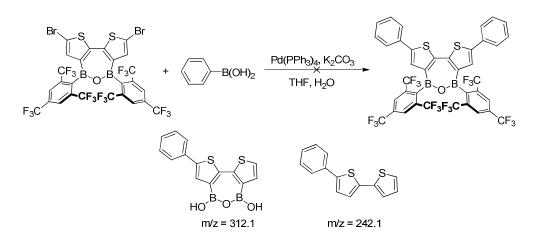
Supporting Information for

An Air-Stable Organoboron Compound,

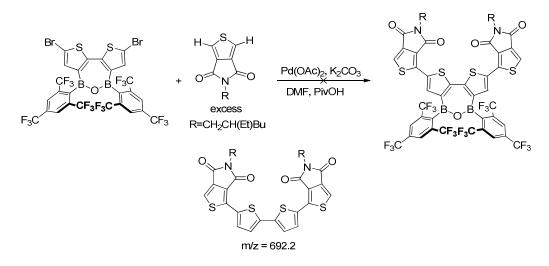
Dithienooxadiborepine: Preparation and Functionalization

Qifan Yan, * Mengxuan Yin, Cheng Chen, Yuankun Zhang

Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.


R. China

E-mail: yanqifan@ecust.edu.cn

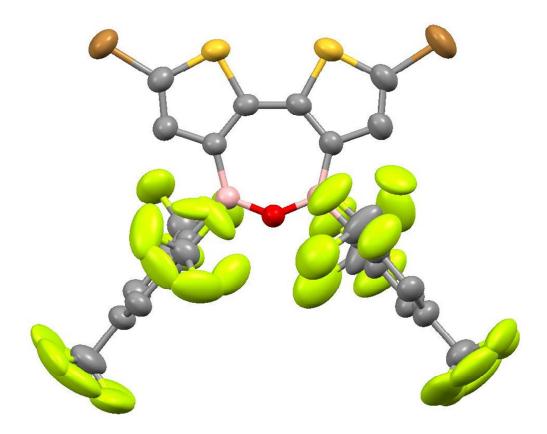

Table of Contents

I. Synthetic Trials	······S2
II. X-Ray Crystallography	······S3
III. Photophysical and Electrochemical Measurements	······S7
IV. DFT Calculations	······S10
NMR Charts	······S19
Mass Spectra	······S32
References	S34

I. Synthetic Trials

Trial of Suzuki reaction. No desired product was found in the reaction mixture. In the mass spectrum of crude reaction mixture, peaks at m/z = 312.1 and 242.1 were observed. Fragmented structures with such m/z values were proposed.

Trial of C-H arylation. No desired product was found in the reaction mixture. In the mass spectrum of crude reaction mixture, a peak at m/z = 692.2 was observed. Fragmented structure with such m/z values was proposed.


II. X-Ray Crystallography

Single crystals of **4**, **5A** and **5B** suitable for X-ray crystal analysis were obtained by slowly evaporation of their solution in ethyl acetate, petroleum ether, and DCM/heptane, respectively. Diffraction data of **4**, **5A** and **5B** were collected at 296 K, 173 K, and 173 K, respectively, on a Bruker SMART APEX single crystal CDD X-ray diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å). The crystal data for these compounds are summarized in Table S1. The structures were solved with the SHELX-97 program and refined by the full-matrix least-squares on F². Crystallographic data for the structures of **4**, **5A**, and **5B** have been deposited with the Cambridge Crystallographic Data Center as supplementary publication CCDC1826019, 1826020, and 1826021, respectively.

Compound	4	5A	5B
Formula	$C_{26}H_6B_2Br_2F_{18}OS_2$	$C_{38}H_{16}B_2F_{18}OS_2$	$C_{34}H_{12}B_2F_{18}OS_4$
Formula weight	921.87	916.25	928.30
(Mw)			
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	P 21/c	Pbca	P 21/c
a[Å]	11.7222(5)	9.2316(3)	15.4128(8)
b[Å]	15.8690(6)	24.6720(8)	15.3848(8)
c[Å]	17.8469(7)	32.5936(10)	16.3220(8)
α[°]	90	90	90
β[°]	107.1070(10)	90	111.557(2)
γ[°]	90	90	90
$V[Å^3]$	3173.0(2)	7423.6(4)	3599.6(3)
Z	4	8	4
$d_{calcd} [g cm^{-3}]$	1.930	1.640	1.713
Reflections:	67844/5896	39510/7272	78388/7039

Table S1. Crystal structure and refinement data for 4, 5A, and 5B.

total/independent			
R _{int}	0.0501	0.0329	0.0528
Final R1 and wR2	0.0480, 0.1150	0.0526, 0.1409	0.0427, 0.1137
Temperature [K]	296	173	173
Crystal size [mm ³]	0.200 x 0.170 x	0.200 x 0.170 x	0.200 x 0.170 x
	0.130	0.130	0.130
θ range for data	1.818 to 25.496	2.500 to 25.999	1.942 to 26.000
collection [^o]			

Figure S1. Single crystal structure of **4** (displacement ellipsoid set at 50% probability level, hydrogens omitted)

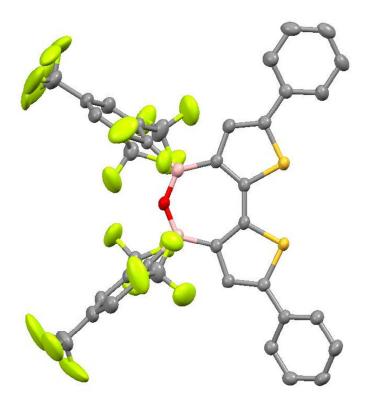


Figure S2. Single crystal structure of 5A (displacement ellipsoid set at 50% probability level, hydrogens omitted)

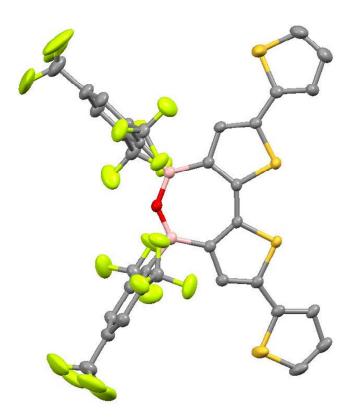


Figure S3. Single crystal structure of 5B (displacement ellipsoid set at 50% probability level, hydrogens omitted)

III. Photophysical and Electrochemical Measurements

Tetrahydrofuran (THF) and toluene were distilled over sodium and benzophenone prior to use. UV-Vis absorption spectra were recrded on a Varian Cary 500 spectrophotometer using the absorption mode in a 1-cm quartz cell. Fluorescence emission spectra were recorded in 1-cm quartz cuvette on a Horiba Jobin Yvon FluoroMax-4 spectrofluorometer. Fluorescence quantum yield was determined using absolute method by a calibrated integrating sphere system on a Horiba Jobin Yvon FluoroMax-4 spectrofluorometer.

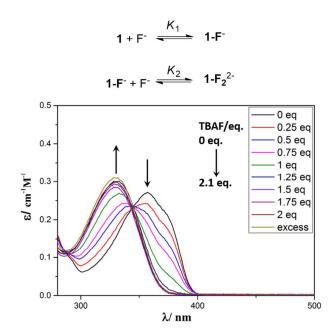
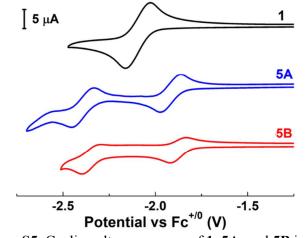
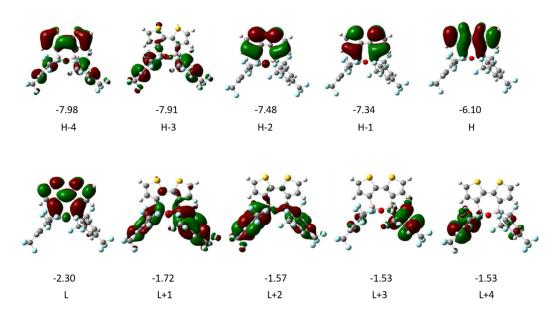


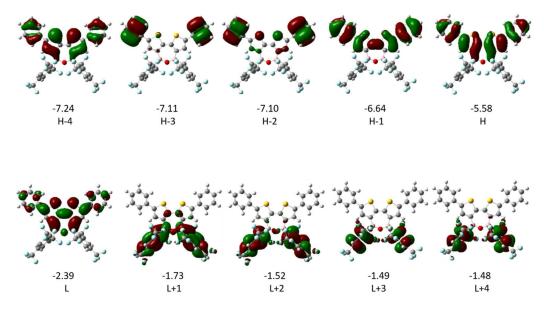
Figure S4. UV-vis absorption titration of TABF (tetrabutylammonium fluoride) to compound 1 (20 μ M) in THF (arrows indicated change of direction upon adding TABF)

We examined fluoride ion (F) binding properties of compound **1** by carrying out TABF (tetrabutylammonium fluoride) titration experiment (Figure S4). Upon adding TABF, the original absorption peak at 359 nm of **1** decreased accompanied by the rise of a new absorption band around 330 nm, evidencing coordination of F⁻ to the boron centers. The spectral change occurred with a *quasi*-isobestic point at 344 nm and became saturated after ca. 1.5 eq. of F⁻. As there are two boron centers in **1**, two F⁻

binding ability had been expected. However, Job plot results were inconclusive to determine a dominant binding species (1-F⁻ or 1-F₂²⁻). Such results implied that two boron centers in 1 can coordinate to F⁻, sequentially, but with attenuated association constant ($K_2 < K_1$). We think after the first F⁻ coordination, the oxadiborepine moiety became twisted and negative charged, so affinity to the second F⁻ was weakened.

Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) was performed on a CHI610E electrochemical workstation with three electrodes configuration, using Ag/AgCl as the reference electrode, a Pt plate as the counter electrode, and a glassy carbon as the working electrode. Samples were dissolved in THF with 0.1 M Bu_4NPF_6 as the supporting electrolyte. Half-wave potentials were determined by DPV.


Figure S5. Cyclic voltammograms of 1, 5A, and 5B in THF

IV. DFT Calculations

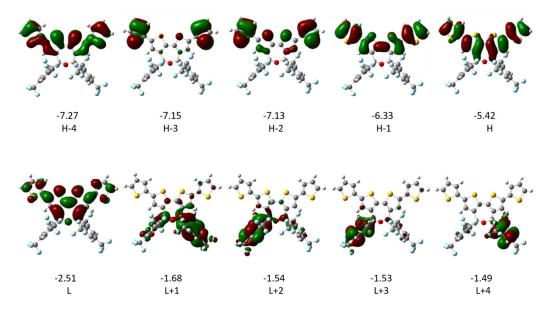

DFT calculations were carried out on compounds **1**, **5A**, and **5B** at theory level of B3LYP/6-31G(d,p) for geometry and frontier molecular orbital (FMO) energy level, and B3LYP/6-311G+(d,p) for nuclear independent chemical shift (NICS) and TD-DFT calculations. Quantum-chemical calculation was performed with the Gaussian09^{S1} package and the orbital pictures were prepared using Gaussview.^{S2}

Figure S6. DFT calculated FMO distributions of **1** (Isovalue set as 0.02; H: HOMO; L: LUMO; energy levels in eV)

Figure S7. DFT calculated FMO distributions of **5A** (Isovalue set as 0.02; H: HOMO; L: LUMO; energy levels in eV)

Figure S8. DFT calculated FMO distributions of **5B** (Isovalue set as 0.02; H: HOMO; L: LUMO; energy levels in eV)

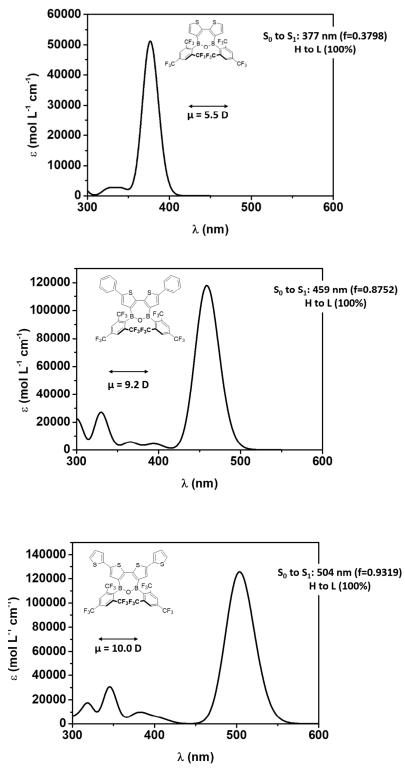


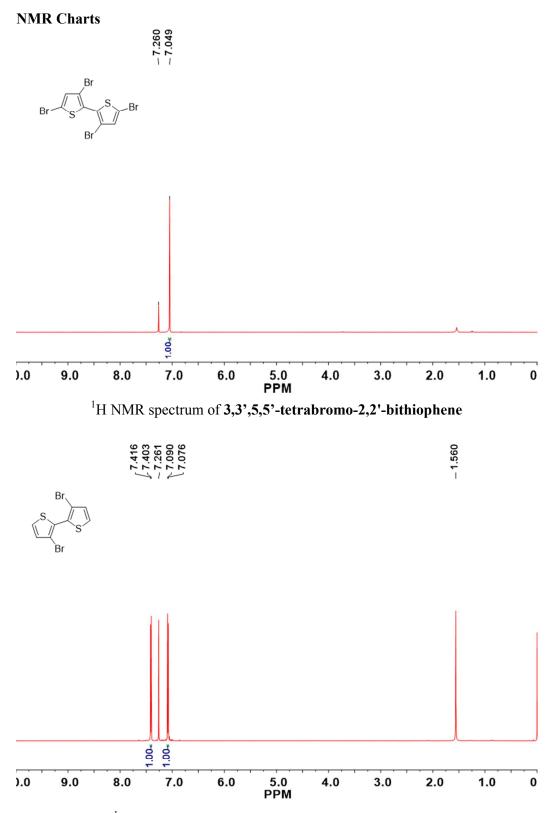
Figure S9. TD-DFT calculated UV-visible absorption spectra of 1, 5A, and 5B

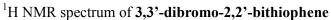
Table S2. Cartesian coordinates of optimized structure of **1** (Sum of electronic and zero-point Energies of **1** is -3713.902233 Hartreee)

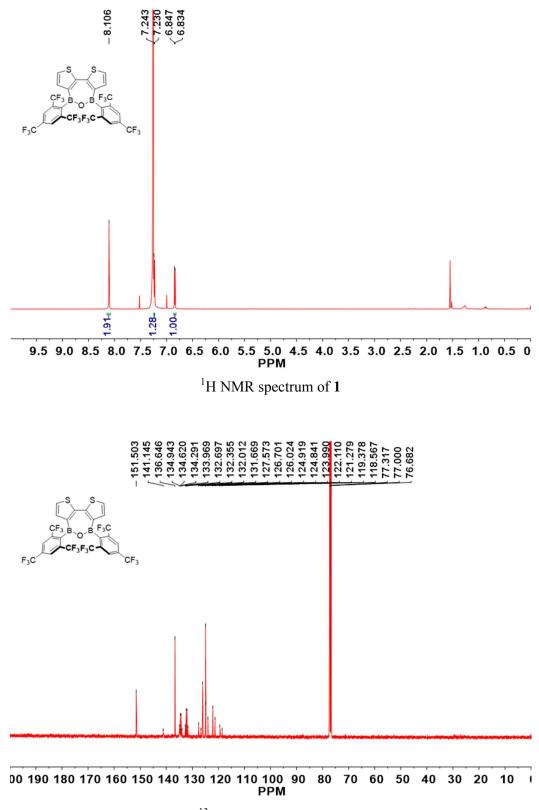
С	0.767248	3.483475	0.363283
С	-0.66416	3.516193	0.160424
С	-1.57068	2.459204	-0.00291
В	-1.24309	0.955712	-0.01383
0	0.016924	0.428343	0.027155
В	1.28728	0.91288	0.136136
С	1.650975	2.39547	0.35006
S	-1.49622	5.060897	0.115028
С	-3.034	4.29803	-0.11277
С	-2.91544	2.942639	-0.15384
С	3.00212	2.819371	0.592654
С	3.146954	4.159257	0.784376
S	1.627609	4.981713	0.676145
С	-2.40733	-0.14609	-0.10578
С	2.415928	-0.22613	0.064031
С	-2.8776	-0.62996	-1.34402
С	-3.82086	-1.65335	-1.4299
С	-4.32834	-2.2281	-0.26752
С	-3.90541	-1.76159	0.972946
С	-2.9618	-0.73553	1.045986
С	2.637191	-1.10658	1.142357
С	3.592191	-2.12094	1.085163
С	4.35209	-2.29406	-0.06898
С	4.147594	-1.45752	-1.1621
С	3.19432	-0.44096	-1.08937
С	-2.43605	0.021704	-2.63435
С	-2.63372	-0.2114	2.424995
С	-5.2923	-3.38324	-0.3517
С	3.035263	0.456452	-2.29517
С	1.788707	-1.01336	2.391225
С	5.424418	-3.35189	-0.11309
F	-3.54004	0.714806	2.81445
F	-1.42021	0.383595	2.478532
F	-2.64518	-1.19024	3.351422
F	2.415071	-1.53995	3.464365
F	1.484723	0.271171	2.696182
F	-2.58556	-0.7967	-3.69502
F	-1.13786	0.401564	-2.59781
F	-6.14799	-3.39254	0.692482
F	-6.02471	-3.33812	-1.48476

F	-3.16197	1.136846	-2.88621
F	-4.64347	-4.5685	-0.34405
F	3.40052	-0.1635	-3.43535
F	1.752048	0.863146	-2.45099
F	6.60209	-2.87768	0.351868
F	5.100314	-4.41979	0.64597
F	3.792416	1.572194	-2.19124
F	5.641154	-3.78934	-1.37115
F	0.619821	-1.67377	2.249315
Н	-3.92582	4.901806	-0.20636
Н	-3.76349	2.284702	-0.29794
Н	3.838438	2.131901	0.620353
Н	4.049838	4.719559	0.983248
Н	-4.15767	-1.99997	-2.3991
Н	-4.30674	-2.19345	1.882169
Н	3.737092	-2.77716	1.934639
Н	4.715361	-1.60435	-2.07277

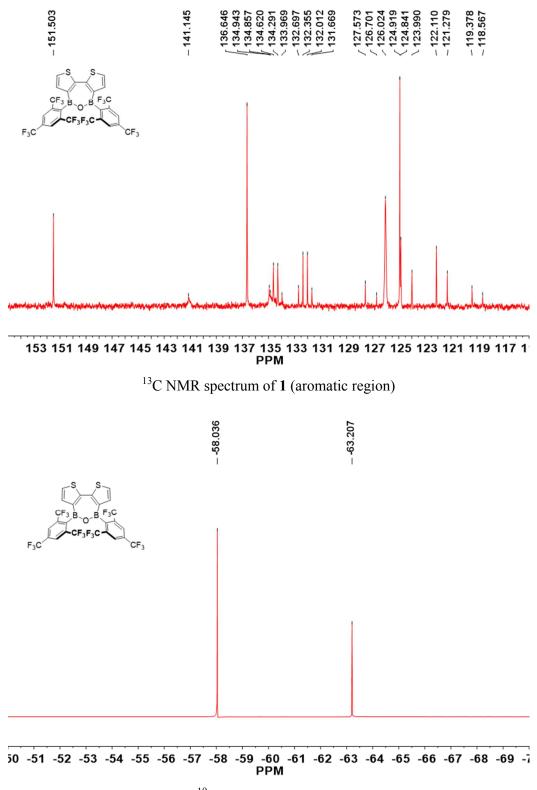
Table S3. Cartesian coordinates of optimized structure of **5A** (Sum of electronic and zero-point Energies of **5A** is -4175.873407 Hartreee)

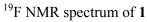

С	0.718272	2.513281	0.033025
С	-0.72166	2.515201	-0.03097
С	-1.6276	1.44251	-0.0344
В	-1.27511	-0.05602	-0.00189
0	-0.00556	-0.55734	-0.00832
В	1.265424	-0.05908	-0.00781
С	1.621648	1.438358	0.032146
S	-1.57435	4.046145	-0.12558
С	-3.14164	3.264929	-0.14935
С	-2.97984	1.903713	-0.10141
С	2.974992	1.896002	0.101882
С	3.140052	3.25662	0.155721
S	1.574589	4.041664	0.134789
С	-2.40425	-1.195	-0.01592
С	2.391538	-1.20095	0.006454
С	-2.68085	-1.92836	-1.18778
С	-3.64054	-2.93929	-1.21719
С	-4.34706	-3.2592	-0.06015
С	-4.08398	-2.57332	1.12155
С	-3.12598	-1.55856	1.136318
С	2.655166	-1.94429	1.17476
С	3.607742	-2.96228	1.203977
С	4.320346	-3.27837	0.049937
С	4.068599	-2.58361	-1.12935
С	3.117965	-1.5623	-1.14382
С	-1.89108	-1.67217	-2.45267
С	-2.90306	-0.82554	2.439235
С	-5.3466	-4.38676	-0.07644
С	2.900424	-0.82625	-2.44603
С	1.851681	-1.69994	2.433296
С	5.39244	-4.33639	0.089328
F	-3.66348	0.290255	2.521496
F	-1.6135	-0.43626	2.580765
F	-3.21088	-1.59136	3.505214
F	2.516468	-2.09896	3.538042
F	1.557493	-0.38712	2.595625
F	-2.5627	-2.07086	-3.55326
F	-0.71205	-2.32895	-2.44558
F	-6.30201	-4.21854	0.862137
F	-5.95997	-4.48699	-1.27512

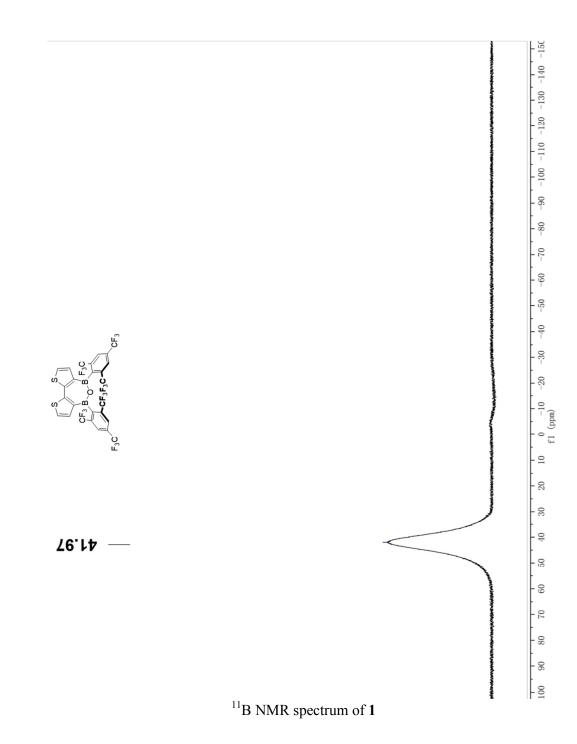

F	-1.608	-0.35644	-2.61124
F	-4.75425	-5.57675	0.166806
F	3.210584	-1.59014	-3.51265
F	1.612095	-0.43429	-2.59122
F F	6.593932		
		-3.80726	0.413769
F	5.118845	-5.28911	1.005221
F	3.66304	0.288437	-2.52299
F	5.536679	-4.94354	-1.10728
F	0.677877	-2.36577	2.412763
С	4.383584	4.030729	0.231339
С	5.539875	3.455694	0.791085
С	6.731379	4.172423	0.853613
С	6.793439	5.481933	0.372003
С	5.651563	6.067414	-0.17679
С	4.460138	5.349889	-0.25031
С	-4.38345	4.042154	-0.22128
С	-4.4574	5.358853	0.267446
С	-5.6473	6.079255	0.197455
С	-6.79024	5.499149	-0.35484
C	-6.73074	4.192158	-0.84356
С	-5.54075	3.472614	-0.78454
Н	-3.82558	1.22803	-0.07897
Н	3.819065	1.218342	0.076913
Н	-3.84198	-3.46862	-2.1405
Н	-4.61978	-2.82652	2.028173
Н	3.787051	-3.51065	2.120647
Н	4.596468	-2.8462	-2.03798
Н	5.494505	2.450502	1.197677
Н	7.611613	3.710849	1.291224
Н	7.722425	6.041156	0.426809
Н	5.689181	7.083629	-0.55768
Н	3.586461	5.808234	-0.70451
Н	-3.58288	5.812873	0.724369
Н	-5.68292	7.093471	0.583818
Н	-7.71803	6.060602	-0.40692
Н	-7.61179	3.734866	-1.28403
Н	-5.49722	2.469598	-1.19668

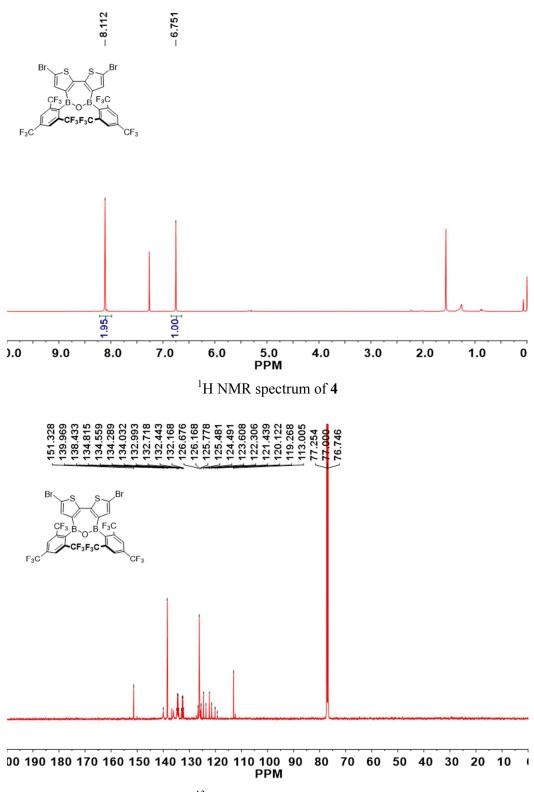

Table S4. Cartesian coordinates of optimized structure of **5B** (Sum of electronic and zero-point Energies of **5B** is -4817.444896 Hartreee)

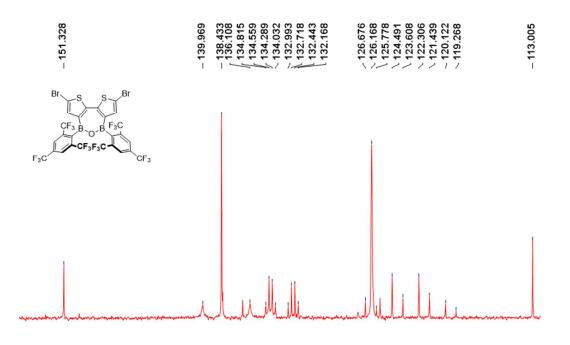
C C	0.751022	2.510971	0.133318
C	-0.68376		
		2.528341	0.031125
C	-1.5968	1.462411	-0.0118
B	-1.25847	-0.04094	0.030665
0	0.006509	-0.55695	-0.00829
B	1.277835	-0.06302	-0.03566
С	1.644763	1.428776	0.093543
S	-1.52363	4.070628	-0.03544
С	-3.09573	3.297298	-0.08699
С	-2.94452	1.93177	-0.07255
С	2.99957	1.866854	0.206066
С	3.174536	3.223416	0.33522
S	1.616971	4.027217	0.332207
С	4.398653	3.982555	0.471407
С	-4.30745	4.085558	-0.14918
С	-2.41712	-1.15085	0.084056
С	2.406542	-1.19506	-0.17374
С	-3.04117	-1.62976	-1.08862
С	-4.00169	-2.63852	-1.0582
С	-4.37364	-3.20757	0.158535
С	-3.78691	-2.75711	1.334601
С	-2.82392	-1.74534	1.291158
С	2.732351	-2.0382	0.907157
С	3.688677	-3.0475	0.796964
С	4.342542	-3.25328	-0.41454
С	4.032718	-2.45369	-1.51121
С	3.081233	-1.44122	-1.38555
С	-2.73695	-1.0016	-2.4296
С	-2.27509	-1.30903	2.629854
С	-5.36723	-4.34013	0.186847
С	2.806386	-0.5848	-2.60055
С	1.99652	-1.91309	2.222677
C	5.414396	-4.30622	-0.53028
F	-3.25033	-0.77928	3.40206
F	-1.30539	-0.37258	2.517446
F	-1.75691	-2.34882	3.314354
F	2.724137	-2.39291	3.252723
F	1.697435	-0.62341	2.510206
F	-2.98531	-1.84586	-3.45109
F	-1.44262	-0.61782	-2.52978

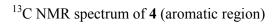

F	-6.01726	-4.40273	1.367746
F	-6.29329	-4.21008	-0.78711
F	-3.49069	0.103352	-2.63644
F	-4.76112	-5.53345	0.000842
F	3.083882	-1.23665	-3.74784
F	1.507838	-0.20143	-2.65997
F	5.233282	-5.30245	0.361615
F	5.438295	-4.85528	-1.76321
F	3.550739	0.543579	-2.59594
F	6.641915	-3.7867	-0.30404
F	0.831478	-2.5951	2.206671
С	-4.48783	5.422546	0.138492
С	-5.82971	5.862772	-0.02971
С	-6.66806	4.863949	-0.44381
S	-5.82732	3.362187	-0.6493
S	5.908902	3.190296	0.88985
С	6.771593	4.692878	0.835013
С	5.947423	5.740194	0.525823
С	4.598787	5.338764	0.318699
Н	-3.79506	1.261252	-0.09703
Н	3.838288	1.181782	0.172182
Н	-4.45854	-2.97916	-1.97942
Н	-4.07853	-3.18755	2.285929
Н	3.916387	-3.67416	1.650371
Н	4.517162	-2.62696	-2.46452
Н	-3.68317	6.064217	0.479622
Н	-6.15828	6.878485	0.156426
Н	-7.72895	4.916747	-0.64424
Н	7.833507	4.709407	1.036175
Н	6.29065	6.764584	0.441636
Н	3.803212	6.023566	0.047309

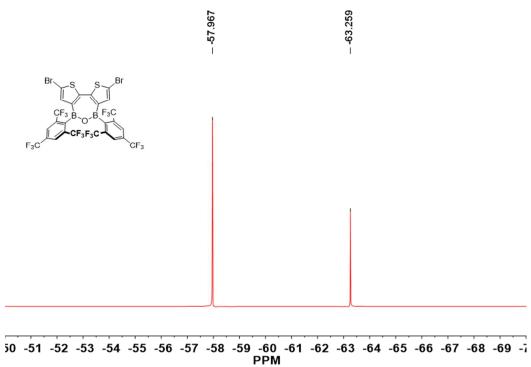


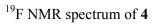


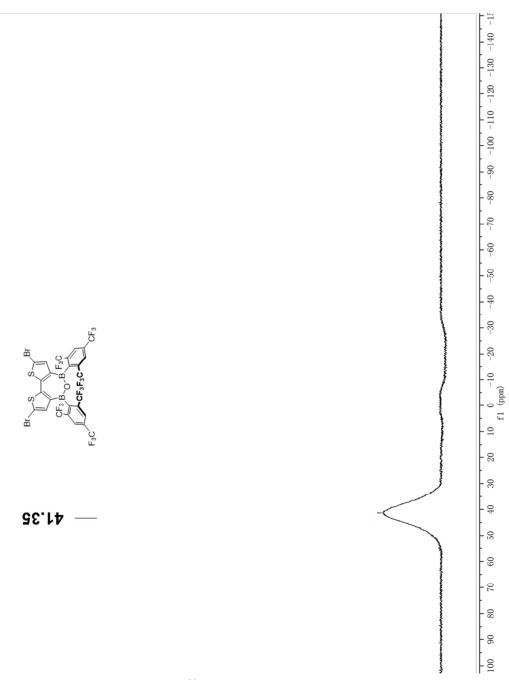


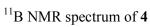


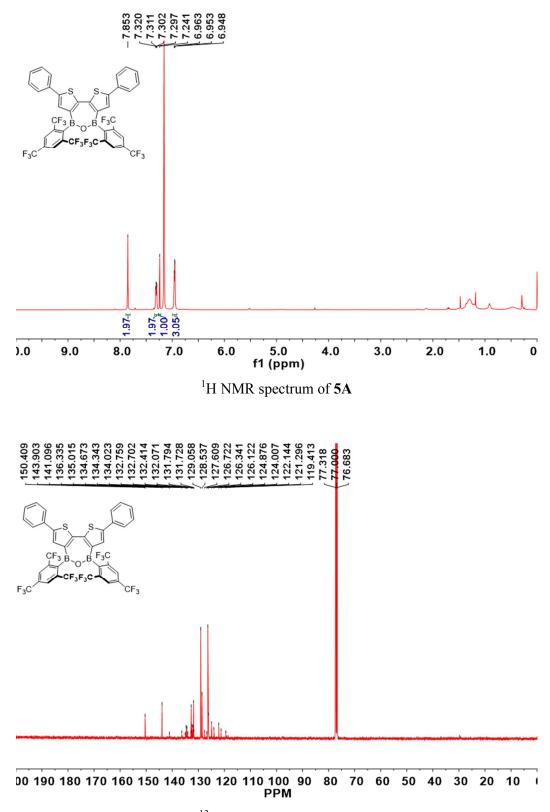


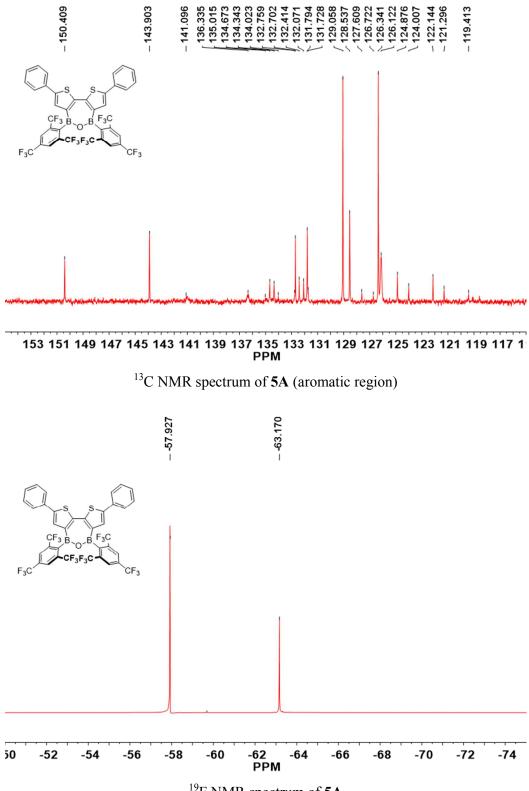


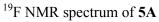

¹³C NMR spectrum of **4**

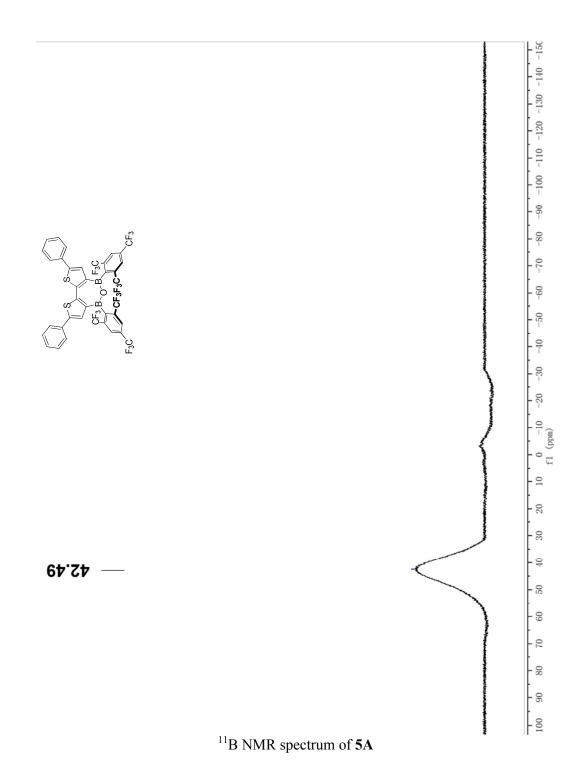


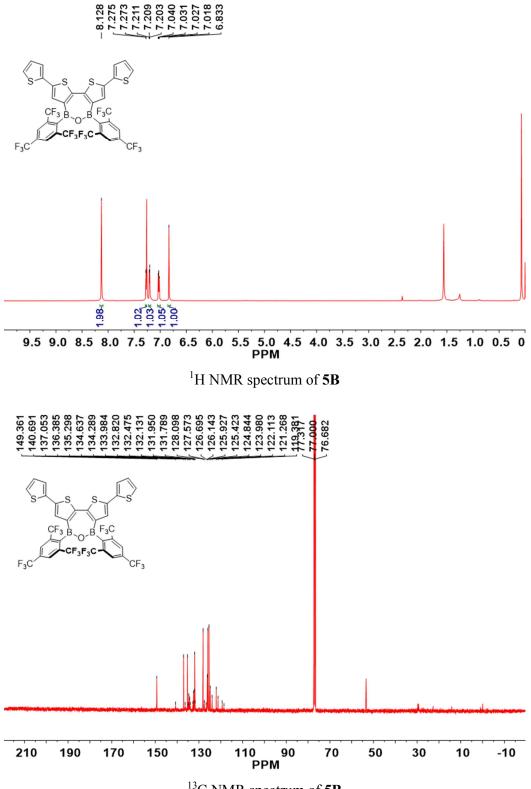

154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 PPM



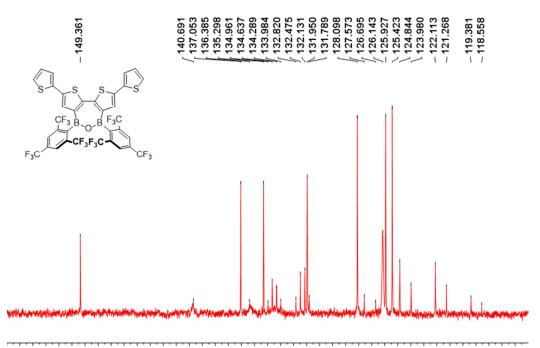


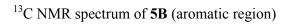


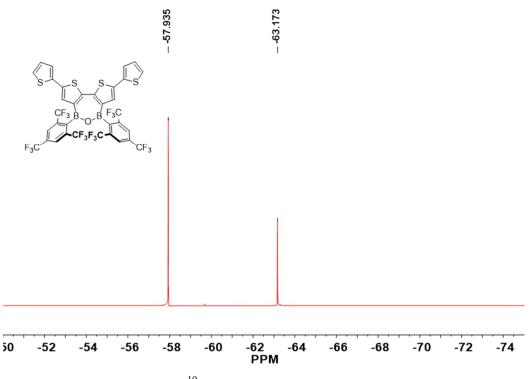




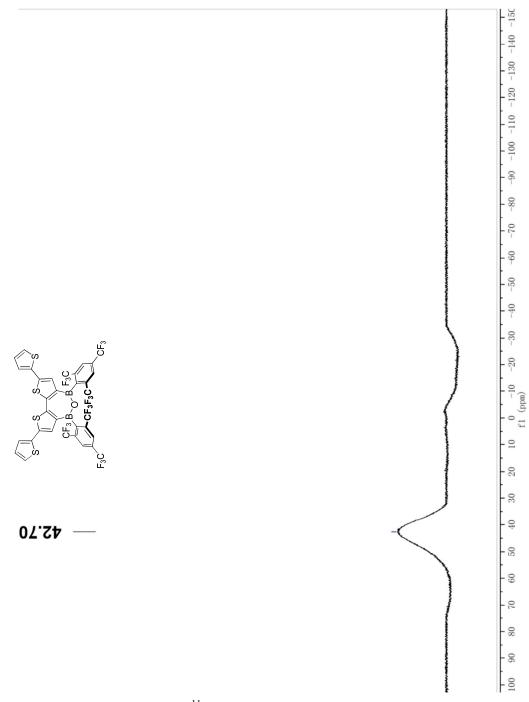
¹³C NMR spectrum of **5**A



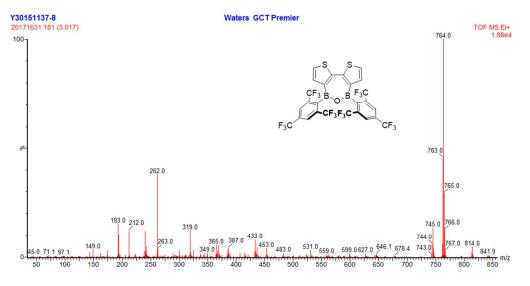




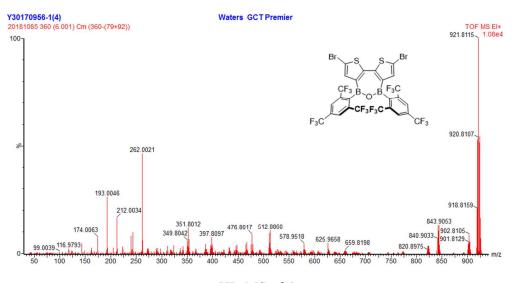
¹³C NMR spectrum of **5B**



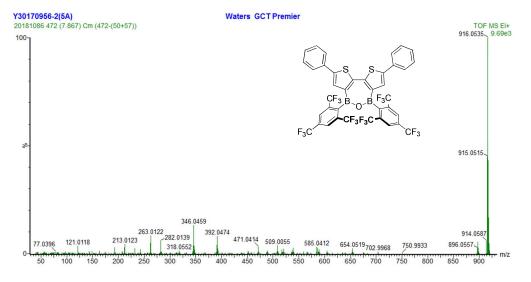
154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 PPM

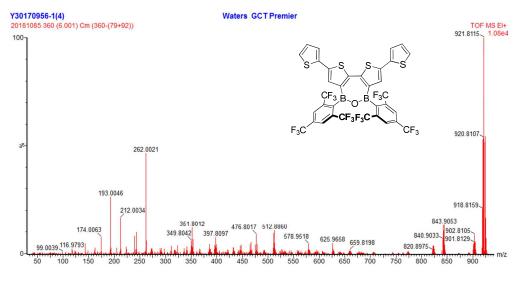


¹⁹F NMR spectrum of **5B**



¹¹B NMR spectrum of **5B**


Mass Spectra



HR-MS of 4

HR-MS of 5B

References:

S1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., *Gaussian 09, Revision D.01*, Wallingford CT, 2013.

S2. Dennington, R. II ; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland,

R. GaussView, Version 3.09; Semichem, Inc.: Shawnee Mission, KS, 2003.