Supporting Information

MOP and EE Protecting Groups in Synthesis of α- or β-Naphthyl-*C*-Glycosides from Glycals

Jan Choutka[†], Radek Pohl[‡] and Kamil Parkan^{*†}

† Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
‡ Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10, Prague, Czech Republic

*Corresponding author Kamil Parkan: <u>parkank@vscht.cz</u>

Table of Contents

1.	Optimization of the C-1 lithiation	S3
2.	Determination of enantiomeric composition of 4	S5
3.	Structural assignment of EE-16	S6
4.	Characterization of EE-protected compounds by NMR	S8
5.	¹ H NMR and ¹³ C Spectra	. S13

1. Optimization of the C-1 lithiation

Procedure for lithiation/deuteration experiments:

MOP or EE-protected D-glucal (50 mg, 0.14 mmol, 1 eq) was dissolved under Ar in anhydrous THF. This solution was cooled to -78 °C and then designated amount of *t*-BuLi (1.7 M in pentane) was added dropwise using a syringe pump. The reaction mixture was stirred at -78 °C for 5 min and then at 0 °C for 1 h. After 1 h, D₂0 (0.249 mL, 13.79 mmol, 100 eq) was added dropwise at 0 °C and the mixture was stirred for 30 min at 0 °C and for 30 min at RT. The solution was diluted with EtOAc (30 mL) and washed with H₂O (50 mL). The organic layer was dried over MgSO₄ and concentrated *in vacuo*.

Deuterated material was subjected to ¹H NMR measurement in DMSO- d_6 . The extent of deuteration at C1 was assumed from comparison of integral intensity of H1 with other signals in the molecule, as shown in Figures S2 and S3. Outline and results of the optimization are summarized in Figure S1.

Figure S1. Optimization of the C-1 lithiation of protected glycals 2a and 2b.

6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 f1 (ppm)

6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 fl (ppm)

Figure S3. C-1 lithiation of 2b.

2. Determination of enantiomeric composition of 4

Et₃N (0.04 mL, 290 μ mol, 5 eq) and DMAP (709 μ g, 6 μ mol, 0.1 eq) were added to the solution of enone 4 (15 mg, 58 μ mol, 1 eq) in anhydrous CH₂Cl₂ (3 mL). After that, (*S*)-MTPA-Cl (0.02 mL, 116 μ mol, 2 eq) was added and the reaction mixture was stirred for 3 h ar RT and then quenched by the addition of sat. aq. NH₄Cl (1 mL). The mixture was diluted with EtOAc (10 mL) and washed with H₂O (2 × 10 mL), dried over MgSO₄ and evaporated *in vacuo*.

Diastereomeric composition of the mixture was determined by NMR measurements of the crude (S)-MTPA-4. Diastereomeric ratio was estimated to be ~ 1:1 based on characteristic ¹³C NMR signals (Figure S4).

Figure S4. Characteristic ¹³C NMR signals used for estimation of diastereomeric ratio of (S)-MTPA-4.

3. Structural assignment of (2*S*,3*R*,4*S*,5*R*)-1-(naphthalen-1yl)hexane-1,2,3,4,5,6-hexaol (16).

Structure of the intermediate (2S,3R,4S,5R)-1-(naphthalen-1-yl)hexane-(3,4,6-tri-O-(ethoxyethyl)-1,2,3,4,5,6-hexaol was confirmed by benzylation of the free hydroxyl groups and subsequent cleavage of the EE groups, which gave partially benzylated derivative **17**. The OH groups in positions 3, 4 and 6 were then methylated by the excess of MeI to give the product **18**. The positions of methyl and benzyl groups were then determined by analysis of HMBC spectra.

(2R,3R,4S,5R)-2,5,6-tris(benzyloxy)-6-(naphthalen-1-yl)hexane-1,3,4-triol (17). To a solution of derivative EE-16 (50 mg, 95 µmol, 1 eq) in anhydrous DMF (5 mL) at 0 °C was added NaH (22.87 mg, 572 µmol, 60% in mineral oil, 6 eq). The reaction mixture was stirred for 30 min at RT and then BnBr (67.92 µL, 572 µmol, 6 eq) was slowly added dropwise at 0 °C. The resulting solution was stirred for 1 h at 0 °C and then overnight at RT. The reation was guenched by careful addition of MeOH (10 mL) at 0 °C and evaporation in vacuo. The residue was taken up in EtOAc (50 mL) and washed with H₂O (3×50 mL), dried over MgSO₄ and evaporated *in vacuo*. The obtained material containing fully protected derivative was subjected to deprotection procedure F using 20% AcOH (5 mL) and THF (5 mL) and stirred overnight at RT. After evaporation, the residue was purified by column chromatography on silica gel (CHCl₃/MeOH 8/1 to 5/1), which yielded compound 17 (47 mg, 85 %) as a colorless oil: $R_f = 0.36$ (CHCl₃/MeOH 7/1); ¹H NMR (401.0 MHz, CDCl₃): 2.55, 3.27, 3.63 $(3 \times bs, 3 \times 1H, OH-3,4,6)$; 3.66 (dd, 1H, $J_{4,3} = 9.5, J_{4,5} = 2.3, H-4$); 3.76–3.90 (m, 4H, H-5,6, CH_aH_bPh-2 ; 4.09 (d, 1H, $J_{3,4} = 9.5$, H-3); 4.21 (d, 1H, $J_{2,1} = 7.2$, H-2); 4.29 (d, 1H, $J_{gem} = 10.9$, $CH_{a}H_{b}Ph-2$); 4.37, 4.59 (2 × d, 2 × 1H, J_{gem} = 11.6, $CH_{2}Ph-1$); 4.64, 4.72 (2 × d, 2 × 1H, J_{gem} = 11.2, CH₂Ph-5); 5.43 (d, 1H, J_{1,2} = 7.2, H-1); 6.76–6.83 (m, 2H, H-o-Bn-2); 7.11–7.25 (m, 3H, H-m,p-Bn-2); 7.26–7.37 (m, 10H, H-o,m,p-Bn-1,5); 7.41 (ddd, 1H, $J_{7,8} = 8.4$, $J_{7,6} = 6.8$, $J_{7,5} = 1.4$, H-7-naphth); 7.49 (ddd, 1H, $J_{6,5} = 8.1$, $J_{6,7} = 6.8$, $J_{6,8} = 1.2$, H-6-naphth); 7.53 (dd, 1H, $J_{3,4} = 8.2$, $J_{3,2} = 7.1$, H-3naphth); 7.78 (dd, 1H, $J_{2,3} = 7.1$, $J_{2,4} = 0.9$, H-2-naphth); 7.83 – 7.94 (m, 3H, H-4,5,8-naphth); ¹³C NMR (100.8 MHz, CDCl₃): 63.1 (CH₂-6); 70.5 (CH-3); 71.2 (CH₂Ph-1); 72.5 (CH-4); 73.2 (CH₂Ph-5); 73.9 (CH₂Ph-2); 78.3 (CH-5); 78.7 (br, CH-1); 79.0 (CH-2); 123.6 (CH-8-naphth); 125.3 (CH-3naphth); 125.7 (CH-2,6-naphth); 126.2 (CH-7-naphth); 127.8, 127.8, 127.9 (CH-p-Bn-1,2,5); 128.06, 128.09, 128.2 (CH-m-Bn-1,2,5); 128.4, 128.5 (CH-o-Bn-1,2,5); 128.7 (CH-4-naphth); 128.8 (CH-5naphth); 131.9 (C-8a-naphth); 133.8 (C-4a-naphth); 134.6 (C-1-naphth); 137.5, 137.7, 138.0 (C-i-Bn-1,2,5); HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₇H₃₈O₆Na 601.2561, found 601.2561.

1-((2S,3S,4S,5R)-1,2,5-tris(benzyloxy)-3,4,6-trimethoxyhexyl)naphthalene (18). To a solution of derivative 17 (47 mg, 81 µmol, 1 eq) in anhydrous DMF (5 mL) at 0 °C was added NaH (19 mg, 487 µmol, 60% in mineral oil, 6 eq). The reaction mixture was stirred for 30 min at RT and then MeI $(30.34 \,\mu\text{L}, 487 \,\mu\text{mol}, 6 \,\text{eq})$ was slowly added dropwise at 0 °C. The resulting solution was stirred for 1 h at 0 °C and then overnight at RT. The reaction was quenched by careful addition of MeOH (10 mL) at 0 °C and evaporation in vacuo. The residue was taken up in CH₂Cl₂ (30 mL) and washed with H_2O (3 × 30 mL), dried over MgSO₄ and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/EtOAc 4/1), which yielded compound 18 (45 mg, 89%) as a colorless oil: $R_f = 0.32$ (Hexane/EtOAc 4/1); HRMS (ESI) m/z calculated for $C_{40}H_{44}O_6Na [M+Na]^+$ 643.30301, found 643.30292. ¹H NMR (401.0 MHz, CDCl₃): 3.13 (d, 1H, J_{gem} = 10.5, CH_aH_bPh-2); 3.37 (s, 3H, CH₃O-6); 3.39 (s, 3H, CH₃O-4); 3.42 (s, 3H, CH₃O-3); 3.62 - 3.70 (m, 2H, H-4,6b); 3.74 (dd, 1H, $J_{6a,6b} = 10.0$, $J_{6a,5} = 6.4$, H-6a); 3.88 (d, 1H, $J_{gem} = 10.5$, CH_aH_bPh-2); 3.96 (ddd, 1H, $J_{5,6} = 6.4$, 5.1, $J_{5,4} = 2.5$, H-5); 4.15 (bm, 1H, H-2); 4.22 (dd, 1H, $J_{3,4} = 8.6$, $J_{3,2} = 1.4$, H-3); 4.31, 4.44 (2 × d, 2 × d, 1H, J_{gem} = 11.4, CH₂Ph-1); 4.67, 4.86 (2 × d, 2 × 1H, J_{gem} = 11.9, CH₂Ph-5); 5.31 (bm, 1H, H-1); 6.50 – 6.60 (bm, 2H, H-o-Bn-2); 6.97 – 7.10 (m, 3H, H-m,p-Bn-2); 7.22 – 7.33, 7.33 – 7.42 (2 × m, 10H, H-o,m,p-Bn-1,5); 7.45 – 7.55 (m, 3H, H-3,6,7-naphth); 7.78 (bd, 1H, J_{2,3} = 7.2, H-2-naphth); 7.86 – 7.93 (m, 2H, H-4,5-naphth); 8.51 (bm, 1H, H-8-naphth); ¹³C NMR (100.8 MHz, CDCl₃): 58.95 (CH₃O-6); 59.47 (CH₃O-4); 60.47 (CH₃O-3); 69.93 (CH₂Ph-1); 72.35 (CH₂Ph-5); 73.84 (CH₂-6); 73.88 (CH₂Ph-2); 77.81 (CH-5); 78.98 (CH-3); 79.39 (CH-4); 124.71 (CH-8-naphth); 125.31 (CH-2,3naphth); 125.67 (CH-6-naphth); 126.06 (CH-7-naphth); 127.10, 127.25, 127.42 (CH-p-Bn-1,2,5); 127.47, 127.75, 127.77 (CH-m-Bn-1,2,5); 128.09, 128.23, 128.25 (CH-o-Bn-1,2,5); 128.60 (CH-4naphth); 128.75 (CH-5-naphth); 132.68 (C-8a-naphth); 133.89 (C-4a-naphth); 135.65 (C-1-naphth); 137.77, 138.18, 138.92 (C-*i*-Bn-1,2,5); HRMS (ESI) m/z [M+Na]⁺ calcd for C₄₀H₄₄O₆Na 643.3030, found 643.3029.

4. Characterization of EE-protected compounds by NMR

NMR spectra of EE-protected glycals are complicated by the presence of 8 sets of signals originating from all possible distareoisomers due to asymmetric carbon of EE-group. As result, their ¹H and ¹³C NMR are complex and not easily analyzable due to signal overlap. However, simple *in situ* deprotection using 1:9 (v/v) mixture of CD₃COOD:CD₃OD at 50 °C for 45 – 120 minutes (Figure S5) significantly simplified the spectra and enabled structural characterization of EE-protected glycals by NMR. Simplification of ¹H and ¹³C NMR spectra during *in situ* deprotection for EE-glycals **2b**, **3b**, **9b** and **10** is shown in Figures S6-S9.

Figure S5. *In situ* deprotection of EE-glycals by $CD_3COOD + CD_3OD$ (1:9 (v/v)) in NMR tube at 50 °C.

45

1-naphthyl

10

corresponding NMR spectra after deprotection by CD₃COOD (teal).

corresponding NMR spectra after deprotection by CD₃COOD (teal).

(maroon) and corresponding NMR spectra after deprotection by CD₃COOD (teal).

¹⁸⁰ ¹⁶⁰ ¹⁴⁰ ¹²⁰ ¹⁰⁰ ^{13C (ppm)} ⁸⁰ ⁶⁰ ⁴⁰ ²⁰ ²⁰ ⁵¹ Figure S9. ¹H and ¹³C NMR spectra of EE-protected 1-naphthylgalactal **10** measured in CD₃OD (maroon) and corresponding NMR spectra after deprotection by CD₃COOD (teal).

5. ¹H NMR and ¹³C Spectra Spectra S1. ¹H and ¹³C NMR of compound 2a.

Spectra S2. ¹H and ¹³C NMR of compound 2b.

Spectra S3. ¹H and ¹³C NMR of compound 3a.

Spectra S5. ¹H and ¹³C NMR of compound 6a.

Spectra S7. ¹H and ¹³C NMR of compound 6b.

Spectra S8. ¹H and ¹³C NMR of compound 8.

Spectra S9. ¹H and ¹³C NMR of compound 9a.

Spectra S10. ¹H and ¹³C NMR of compound 11.

Spectra S12. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound 13.

Spectra S16. ¹H and ¹³C NMR of compound 17.

