Supporting Information

Nafion-Mediated Liquid-Phase Exfoliation of Transition Metal Dichalcogenides and Direct Application in Hydrogen Evolution Reaction

Nam Khen Oh,[†] Hoon Ju Lee,[§] Keunsu Choi,[§] Jihyung Seo,[†] Ungsoo Kim,[†] Junghyun Lee,[†] Yunseong Choi,[†] Seungon Jung,[†] Jun Hee Lee,[§] Hyeon Suk Shin,^{*,‡,§} and Hyesung Park^{*,†}

[†]Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronic Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

[‡]Department of Chemistry, School of Natural Science, Low Dimensional Carbon Materials Center, Center for Multidimensional Carbon Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

[§]Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

*Corresponding authors

E-mail address: shin@unist.ac.kr, hspark@unist.ac.kr

Table of Contents

1. Supporting figures and table	S2
Figure S1 Dispersion stability of the <i>N</i> -MoS ₂	S2
Figure S2 STEM-EDS elemental mapping of N_2 -MoS ₂	S3
Figure S3 Histogram of thickness distribution of N_x -MoS ₂ (<i>x</i> is 0.2, 1, 3, 4, 5, and 6 mL)	S4
Figure S4 HRTEM images of N_x -MoS ₂ (x is 1, 2, 3, and 4 mL)	S5
Figure S5 Distribution of Nafion cluster size with varying Nafion concentrations	S6
Figure S6 Optical analysis of MoS_2 in IPA, ACN, and N_2 -MoS ₂	S7
Figure S7 Histogram of thickness distribution in MoS ₂ exfoliated from IPA and ACN	S8
Table S1 Summary of HER performance of MoS2 exfoliated from various solvents	S9

1. Supporting figures and table

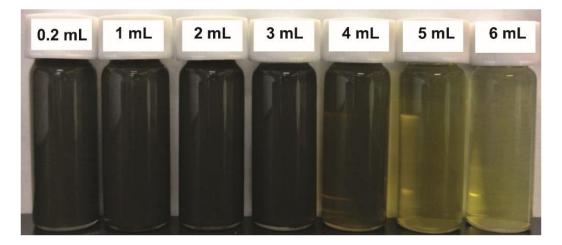


Figure S1. Photograph of the *N*-MoS₂ dispersion after 300 days of storage in ambient condition.

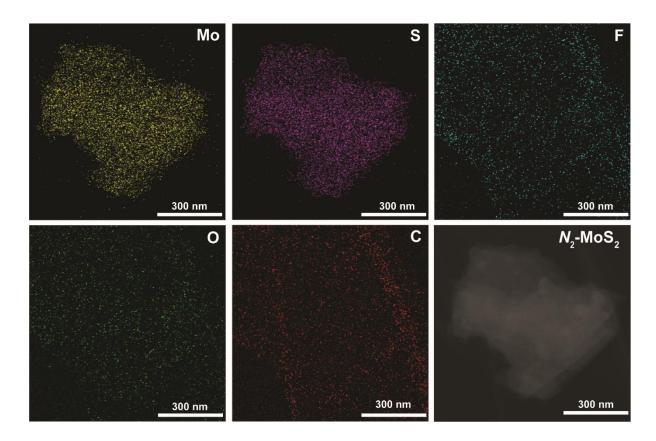
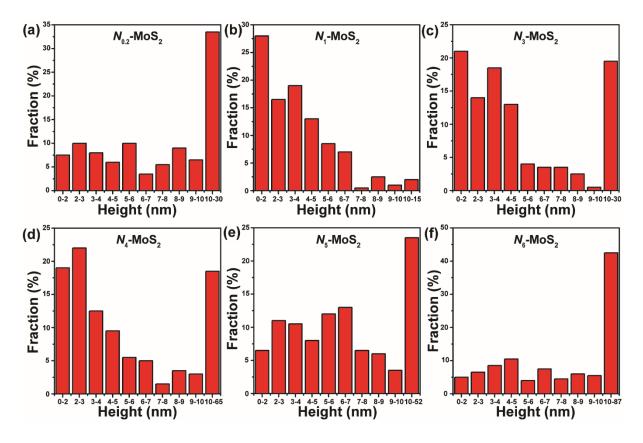
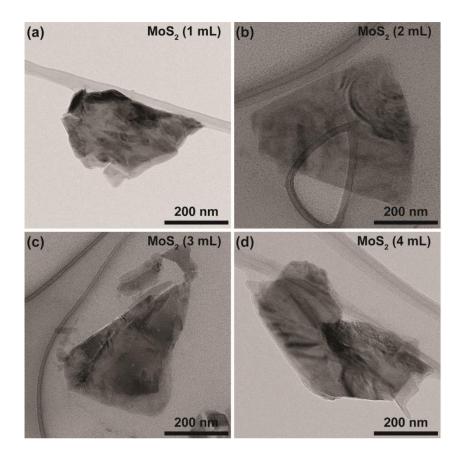
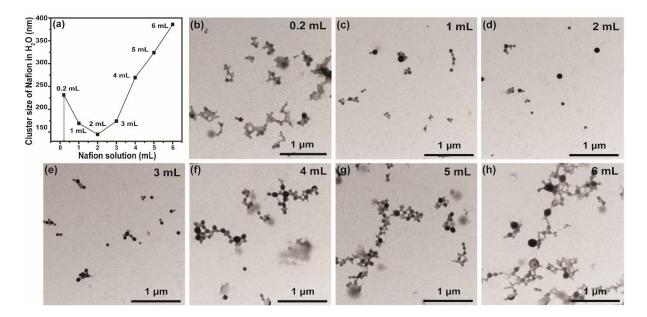
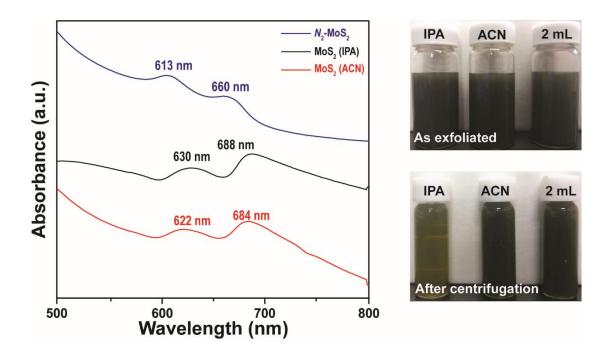



Figure S2. STEM-EDS Elemental mapping images of Mo, S, F, O, and C from N_2 -MoS₂.

Figure S3. Histograms of thickness distribution in N_x -MoS₂ (x = volume of Nafion in mL) measured from over 200 individual flakes with varying Nafion concentrations ((a) x = 0.2, (b) x = 1, (c) x = 3, (d) x = 4, (e) x = 5, and (f) x = 6 mL).

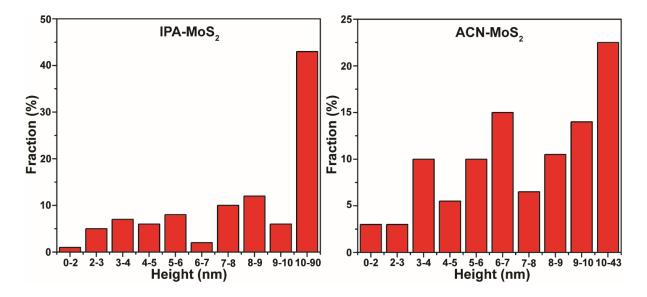

Figure S4. TEM images of N_x -MoS₂ flakes with various Nafion concentrations ((a) x = 1, (b) x = 2, (c) x = 3, and (d) x = 4 mL) showing exfoliated MoS₂ flakes in lateral size of several hundrednanometer with thickness of few-layer range.

Figure S5. Distribution of Nafion cluster size with varying Nafion concentrations. (a) Average size of Nafion clusters obtained from DLS analysis and corresponding (b-h) FETEM images.

Figure S6. Optical absorption spectra of MoS_2 flakes exfoliated from IPA and ACN solutions compared with that of N_2 -MoS₂, and digital images of the corresponding MoS_2 dispersion before and after the centrifugation.

Figure S7. Histograms of thickness distribution in MoS_2 flakes exfoliated from IPA and ACN solutions, which is measured from over 200 individual flakes.

Catalyst (N _x -MoS ₂)	Overpotential @ 10 mA cm ⁻² (mV, η_{10})	Tafel slope (mV/dec)
$N_{0.2}$ -MoS ₂	_	125
N_1 -MoS ₂	658	113
N_2 -MoS ₂	609	106
N_3 -MoS ₂	660	112
N_4 -MoS ₂	734	118
N_5 -MoS ₂	745	120
N_6 -MoS ₂	745	120
IPA-MoS ₂	_	183
ACN-MoS ₂	_	163
Pt/C	42	39

Table S1. Summary of overpotential and Tafel slope of N_x -MoS₂ from Figure 6. '-' denotes the overpotential which cannot be defined for the given voltage range measurement.