S-PBN(b)-Ph4 polymer.  a) Br2 in DCM, -78°C to rt, 24h.  b)  S-4, K2CO3 in DMF, 
80°C, 24h.  c)  TIPS acetylene, Pd(PPh3)4, CuI, TEA, in THF, 60°C, 24h.  d)  TBAF in THF, 0°C to rt, 15m.  e)  
((4-iodo-2,5-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)ethynyl)triisopropylsilane, Pd(PPh3)4, CuI, TEA, 
in THF, 60°C, 24h.  f)  TBAF in THF, 0°C to rt, 15m.  g)  3,3',3'',3'''-(4,4'-dibromo-[1,1'-biphenyl]-2,2',5,5'-
tetrayl)tetrakis(propane-1-sulfonate), Pd(PPh3)4, CuI, DIPA, in DMF/H2O, 70°C, 24h. 
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Figure S6. A) Graphical representation of polymer wrapped [6,5] SWCNT B) UV-vis spectrum of  surfactant 
encapsulated [6,5]SWNT sample and S-PBN(b)-Ph4 wrapped [6,5] SWCNT sample.  A 15 nm bathochromic shift 
is observed after polymer wrapping. 

 
Figure S7. A) GPC trace of crude polymer S-PBN(b)-PH4 with targeted length fractions highlighted B) GPC 
trace of ~10 mer purified S-PBN(b)-Ph4  
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Figure S8. Depiction of polymer wrapped doped [6,5] SWCNT samples being dispersed in various solvents, 
mediated by solubilizing counterions.15 
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Figure S9.  Example PL intensity decay curves for 4-methoxybenzene-functionalized (6,5) 
SWCNTs suspended in 20% THF/80% Toluene, obtained at 4 different excitation wavelengths:  
a) 1150 nm, b) 1190 nm, c) 1230 nm, and d) 1270 nm.  Experimental data in black and 
reconvolution fitting result in red.  Lower panel for each curve displays the respective fitting 
residuals. 
 
 
  

τl = 221.4 ps,  τs= 52 psτl = 221.8 ps,  τs= 54 ps

τl = 263 ps,  τs= 60 ps τl = 275.6 ps,  τs= 68 ps

a b

c d
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Figure S10.  Example PL intensity decay curves for 4-methoxybenzene-functionalized (6,5) 
SWCNTs suspended in H2O, obtained at 4 different excitation wavelengths:  a) 1150 nm, b) 
1190 nm, c) 1230 nm, and d) 1270 nm.  Experimental data in black and reconvolution fitting 
result in red.  Lower panel for each curve displays the respective fitting residuals.  

τl = 127 ps,  τs= 51.6 ps τl = 133 ps,  τs= 61.5 ps

τl = 112 ps,  τs= 50 ps τl = 121.6ps,  τs= 54.1 ps

a b

c d
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