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Figure S5. Simulated and experimental PXRD patterns for 1. 
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Figure S6. Simulated and experimental PXRD patterns for 3. 
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Figure S7. Simulated and experimental PXRD patterns for 4. 
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Figure S8. IR spectrum of compound 1. 
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Figure S9. IR spectrum of compound 3. 
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Figure S10. IR spectrum of compound 4. 
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Figure S11. Thermogravimetric analysis of compound 1. 

 

100 200 300 400 500 600 700 800
0

20

40

60

80

100

 

W
e

ig
th

(%
)

Tempreature(
o
C)

 

Figure S12. Thermogravimetric analysis of compound 3. 
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Figure S13. Thermogravimetric analysis of compound 4. 

 



S2. Tables 

Table S1.  Selected bond distances (Å) and angles (deg) of uranyl compounds 1-4. 

1 

U(1)-O(4) 1.69(2) U(1)-O(2) 2.47(2) 

U(1)-O(3) 2.48(2) U(1)-O(5) 2.49(3) 

O(4)=U(1)=O(4’) 178.8(1)   

2 

U(1)-O(3) 1.763(18) U(1)-O(4) 1.645(18) 

U(1)-O(1) 2.437(14) U(1)-O(2) 2.439(13) 

U(1)-O(5) 2.497(14) U(1)-O(6) 2.452(13) 

U(1)-O(7) 2.434(12) U(1)-O(8) 2.514(13) 

O(3)=U(1)=O(4) 179.2(7)   

3 

U(1)-O(1) 1.729(18) U(1)-O(2) 2.447(10) 

O(1)=U(1)=O(1’) 180.0(0)   

4 

U(1)-O(1) 1.711(11) U(1)-O(2) 2.471(7) 

U(1)-O(3) 2.466(7) U(1)-O(4) 2.444(7) 

O(1)=U(1)=O(1’) 179.1(6)   

 


