Supporting Information:

Single Molybdenum Atom Anchored on N-Doped Carbon as a Promising Electrocatalyst for Nitrogen Reduction into Ammonia at Ambient Conditions

Chongyi Ling, ^{1,2} Xiaowan Bai, ¹ Yixin Ouyang, ¹ Aijun Du, ^{*,2} Jinlan Wang ^{*,1}

Australia

E-mail: jlwang@seu.edu.cn (J.W.); aijun.du@qut.edu.au (A.D)

¹School of Physics, Southeast University, Nanjing 211189, People's Republic of China

²School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001,

Figures

Figure S1. Schematic depiction of (a) enzymatic, (b) consecutive, (c) alternating and (d) distal mechanisms for N_2 reduction to NH_3 on Mo_1 - N_1C_2 .

Figure S2. Definition of three moieties of N_xH_y adsorbed $Mo_1-N_1C_2$ by using NH_2 as prototype.

Figure S3. Structures of (a) Mo- N_2C_1 and (b) Mo- N_3 active centers. Gray, cyan and yellow balls represent the C, Mo and N atoms, respectively.

Figure S4. Top and side views of the adsorption N₂ and N₂H via the (a, b) side-on and (c, d)

end-on patterns on the $Mo-N_2C_1$ site. Gray, cyan, yellow and blue balls represent the C, Mo, doped N and adsorbed N atoms, respectively.

Figure S5. Top and side views of the adsorption N_2 and N_2H via the (a, b) side-on and (c, d) end-on patterns on the Mo-N₃. Gray, cyan, yellow and blue balls represent the C, Mo, doped N and adsorbed N atoms, respectively.

Figure S6. Calculated free energy diagrams for N_2 adsorption and protonation of side-on adsorbed N_2 on (a) Mo- N_2 C₁ and (b) Mo- N_3 sites as well as of end-on adsorbed N_2 on (c) Mo- N_2 C₁ and (d) Mo- N_3 sites Mo₁/N-C.

Tables

Table S1. Calculated zero point energies and entropy of different adsorption species, where the * denotes the adsorption site. Therefore, N=N and N=N represent the side-on and end-on adsorption configurations, respectively.

Adsorption Species	E _{ZPE} (eV)	TS (eV)
N_2	0.15	0.58
*N≡*N	0.19	0.15
*N=*NH	0.49	0.13
*NH =*NH	0.79	0.16
*NH-*NH ₂	1.14	0.17
$*NH_2-*NH_2$	1.34	0.22
*NH ₂ -*NH ₃	1.66	0.30
*N-*NH ₂	0.83	0.15
*N	0.08	0.06
*NH	0.35	0.09
*NH ₂	0.65	0.14
*NH ₃	1.02	0.16
*N≡N	0.20	0.18
*N=NH	0.49	0.16
*NH=NH	0.80	0.24
*NH-NH ₂	1.13	0.19
*NH ₂ -NH ₂	1.49	0.25
*N-NH ₂	0.82	0.18
NH ₃	0.58	0.56

Table S2. Calculated adsorption energies of N_2 on various SACs that have been synthesized. For $Cu_1/N-C$, $Pd_1/N-C$ and $Pt_1/N-C$, only the end-on configurations can be gained.

SACs -	Adsorption Energies of N ₂ (eV)	
	Side-on	End-on
Mo ₁ /N-C	-1.19	-1.18
Cu ₁ /N-C		-0.58
Pd ₁ /N-C		-0.58
Pt ₁ /N-C		-0.40