Supporting Information

Thermal Quenching and Dose Studies of X-ray Luminescence in Single

Crystals of Halide Perovskites

Aozhen Xie,^{†,‡,¶} Tien Hoa Nguyen,^{†,‡,¶} Chathuranga Hettiarachchi,^{‡,¶} Marcin E.

Witkowski,[§] Winicjusz Drozdowski,[§] Muhammad Danang Birowosuto,^{*,†,‡,1} Hong

Wang,^{†,‡} and Cuong Dang^{*,†,‡,¶}

†CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore

School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

¶Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore

§Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland

Physics Research Center, The Indonesian Institute of Sciences, Puspitek, Serpong, Banten 15314, Indonesia

E-mail: mbirowosuto@ntu.edu.sg; hcdang@ntu.edu.sg

Figure S1. X-ray diffraction (XRD) pattern of a) MAPbCl₃, b) MAPbBr₃, c) MAPbI₃, and d) CsPbBr₃ powders of single crystals and simulation from published single crystal information.¹⁻⁴ The extra peaks in MAPbI₃ may come from the side product after decomposition in ambient.

Single crystal X-ray diffraction (SCXRD)

Here we demonstrate MAPbBr₃ as an example to show our perovskite crystal samples have the single-crystal quality. The MAPbBr₃ sample was prepared by cleaving a small piece (orange shard with the size of 300 – 500 micrometers) from the as-grown crystal. The SCXRD machine was Bruker Smart APEXII SC-XRD equipped with Mo K_a radiation ($\lambda =$ 0.71 Å). The absorption correction, model construction and model refinement were done with SADABS, SHEXT and SHELEX-2014 software package, respectively. The detail of crystal structure from our sample can be found in our Crystallographic Information File (MAPbBr₃.cif) in supporting information. Our results matches very well with the published MAPbBr₃ data.²

Emprirical Formula	CH ₆ NPbBr ₃
Wavelength, Å	0.71073
Formula Weight, g/mol	478.99
Temperature, K	296(2)
Crysatl system	Cubic
Space group	Pm3m
a, Å	5.932(2)
b, Å	5.932(2)
c, Å	5.932(2)
$\alpha = \beta = \gamma, \circ$	90
Volume, Å ³	208.7(3)
Z	1
Density (calculated), g/cm ³	3.811
Aborption coefficient, /mm	34.64
F(000)	206
Crystal size, mm ³	0.44 * 0.36 * 0.3
θ range, °	5.96 to 34.64
Index ranges	$-5 \le h \le 8, -9 \le k \le 4, -4 \le l \le 5$
Completeness	100 %
Final R index (all data)	0.0418
Largest diff. peak and hole, e/ $Å^3$	1.682, -1.676

Table S1. Crystallograppic data for α -MAPbBr₃ at ambient pressure

Proof of Bi³⁺ doping in MAPbBr₃

Figure S2. Photoluminescence spectra of undoped, 1/100 and 1/10 Bi-doped MAPbBr₃ at room temperature. The absence of PL in 1/100 and 1/10 doped samples verify the Bi doping.

Table 52. Four-point probe measurement for BF-doped WAT obly	
Sample	Sheet resistance
Undoped	No reading (too large)
1/100	$4.2 \pm 1.0 \text{ M}\Omega/\text{sqr}$
1/10	$0.208 \pm 0.082 \text{ M}\Omega/\text{sqr}$

Table S2. Four-point probe measurement for Bi-doped MAPbBr₃

The decrease in sheet resistance upon higher Bi concentration also confirms the successful Bi doping.

Thermoluminescence (TL) spectrum of 1/100 Bi-doped MAPbBr₃

Figure. S3. TL spectrum of 1/100 Bi-doped MAPbBr₃. Traps can be determined from the afterglow emission.⁵ Such afterglow partly verifies the possible polaron traps caused by the Bi doping since there is no afterglow in undoped MAPbBr₃.

References

1. Chen, K.; Deng, X.; Goddard, R.; Tüysüz, H., Pseudomorphic Transformation of Organometal Halide Perovskite Using the Gaseous Hydrogen Halide Reaction. *Chem. Mater.* **2016**, *28*, 5530-5537.

2. Jaffe, A.; Lin, Y.; Beavers, C. M.; Voss, J.; Mao, W. L.; Karunadasa, H. I., High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on Their Electronic and Optical Properties. *ACS Cent. Sci.* **2016**, *2*, 201-209.

3. Yamada, Y.; Yamada, T.; Phuong, L. Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y., Dynamic Optical Properties of Ch3nh3pbi3 Single Crystals as Revealed by One- and Two-Photon Excited Photoluminescence Measurements. *J. Am. Chem. Soc.* **2015**, *137*, 10456-10459.

4. Stoumpos, C. C., et al., Crystal Growth of the Perovskite Semiconductor Cspbbr3: A New Material for High-Energy Radiation Detection. *Cryst. Growth Des.* **2013**, *13*, 2722-2727.

5. Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C., X-Ray Scintillation in Lead Halide Perovskite Crystals. *Sci. Rep.* **2016**, *6*, 37254.