Supporting Information: Single Molybdenum Atom Anchored on N-Doped Carbon as a Promising Electrocatalyst for Nitrogen Reduction into Ammonia at Ambient Conditions Chongyi Ling, ^{1,2} Xiaowan Bai, ¹ Yixin Ouyang, ¹ Aijun Du, ^{*,2} Jinlan Wang ^{*,1} Australia E-mail: jlwang@seu.edu.cn (J.W.); aijun.du@qut.edu.au (A.D) ¹School of Physics, Southeast University, Nanjing 211189, People's Republic of China ²School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, ## **Figures** **Figure S1.** Schematic depiction of (a) enzymatic, (b) consecutive, (c) alternating and (d) distal mechanisms for N_2 reduction to NH_3 on Mo_1 - N_1C_2 . **Figure S2.** Definition of three moieties of N_xH_y adsorbed $Mo_1-N_1C_2$ by using NH_2 as prototype. **Figure S3.** Structures of (a) Mo- N_2C_1 and (b) Mo- N_3 active centers. Gray, cyan and yellow balls represent the C, Mo and N atoms, respectively. Figure S4. Top and side views of the adsorption N₂ and N₂H via the (a, b) side-on and (c, d) end-on patterns on the $Mo-N_2C_1$ site. Gray, cyan, yellow and blue balls represent the C, Mo, doped N and adsorbed N atoms, respectively. **Figure S5.** Top and side views of the adsorption N_2 and N_2H via the (a, b) side-on and (c, d) end-on patterns on the Mo-N₃. Gray, cyan, yellow and blue balls represent the C, Mo, doped N and adsorbed N atoms, respectively. **Figure S6.** Calculated free energy diagrams for N_2 adsorption and protonation of side-on adsorbed N_2 on (a) Mo- N_2 C₁ and (b) Mo- N_3 sites as well as of end-on adsorbed N_2 on (c) Mo- N_2 C₁ and (d) Mo- N_3 sites Mo₁/N-C. ## **Tables** **Table S1.** Calculated zero point energies and entropy of different adsorption species, where the * denotes the adsorption site. Therefore, N=N and N=N represent the side-on and end-on adsorption configurations, respectively. | Adsorption
Species | E _{ZPE} (eV) | TS (eV) | |------------------------------------|-----------------------|---------| | N_2 | 0.15 | 0.58 | | *N≡*N | 0.19 | 0.15 | | *N=*NH | 0.49 | 0.13 | | *NH =*NH | 0.79 | 0.16 | | *NH-*NH ₂ | 1.14 | 0.17 | | $*NH_2-*NH_2$ | 1.34 | 0.22 | | *NH ₂ -*NH ₃ | 1.66 | 0.30 | | *N-*NH ₂ | 0.83 | 0.15 | | *N | 0.08 | 0.06 | | *NH | 0.35 | 0.09 | | *NH ₂ | 0.65 | 0.14 | | *NH ₃ | 1.02 | 0.16 | | *N≡N | 0.20 | 0.18 | | *N=NH | 0.49 | 0.16 | | *NH=NH | 0.80 | 0.24 | | *NH-NH ₂ | 1.13 | 0.19 | | *NH ₂ -NH ₂ | 1.49 | 0.25 | | *N-NH ₂ | 0.82 | 0.18 | | NH ₃ | 0.58 | 0.56 | **Table S2.** Calculated adsorption energies of N_2 on various SACs that have been synthesized. For $Cu_1/N-C$, $Pd_1/N-C$ and $Pt_1/N-C$, only the end-on configurations can be gained. | SACs - | Adsorption Energies of N ₂ (eV) | | |----------------------|--|--------| | | Side-on | End-on | | Mo ₁ /N-C | -1.19 | -1.18 | | Cu ₁ /N-C | | -0.58 | | Pd ₁ /N-C | | -0.58 | | Pt ₁ /N-C | | -0.40 |