Supporting Information

Atomic Structures of Pt Nanoclusters Supported on Graphene Grown on Pt(111)

Pei-Yang Cai^a, Yen-Wen Huang^a, Yi-Cheng Huang^a, Meng-Chin Cheng^b, Liang-Wei Lan^c, Chien-Cheng Kuo^c, Jeng-Han Wang^{b,*} and Meng-Fan Luo^{a,*}

^aDepartment of Physics, National Central University, 300 Jhongda Road, Taoyuan 32001, Taiwan

^bDepartment of Chemistry, National Taiwan Normal University, Taipei, Taiwan ^cDepartment of Physics, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan

*Corresponding authors E-mail: <u>mfl28@phy.ncu.edu.tw</u> (M.F. Luo) and jenghan@ntnu.edu.tw (J.H. Wang)

Figure S1 shows the LEED pattern from a graphene/Pt(111) surface. The graphene was grown on exposing Pt(111) to ethylene (300 L) at 950 K. The six sharp spots

come from Pt(111) substrate, corresponding to the six-fold symmetrical structure. The outer arc- shape spots and the faint spots in line with the Pt spots are from the graphene layer. The centers of the arc-shape spots are rotated by an angle of 30° relative to the spots from Pt(111). The result resembles earlier ones from the graphene/Pt(111) prepared under a similar condition.^{1,2} This observation does not agree entirely with that by using RHHED. The RHHED patterns show the diffraction intensities from $G_{0^{\circ}}$ and $G_{30^{\circ}}$ are comparable, whereas the LEED patterns show that the intensity from $G_{30^{\circ}}$ is stronger than that from $G_{0^{\circ}}$.

Figure S2(a) shows the DFT modelling for $G_{0^{\circ}}$, the corrugated graphene sheet. The upper part of Figure S2 shows the side view through direction $[1\overline{1}00]$ of the graphene and direction $[\overline{1}10]$ of the Pt(111) surface, and the lower part the top view. The side view clearly indicates the carbon (C) atoms are not all at the same level: some are higher and some lower. The graphene sheet corrugated a little, due to its strong interaction with the Pt(111) surface. The strong interaction is also reflected in the graphene *p* band in the antibonding regime. Figure S2(b) compare the DOS of the *p* bands of C atoms from the grown graphene on Pt(111) and free-standing graphene. The *p* band of $G_{30^{\circ}}$ (flat and with no corrugation) resembles that of free-standing graphene, implying a weaker interaction between $G_{30^{\circ}}$ and Pt(111), whereas that of $G_{0^{\circ}}$ differs evidently in the antibonding regime (Energy ≥ 0). As the *p* band in the antibonding regime involves the interaction with Pt(111), the evident difference indicates a strong $G_{0^{\circ}}$ -Pt(111) interaction.

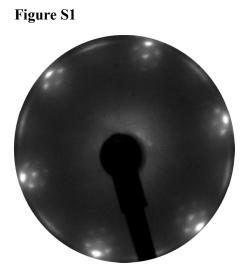
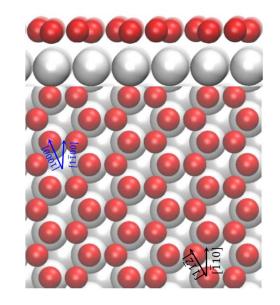
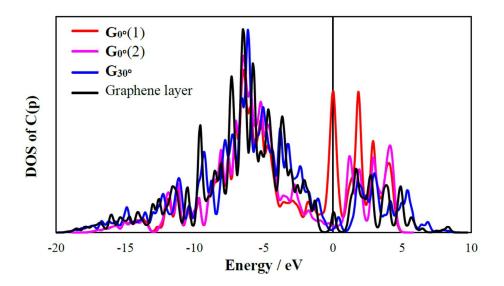

Figure S3 shows the DOS analysis of the *d* bands of the Pt adlayers in $Pt_{0^{o}}/G_{0^{o}}$ and $Pt_{0^{o}}/G_{30^{o}}$. The *d* band center of the Pt adlayer in $Pt_{0^{o}}/G_{0^{o}}$ has a lower energy (-2.91 eV) whereas that in $Pt_{0^{o}}/G_{30^{o}}$ has a higher one (-2.33 eV); the latter is closer to that for an isolated Pt layer (black line in Figure S3). Additionally, the DOS line of the *d* band for the Pt adlayer in $Pt_{0^{o}}/G_{30^{o}}$ also resembles more that for an isolated Pt layer. Both these features suggest that the Pt adlayer-graphene interaction in $Pt_{0^{o}}/G_{0^{o}}$ is stronger.

Figure S4(a) shows optimized structures and induced charges of Pt adlayers on the graphene/Pt(111) surfaces. The Pt adlayers were initially arranged to have a rotation of 30° with respect to the beneath Pt lattice, $Pt_{30^{\circ}}/G_{0^{\circ}}$ (left) and $Pt_{30^{\circ}}/G_{30^{\circ}}$ (right), but became disordered after the structural optimization. Nevertheless, the situation for a Pt adlayer on a free-standing graphene differs. The Pt layer is allowed to adsorb on the free-standing graphene sheet in an ordered structure either commensurate with ($Pt_{0^{\circ}}/G$; 0° in $Pt_{0^{\circ}}$ indicates the angle relative to the graphene lattice) or rotated by 30° with respect to the graphene lattice ($Pt_{30^{\circ}}/G$), as shown in Figure S4(b). The uniformly distributed charges of $Pt_{0^{\circ}}/G$ and $Pt_{30^{\circ}}/G$ from the top views (the lower part Figure S4(b)) also confirmed that the preferred 0° and 30° orientations between graphene and Pt layers are constrained by both their lattices as well as charges, the same as that from $G_{0^{\circ}}$ and $G_{30^{\circ}}$ (Figure 5(a)). The adsorption in either case is weak (-0.19 and -0.10 eV/unit). Such a Pt adlayer-graphene interaction (Pt_{0°}/G or Pt_{30°}/G) exhibits the feature of a van der Waals interaction and resembles that of Pt_{0°}/G_{30°}.

Figure S5 shows the optimized structures (top and side views) of a series of 3D Pt clusters (Pt₃₇, Pt₂₂, Pt₁₀ and Pt₄) on the graphene/Pt(111) substrates, $G_{0^{\circ}}$ and $G_{30^{\circ}}$. The 3D Pt clusters, graphene layers and top few layers of Pt(111) surface were fully relaxed during the optimization. The results, combining with the calculations with the largest cluster (Pt₅₅), shown in Figure 6(c), were employed to examine the growing Pt clusters on the graphene. The optimized structures show that the Pt clusters have similar shapes on both substrates — they have a fcc phase and grow in (111) orientation; on either $G_{0^{\circ}}$ or $G_{30^{\circ}}$, their rotational angles relative to the underlying Pt(111) lattice are 0°, like the Pt adlayers (Figure 6(b)). On the other hand, the Pt clusters on $G_{0^{\circ}}$ have much stronger adsorption energy and induce further corrugation of the graphene surfaces, whereas the weakly adsorbed Pt clusters on $G_{30^{\circ}}$ have greater cluster-graphene distances and rather flat graphene surfaces.

References


- Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H.-J., Epitaxial growth and structural property of graphene on Pt(111). *Applied Physics Letters* 2011, 98 (3), 033101.
- Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N., Controlling graphene corrugation on lattice-mismatched substrates. *Physical Review B* 2008, 78 (7), 073401.

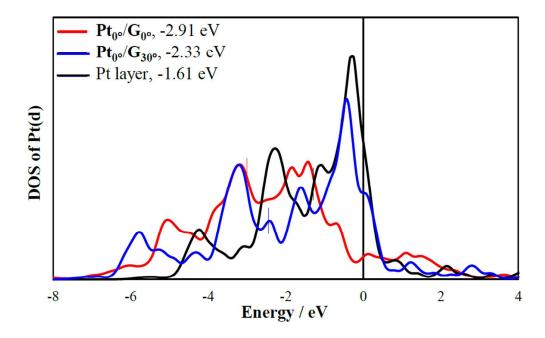
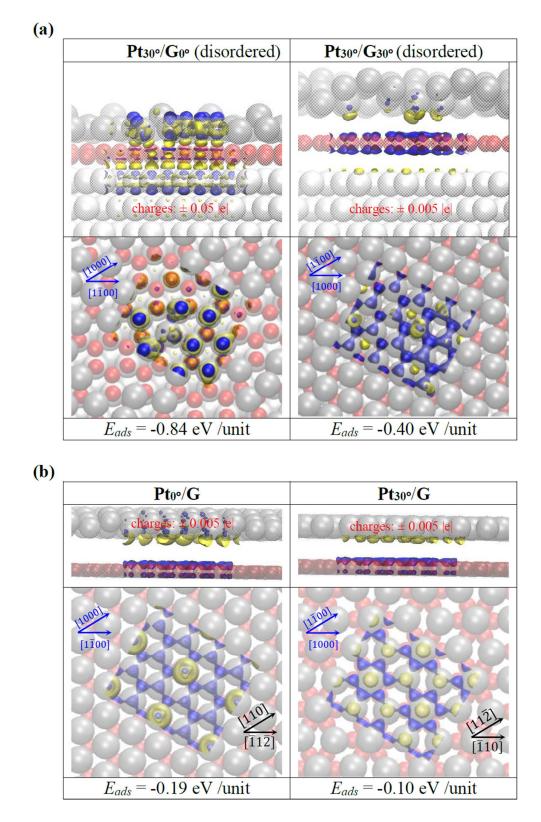
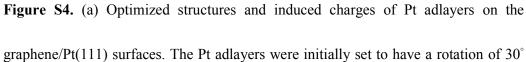

Figure S1 a LEED pattern for a graphene/Pt(111) surface. The graphene was grown on exposing Pt(111) to ethylene (300 L) at 950 K and then annealing the sample at the same temperature for 10 min.

(a)

(b)

Figure S2. (a) Corrugated graphene sheet of $G_{0^{\circ}}$ in the zoom-in top and side views through direction [110] of the graphene and direction [110] of the Pt(111) surface; (b) DOS analysis for the *p* bands of carbon (C) atoms of the grown graphene

on Pt(111). In (a), the red and grey balls denote C and Pt atoms, respectively; the rotations of adsorbed graphene and the Pt(111) surface are noted with blue and black arrows and numbers, respectively. Two types of C are found in G_{0° , red ($G_{0^\circ}(1)$) and purple ($G_{0^\circ}(2)$) lines, and one type of C was found in G_{30° , blue line, referenced to that of the isolated graphene layer (black line).

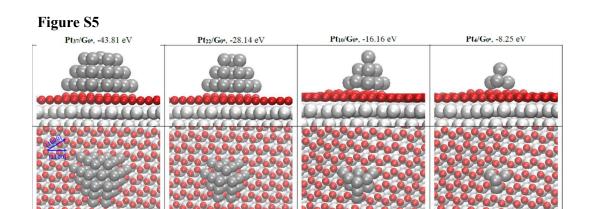

Figure S3. DOS analysis of the *d* bands of the adsorbed Pt layer in $Pt_{0^{\circ}}/G_{0^{\circ}}$ and $Pt_{0^{\circ}}/G_{30^{\circ}}$ is shown in red and blue lines, respectively, referred to that of an isolated Pt layer (black line). Their *d*-band centers are marked with short vertical lines and indicated with numbers in the legend.

Figure S4

with respect to the beneath Pt lattice, $Pt_{30^{o}}/G_{0^{o}}$ (left) and $Pt_{30^{o}}/G_{30^{o}}$ (right), but became disordered after the structural optimization. The orientations of the graphene are noted with blue arrows and numbers. (b) Optimized structures and induced charges of a Pt layer on an isolated graphene sheet. The Pt layer is orderly and uniformly adsorbed in both commensurate and 30°-rotated configurations, $Pt_{0^{o}}/G$ and $Pt_{30^{o}}/G$, respectively. C and Pt atoms are represented with red and white balls, respectively; the orientations of the Pt adlayer and graphene sheet are noted with black and blue, respectively, arrows and numbers. Induced charges are plotted with yellow/blue spheres for +/-0.05 |e| of densely charged $G_{0^{o}}$ and +/- 0.005 |e| of sparsely charged $G_{30^{o}}$.

Figure S5. Top and side views of optimized structures and related E_{ads} of 3D Pt clusters, Pt₃₇, Pt₂₂, Pt₁₀ and Pt₄ (grey balls), on **G**₀• and **G**₃₀• substrates. The rotations of the beneath Pt(111) surface (white balls) are noted in black arrows and numbers; those of the graphene (red balls) are noted in the blue ones.