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1. Extreme Ultra-Violet (XUV) Transient Absorption Spectra  

Pulses that are 40 fs, 3.5 mJ centered at 800 nm are produced by a 1 kHz Ti:sapphire chirped 

pulse amplifier (Spitfire Pro, Spectra Physics). The XUV probe pulse is generated via high 

harmonic generation in a semi-infinite gas cell (40 cm) filled with 110 Torr (approximately 1.4 × 

104 Pascal) neon gas. Before the gas cell, a portion of the 800 nm light is converted to 400 nm 

using in-line second harmonic generation, allowing for the production of both odd- and even-order 

harmonics.1 A 0.5 mm thick glass capillary array (pore size 5 μm) blocks the 800 nm and 400 nm 

fundamental before the sample while transmitting the XUV.2 The XUV spot size is 200 μm at the 

sample. After the sample, the XUV pulses are spectrally dispersed using a variable line spacing 

grating, which has an energy range of 35 eV-110 eV. The dispersed spectrum at each time delay 

is captured by a charge-coupled device (CCD) camera (PIXIS-400, Princeton Instruments).  

The pump pulses are generated by passing a portion of the 800 nm beam through an optical 

parametric amplifier (TOPAS-Prime, Light Conversion) to create visible pulses with tunable 

wavelength (2.2 – 3.1 eV, 560 – 400 nm). The pump spot size is approximately 400 μm at the 

sample with a power density of approximately 2 mJ. Each transient spectrum consists of 200 scans 

that are averaged together, each consisting of 61 time delays spaced logarithmically after time zero 

(-2500 fs to +300 ps about time zero, delay steps ranging from 14 fs to 25 ps). Each time delay 

comprises a pump-on and a pump-off camera image of XUV light versus photon energy produced 

from the coaddition of approximately 800 pulses. To avoid thermal damage and ablation, the 

samples are raster scanned in 100 μm steps between each pump-probe time delay. Additionally, a 

stream of dry nitrogen is flowed over the sample to dissipate heat. 
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2. Sample Fabrication 

 Goethite, or iron (III) oxide hydroxide (FeOOH), nanorods of dimensions ranging from 5 

nm x 20 nm to 30 nm x 150 nm were purchased from U.S. Research Nanomaterials, Inc. and spun-

cast onto 30 nm thick 3 mm x 3 mm Si3N4 substrates (3 mg of FeOOH in 30 μL Millipore water, 

spun for 60 s, 2000 rpm). This affords an uneven-density film, and measurements are taken on a 

portion exhibiting the same XUV absorbance as a 35 nm thin film (from comparison to CXRO 

transmission).3 

3. Sample Characterization 

a) TEM imaging TEM and HRTEM imaging is performed with a FEI Tecnai T20 S-TWIN 

TEM operating at 200 kV with a LaB6 filament, which affords a resolving power of 2.4 Å. TEM 

images are collected with a Gatan Orius SC200 TEM camera with a 1 second exposure time to 

capture the rod-like shapes (Figure 1b, main text). High resolution images are taken near the 

Scherzer focus without the use of an objective aperture in order to resolve the lattice fringes (Figure 

1c, main text). 

b) Powder X-Ray Diffraction Powder diffraction patterns of nanocrystalline samples (Figure 

1d, main text) are obtained using a Bruker D-8 GADDS diffractometer equipped with a Co Kα 

source. XRD was collected in reflection geometry with an incident x-ray angle (ω) of 15°. Samples 

were prepared by drop casting a concentrated solution of nanocrystals in ethanol on an amorphous 

plastic low background substrate. 2D patterns were merged and integrated in the DIFFRAC.EVA 

software from Bruker.  

4. Charge Transfer Multiplet Modeling of the Ground State 

The ground state absorption spectrum is predicted using a charge transfer multiplet calculation 

performed with the CTM4XAS software.4 The ground state calculation was conducted for the Fe3+ 
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oxidation state of iron. To include the effect of shorter Auger lifetimes at higher energies, the 

predicted spectra are broadened by a Lorentzian with a nominal width of 0.1 eV at 52 eV that 

linearly increases by 1 eV for every 1.5 eV and with a Fano asymmetry parameter of 3.5. 

Additionally, a Gaussian of width 0.5 eV is applied to account for the instrument response. An 

energetic shift of +1.7 eV to the absolute energy of the transitions is required.5 A nonlinear fit was 

performed on the ground state absorption spectrum to determine the value of 10Dq, using the 

simulated spectra discussed above as model data. The value of 10Dq was found to be 1.55 eV  

0.01 eV. The simulated ground state spectrum shown in Figure 1a in the main text uses a 10Dq 

value of 1.55 eV, with broadenings discussed above.  

5. Charge Transfer Multiplet Modeling of the Excited State Differential Absorption 

a) Charge-Transfer Hybridized State The XUV differential absorption for the optically 

excited state was predicted by subtracting the ground state absorption spectrum from the excited 

state spectrum predicted by a charge transfer multiplet calculation. The optically induced charge 

transfer from the oxygen site to the iron center is accounted for by setting the final oxidation state 

to be Fe2+ and considering only the lowest energy 5T1 transition.5,6 The calculation is otherwise 

performed as outlined in Section 4. 

b) Polaron State The XUV differential absorption of the polaron state, which remains 20 ps 

after optical excitation, was predicted by subtracting the ground state absorption spectrum from 

the modeled polaron state spectrum. The polaron state is modeled as a splitting of the 3p core level 

into three states, using the splitting values and weightings for the Fe3+ center theoretically predicted 

for FePO4
7 and experimentally found accurate for hematite6. Specifically, the measured ground 

state absorption spectrum is convolved with three delta functions spaced at 0 eV, 1 eV, and 2.5 eV 
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and with weightings of 1/3, 1/2, and 1/6, respectively. No additional shifting or broadening was 

applied. 

6. Polaron Formation Kinetic Model 

The kinetic model for the polaron formation includes a two-temperature model for the electron-

phonon equilibrium and a bimolecular kinetic term for the recombination of the electron and 

phonon to form the polaron. In a standard two-temperature model, first a nonthermal electron 

population is created by optical excitation. Subsequently, electron-phonon scattering thermalizes 

the hot electrons while creating a nonthermal phonon population. The energy transfer rate between 

these two populations depends on their relative temperature and the electron-phonon scattering 

time, 𝜏𝑒−𝑝ℎ. Thus, the predicted excited state temperature gives a measure of the average state 

occupations.  

Since there is no clear relationship between temperature of the hot electrons and the measured 

amplitude of the charge-transfer hybridized state, average population is used in this model in place 

of temperature. An amplitude accounting for the unknown ratio of population transfer between hot 

electrons and phonons is then left as an additional fit parameter. In equations (1) and (2) below, 

the average hot electron population is denoted as 𝜂𝑒 and the average hot phonon population is 𝜂𝑝ℎ. 

The fit amplitude is denoted as 𝐴𝑒. 

𝜂̇𝑒 =  −
𝐴𝑒∙𝜂𝑒−𝜂𝑝ℎ

𝜏𝑒−𝑝ℎ
 (1) 

𝜂̇𝑝ℎ =  
𝐴𝑒∙𝜂𝑒−𝜂𝑝ℎ

𝜏𝑒−𝑝ℎ
 (2) 

The second part of the polaron formation kinetic model is the bimolecular recombination of an 

electron and optical phonon, which also uses average population. This bimolecular term involves 

both the electron and phonon populations and the polaron formation time, 𝜏𝑝𝑜𝑙. This creates a 
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population of polarons, denoted as 𝜂𝑝𝑜𝑙 in equations (3), (4), and (5). An additional polaron 

population transfer amplitude, 𝐴𝑝𝑜𝑙, is included to account for the unknown number of phonon 

scattering processes that occur during polaron formation. 

𝜂̇𝑒 =  −
𝐴𝑒∙𝜂𝑒−𝜂𝑝ℎ

𝜏𝑒−𝑝ℎ
−  

𝐴𝑝𝑜𝑙∙𝜂𝑒∙𝜂𝑝ℎ

𝜏𝑝𝑜𝑙
  (3) 

𝜂̇𝑝ℎ =  
𝐴𝑒∙𝜂𝑒−𝜂𝑝ℎ

𝜏𝑒−𝑝ℎ
 − 

𝐴𝑝𝑜𝑙∙𝜂𝑒∙𝜂𝑝ℎ

𝜏𝑝𝑜𝑙
  (4) 

𝜂̇𝑝𝑜𝑙 =  
𝐴𝑝𝑜𝑙∙𝜂𝑒∙𝜂𝑝ℎ

𝜏𝑝𝑜𝑙
   (5) 

Fitting the multivariate regression of the experimental data with this model yields the electron-

phonon scattering time, the polaron formation time, and two amplitude coefficients. These 

amplitudes not only account for the unknown ratios between populations, they also link the 

predicted hot electron and polaron populations from this model to the experimental differential 

absorption intensities of the charge-transfer hybridized state and the polaron state, respectively. 

The polaron formation probability is taken as the ratio of these fit amplitudes. It is important to 

note that this model is only valid when the polaron formation is complete by the end of electron 

thermalization, as the electron population in the model is depleted after thermalization. This 

approximation is justified here because the measured polaron feature reaches a maximum in a few 

picoseconds, the same time scale as thermalization. 

The electron-phonon scattering time is found to be less than 30 fs at all four excitation energies 

studied. Since this is within the instrument response, this variable was held constant at 30 fs for all 

four fits. Fixing this variable in the fit did not change the results of the other three variables within 

error. Results are shown below in Table S1. 
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Table S1. Parameters of the Polaron Kinetic Model Fit at the Four Pump Photon Energies. 

Excitation Photon 

Energy (eV) 

Polaron Formation 

Time (fs) 

Charge-Transfer 

Hybridized State 

Amplitude 

Polaron State 

Amplitude 

3.1 215 ± 20 2.0 ± 0.2 1.85 ± 0.01 

2.6 350 ± 30 1.7 ± 0.1 1.49 ± 0.02 

2.4 110 ± 35 2.0 ± 0.5 1.81 ± 0.08 

2.2 70 ± 10 3.6 ± 0.4 2.45 ± 0.02 
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Figure S1. Transient absorption spectra of the nanorods pumped at different photon energies. All 

four spectra show the zero-crossing shift from approximately 56 eV to 57 - 59 eV within the first 

2 ps, indicated by the thick dotted black oval. The thin horizontal dotted black line indicates time 

zero, which is offset my 100 fs to improve the clarity of the plot.  
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Figure S2. Amplitudes of the multivariate regression are shown at different pump wavelengths for 

the charge-transfer hybridized state (blue squares) and polaron state (red squares) with time on a 

logarithmic scale. For short times before the black dotted line, the fit using the polaron kinetic 

model is shown as solid lines. At long times, the fit using the stretched exponential decay model 

is shown. This long-time fit is inaccurate and does not match up with the short-time fit, as can be 

seen clearly in the 2.6 eV plot. The fitted polaron formation times are 215 ± 20 fs for 3.1 eV 

excitation, 350 ± 30 fs for 2.6 eV excitation, 110 ± 35 fs for 2.4 eV excitation, and 70 ± 10 fs for 

2.2 eV excitation.  
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Figure S3. Amplitudes of the multivariate regression (squares) with the fit using the polaron 

kinetic model (solid lines) compared between the different pump photon energies. The amplitudes 

of the charge-transfer hybridized state are on the left, and the amplitudes of the polaron state are 

on the right. Results are shown with a linear time axis. A constant vertical offset is applied to the 

different pump wavelengths for clarity. 
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Figure S4. The decay of the polaron state, fit using the stretched exponential model. The 

multivariate regression amplitudes of the polaron state are shown as squares. The best fit using a 

stretched exponential is shown as solid lines. Results are shown with a logarithmic time axis. A 

constant vertical offset is applied to the different pump wavelengths for clarity.  
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