Full Color Luminescence Tuning in Bi³⁺/Eu³⁺-Doped LiCa₃MgV₃O₁₂ Garnet Phosphors Based on Local Lattice Distortion and Multiple Energy Transfers

Peipei Dang,^{†,‡} Sisi Liang,^{†,‡} Guogang Li,^{*,§} Yi Wei,[§] Ziyong Cheng,[†] Hongzhou Lian,[†] Mengmeng Shang,[#] Abdulaziz A. Al Kheraif,[⊥] and Jun Lin^{*,†,#}

[†]State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

[§]Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, People's Republic of China.

[‡]University of Science and Technology of China, Hefei 230026, People's Republic of China

["]School of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China

¹Dental Health department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia

[#] School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China

Figure S1. Data (black dots) and fitted (red line) powder XRD patterns as well as difference profile (blue line) for Rietveld analysis of LCMV: xBi^{3+} , yEu^{3+} : (a) x = 0, y = 0 (b) x = 0.04, y = 0 (c) x = 0, y = 0.02 (d) x = 0.04, y = 0.07. The short vertical lines show the positions of Bragg reflections of the fitted patterns.

x(y=0)	Cell parameters, Å	Cell volume, \mathring{A}^3	$R_{wp}, R_p, \%, \chi^2$
x = 0	a = b = c = 12.439(4) $\alpha = \beta = \gamma = 90^{\circ}$	1924.5(10)	4.45, 3.36, 2.012
<i>x</i> = 0.01	a = b = c = 12.4535(4) $\alpha = \beta = \gamma = 90^{\circ}$	1931.39(10)	4.25, 3.28, 1.668
<i>x</i> = 0.02	a = b = c = 12.4566(17) $\alpha = \beta = \gamma = 90^{\circ}$	1932.84(5)	4.95, 3.68, 2.333
<i>x</i> = 0.03	a = b = c = 12.4549(18) $\alpha = \beta = \gamma = 90^{\circ}$	1932.07(5)	6.08, 4.49, 2.019
<i>x</i> = 0.04	a = b = c = 12.4457(27) $\alpha = \beta = \gamma = 90^{\circ}$	1927.78(7)	4.73, 3.67, 1.611
<i>x</i> = 0.05	a = b = c = 12.4518(31) $\alpha = \beta = \gamma = 90^{\circ}$	1930.60(8)	5.35, 3.99, 1.723
<i>x</i> = 0.06	a = b = c = 12.4508(27) $\alpha = \beta = \gamma = 90^{\circ}$	1930.17(7)	6.00, 4.41, 2.114
<i>x</i> = 0.08	a = b = c = 12.4535(27) $\alpha = \beta = \gamma = 90^{\circ}$	1931.39(7)	6.32, 4.63, 2.280
<i>x</i> = 0.10	a = b = c = 12.4496(26) $\alpha = \beta = \gamma = 90^{\circ}$	1929.59(7)	6.12, 4.65, 2.164
x = 0 $y = 0.02$	a = b = c = 12.4565(4) $\alpha = \beta = \gamma = 90^{\circ}$	1932.78(10)	7.19, 5.07, 2.788
x = 0.04 y = 0.04	a = b = c = 12.4497(28) $\alpha = \beta = \gamma = 90^{\circ}$	1929.65(8)	6.56, 4.62, 2.413
x = 0.04 y = 0.07	a = b = c = 12.4489(4) $\alpha = \beta = \gamma = 90^{\circ}$	1929.28(10)	6.55, 4.68, 2.443

Table S1. Main refinement parameters of the LCMV: xBi^{3+} , yEu^{3+} (x = 0-0.10; y = 0-0.07) samples.

Atom	Wyckoff position	X Y		Ζ	Frac.	Uiso			
LiCa ₃ MgV ₃ O ₁₂									
Ca1	24 <i>c</i>	0.375000	0.500000	0.250000	0.779(6)	0.03			
Li1	16 <i>a</i>	0.375000	0.500000	0.250000	0.3333	0.03			
Mg1	16 <i>a</i>	0.500000	0.500000	0.000000	0.514(19)	1.4(6)			
V1	24 <i>d</i>	0.625000	0.500000	0.250000	1.0000	0.03			
01	96h	0.5334(4)	0.5552(4)	0.16276(23)	1.150(14)	1.00(21)			
Cell parameters: $a = b = c = 12.439(4)$ Å, $\alpha = \beta = \gamma = 90^{\circ}$ V = 1924.5(10) Å ³ , $z = 8$									
Space group: $Ia\overline{3}d$ (230)									
Reliability factor: R_{wp} = 4.45%, R_p = 3.36%, and χ^2 = 2.012									
LiCa _{2.96} MgV ₃ O ₁₂ :0.04Bi ³⁺ ,0.04Eu ³⁺									
Ca1	24 <i>c</i>	0.375000	0.500000	0.250000	0.899(35)	3.5(4)			
Li1	16 <i>a</i>	0.375000	0.500000	0.250000	0.3333	0.03			
Mg1	16 <i>a</i>	0.500000	0.500000	0.000000	0.85(6)	4.2(7)			
V1	24 <i>d</i>	0.625000	0.500000	0.250000	1.13(5)	1.96(33)			
01	96h	0.5316(28)	0.55293(24)	0.15710(28)	1.0000	3.0(6)			

Table S2. Final refined structure parameters of $LiCa_3MgV_3O_{12}$ and $LiCa_{2.96}MgV_3O_{12}$:0.04Bi3+ derived from the GSAS refinement of XRD data.

Cell parameters: a = b = c = 12.44973(28) Å, $\alpha = \beta = \gamma = 90^{\circ}$ V = 1929.65(8)Å³, z = 8

Space group: $Ia\bar{3}d(230)$

Reliability factor: R_{wp} = 6.56%, R_p = 4.62%, and χ^2 = 2.413

Table S3. Selected interatomic distances in LCMV: xBi^{3+} , yEu^{3+} (x = 0-0.10, y = 0-0.04) samples.

x = 0, y = 0		x = 0.02, y = 0		x = 0.04, y = 0		x = 0.06, y = 0	
Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
Ca1-O1	2.427	Cal-O1	2.436	Cal-O1	2.475	Cal-O1	2.479
Mg1-O1	2.178	Mg1-O1	2.170	Mg1-O1	2.105	Mg1-O1	2.088
V1-01	1.717	V1-O1	1.718	V1-01	1.736	V1-01	1.742
						_	
x = 0.10, y = 0		x = 0, y = 0.02		x = 0.04, y = 0.04			
Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)	-	
Ca1-O1	2.480	Ca1-O1	2.475	Cal-Ol	2.480		
Mg1-O1	2.076	Mg1-O1	2.078	Mg1-O1	2.118	_	
V1-01	1.752	V1-01	1.741	V1-01	1.715	-	

Figure S2. The typical XRD patterns at $2\theta = 10^{\circ}-80^{\circ}$ of LCMV:*x*Bi³⁺ (*x* = 0-0.10) samples. The standard data of LiCa₃MgV₃O₁₂ (JCPDS No.24-1212) is shown as a reference.

x	$\lambda_{\rm em}/{\rm nm}$	fwhm /nm	EM1/nm	fwhm /nm	EM2/nm	fwhm /nm	IQYs (%)
0	480	100.50	474	76.42	533	113.66	37.8
0.01	488	110.06	477	79.74	549	123.30	26.5
0.02	503	122.48	480	81.31	557	126.84	42.1
0.03	513	129.37	480	81.75	560	128.89	42.5
0.04	539	137.11	485	84.68	565	130.84	42.3
0.05	548	136.84	488	86.02	567	130.15	41.4
0.06	556	137.36	494	91.28	569	130.03	43.9
0.08	557	137.79	504	98.85	573	128.97	35.1
0.10	562	134.22	536	115.30	583	130.95	28.9

Table S4. The emission wavelengths, fwhms and internal quantum yields (IQYs) of LCMV: xBi^{3+} (x = 0-0.10) samples monitored at different excitation wavelengths.

x	$\lambda_{\rm ex}/{\rm nm}$	$\lambda_{\rm em}/{\rm nm}$	$ au_1/\mu s$	A_1	$ au_2/\mu s$	A_2	<i>τ*</i> /μs
0	330	480	12.255	15702	23.305	4453.7	16.13
0.01	322	488	20.788	6411.4	11.310	14235	15.60
0.02	324	503	11.232	16517	20.971	4508.4	14.52
0.03	324	513	26.296	1398.5	12.671	19000	13.20
0.04	335	539	13.204	10542	13.204	10542	13.07
0.05	336	548	13.075	10499	13.075	10499	13.05
0.06	337	556	13.053	10734	13.053	10734	12.21
0.08	339	557	12.215	11055	12.215	11055	11.91
0.10	340	562	11.907	11065	11.908	11065	11.23

Table S5. The lifetimes of LCMV: xBi^{3+} (x = 0-0.10) samples monitored at different excitation and emission wavelengths.

Figure S3. The CIE color coordinates diagram of LCMV: xBi^{3+} , yEu^{3+} (x = 0-0.10, y = 0-0.15) samples excited under different UV wavelengths (320-340 nm).