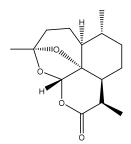
Analysis and Isolation of Potential Artemisinin Precursors from Waste Streams of *Artemisia Annua* Extraction

Rodger W. Stringham*, Gary L. Moore, David S. Teager and Tai-Yuen Yue Process Chemistry Team, Clinton Health Access Initiative, 800 N. Five Points Rd, West Chester, PA 19380 United States


*Rodger W. Stringham; email: <u>rstringham@clintonhealthaccess.org</u>; phone 1-302-397-1049

SUPPLEMENTAL INFORMATION

Includes ¹³C NMR spectroscopic data for identified impurities Includes HPLC chromatograms of partition samples Includes HPLC assay results for partition samples

¹³C NMR spectroscopic data For component eluting at GC-MS RT=5.46 min

Scheme S1

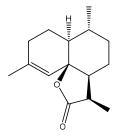

Deoxyartemisinin (5)

Table S1

assignment	Peak (ppm); this work	Peak (ppm); ref. 20
		deoxyartemisinin
C-12	Nd	173.5
C-4	109.2	109.2
C-5	99.7	99.7
C-6	82.5	82.4
C-1	44.7	44.6
C-7	42.5	42.4
C-10	35.4	35.4
C-3	34.0	33.9
C-9	33.5	33.5
C-11	32.8	32.8
C-15	24.0	24.0
C-8	23.6	23.5
C-2	22.1	22.0
C-14	18.6	18.6
C-13	12.7	12.6

For component eluting at GC-MS RT=4.09 min

Scheme S2

Dihydro-*epi*-deoxy-arteannuiain B **(4)**

Table S2

	D 1 () 11	D 1 () 0.00	T. 1 () 0.00
assignment	Peak (ppm); this	Peak (ppm); ref. 20	Peak (ppm); ref. 20
	work	dihydro-epi-deoxy-	dihydro-deoxy-
		arteannuin B	arteannuin B
C-12	179.3	179.4	180.6
C-4	142.1	142.2	142.3
C-5	121.8	121.8	120.5
C-6	83.1	83.2	86.7
C-1	46.6	46.6	46.6
C-7	42.8	42.8	49.8
C-11	39.6	39.7	39.0
C-9	32.5	32.5	35.3
C-3	30.9	30.8	26.0
C-10	29.7	29.7	30.7
C-15	23.8	23.5	24.1
C-8	23.4	23.4	22.0
C-2	21.0	21.0	20.1
C-14	19.6	19.6	19.9
C-13	9.4	9.5	13.1

HPLC Chromatograms

Overlay of chromatograms of the methanol extract (green) of the Guilin waste, the first heptane phase (red) and the final heptane phase (blue). Injection volumes were normalized to DHAA content to enable visual comparison of the enrichment obtained. Note that the response factor for AA is 2.5X that of DHAA so that its actual level is lower than it would appear. Similar chromatograms were observed for other waste materials

Figure S1. Overlay of Chromatograms from Guilin Extraction

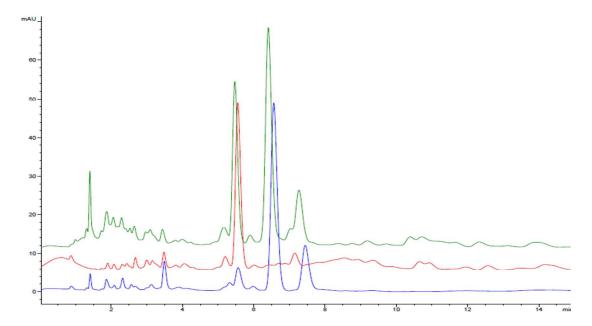
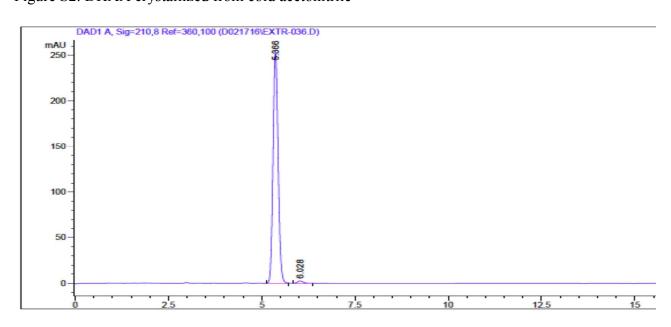



Figure S2. DHAA crystallized from cold acetonitrile

Results of HPLC Assay of Extraction Samples

Guilin Waste – Table S3

5.36 g waste containing 8.0% DHAA and 0.88% AA Theoretical DHAA = 429 mg Theoretical AA = 47 mg

Sample	DHAA	% theory	AA	% theory
Extract -1	430 mg	100%	49 mg	104%
Heptane-2	354 mg	83%	42 mg	89%
Aqueous-2	44 mg	10%	6 mg	13%
Heptane-3	49 mg	11%	9 mg	19%
Aqueous-3	7 mg	2%	3 mg	8%
Final oil	448 mg	104%	49 mg	104%

Botanical Extracts – Table S4

5.12 g waste containing 5.0% DHAA and 0.9% AA Theoretical DHAA = 256 mg Theoretical AA = 46 mg

Sample	DHAA	% theory	AA	% theory
Extract -1	248 mg	98%	46 mg	100%
Heptane-2	208 mg	83%	42 mg	91%
Aqueous-2	17 mg	7%	4 mg	9%
Heptane-3	23 mg	9%	5 mg	11%
Aqueous-3	0 mg	0%	0 mg	0%
Final oil	243 mg	96%	50 mg	109%

Bionexx Extracts – Table S5

7.57g waste containing 6.4% DHAA and 1.4% AA (not quantified) Theoretical DHAA = 484 mg

Sample	DHAA	% theory
Extract -1	381 mg	79%
Aqueous-1	345 mg	72%
Final oil	376 mg	78%

Sample explanation

Extract -1 = methanol extract after cooling and filtration

Aqueous-1= aqueous layer after first heptane partition and pH adjustment

Heptane-2 = heptane layer after pH adjustment showing partition of acids from aqueous

Aqueous-2 = aqueous layer after pH adjustment and partition of acids into heptane

Heptane-3 = second heptane extraction of Aqueous-2

Aqueous-3 = aqueous layer after second heptane extraction of Aqueous-2 Final Oil= combined heptane fractions of partitioned acids