Supporting Information

Hierarchical Arrays of Cesium Lead Halide Perovskite Nanocrystals through Electrophoretic Deposition

Vikash Kumar Ravi[#], Rebecca A. Scheidt, Jeffrey DuBose and Prashant V. Kamat*

¹Radiation Laboratory and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

*Address correspondence to this author: pkamat@nd.edu

Permanent Address: Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India

Photoluminescence Quantum Yield Measurement

Photoluminescence quantum yield (PLQY) at room temperature of PbSO₄-Oleate capped CsPbBr₃ was calculated by taking Fluorescein dye as reference dissolved in 0.1 M NaOH. The nanocrystals were dispersed in hexane. The PLQY of PbSO₄-Oleate capped CsPbCl₃ and CsPbI₃ were then calculated relative to that of CsPbBr₃. To calculate the PLQY the following equation was used:

$$QY_s = QY_{ref} \cdot \frac{F_s}{F_{ref}} \cdot \frac{A_{ref}(\lambda_{exc})}{A_s(\lambda_{exc})} \cdot \frac{n_s^2}{n_{ref}^2}$$

Where,

 QY_s = Unknown PL quantum yield of sample.

 QY_{ref} = Known PL quantum yield of reference.

 F_s = Integrated PL intensity; *i.e.* area under the PL curve of the sample at fixed excitation wavelength. F_{ref} = Integrated PL intensity; *i.e.* area under the PL curve of the reference at fixed excitation wavelength.

 $A_{ref}(\lambda_{exc})$ = Absorbance value of the reference in its absorbance spectrum at that fixed PL excitation wavelength.

 $A_s(\lambda_{exc})$ = Absorbance value of the sample in its absorption spectrum at that fixed PL excitation wavelength.

 n_s = Refractive index of the solvent in which sample is dispersed.

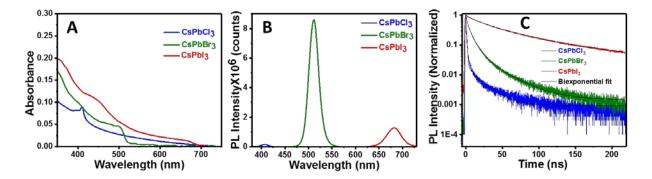
 n_{ref} = Refractive Index of the solvent in which reference is dispersed.

Concentration of Deposited Film Calculations

The concentration of PbSO₄-Oleate capped nanocrystals was calculated in the following manner for CsPbBr₃ capped NC's

$$\begin{array}{l} A = \ \varepsilon cl \\ 1.47 = 3.83 \times 10^6 M^{-1} cm^{-1} \times c \times 1 \ cm \\ c \cong 0.39 \ \mu M \\ volume \ of \ solution = 3.1 \ mL \\ \hline \begin{array}{l} 0.39 \ \mu moles \\ \hline 1,000 \ mL \end{array} \times 3.1 \ mL = 1.2 \ nmoles \\ Area \ of \ deposition = 1.5 \ cm^2 \\ \hline \begin{array}{l} \hline concentration \\ \hline Area \end{array} = \frac{1.2 \ nmoles }{1.5 \ cm^2} = 0.8 \ \frac{nmoles }{cm^2} \end{array}$$

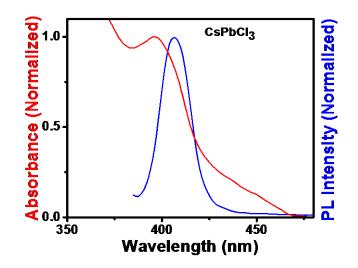
Where


A = The absorbance of the film. This was calculated by taking the absorbance of the solution at t = 0 (before any EPD) and absorbance at t = t (after EPD). These values can be seen in **Figure 2C and 2D**.

 ε = The molar absorptivity. Values for molar absorptivity were taken from reference 2.

c = concentration of the deposited nanocrystals

l = length of the cuvette (1 cm)


This procedure was repeated for PbSO₄-Oleate capped CsPbI₃ nanocrystals where the molar absorptivity was 2.4 $\times 10^{6} M^{-1} cm^{-1}$. The concentration for these films were found to be 0.9 $\frac{nmoles}{cm^{2}}$

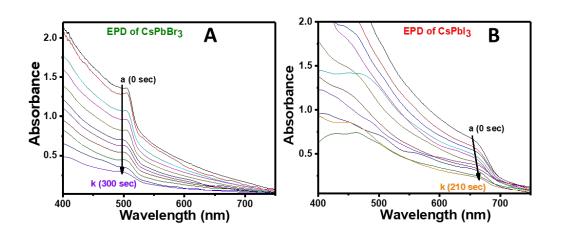
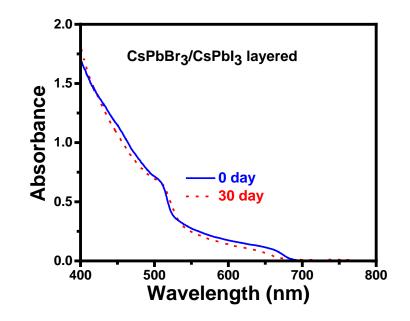

Figure S1: (A) Absorbance spectra (B) Emission spectra of $PbSO_4$ -Oleate capped CsPbX₃ nanocrystals in hexane for determination of photoluminescence quantum yield. (C) Emission decay spectra of $PbSO_4$ -Oleate capped CsPbX₃ nanocrystals dispersed in hexane monitored at their emission peak maxima (CsPbCl₃= 407 nm, CsPbBr₃= 511 nm and CsPbl₃= 682 nm).

Table S1: Photoluminescence quantum yield values along with average lifetime and calculate radiative and non-radiative rate constant ($\tau = 1/(k_r + k_{nr})$ and $\Phi = k_r/(k_r + k_{nr})$ for PbSO₄-Oleate capped CsPbX₃ nanocrystals.


Sample	Quantum Yield, φ(%)	τ _{avg} (ns)	k _r (φ/τ _{avg})(ns ⁻¹)	k _{nr} (ns⁻¹)
CsPbCl ₃	0.02	5.7	0.0035	0.1719
CsPbBr ₃	0.73	17.5	0.0417	0.0154
CsPbl ₃	0.12	56.1	0.0021	0.0157

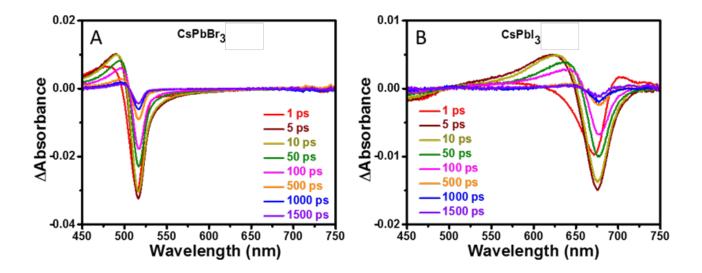
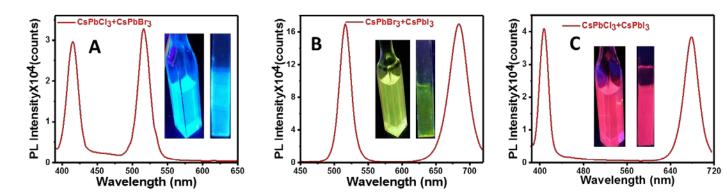

Figure S2: UV-Vis absorbance and Emission spectra of PbSO₄-Oleate capped CsPbCl₃ nanocrystals. (Excitation wavelength was 370 nm)

Figure S3: Absorbance spectra of (A) PbSO₄-Oleate capped CsPbBr₃ nanocrystals (B) PbSO₄-Oleate capped CsPbI₃ nanocrystal solutions recorded at different times during electrophoretic deposition.

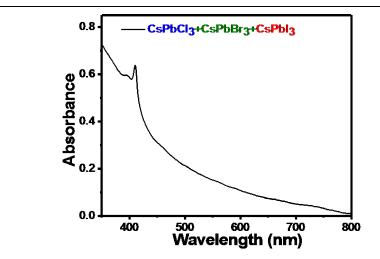
Figure S4: UV-Vis absorbance spectra showing the stability of the PbSO₄-Oleate capped CsPbBr₃/CsPbI₃ layered film stored under ambient condition. The excitonic peaks for bromide and iodide were preserved indicating no intermixing of the nanocrystals.

Figure S5: Transient absorption spectra recorded following 387 nm laser pulse excitation of PbSO₄-Oleate capped (A) CsPbBr₃ and (B) CsPbI₃ films (electrophoretically deposited).

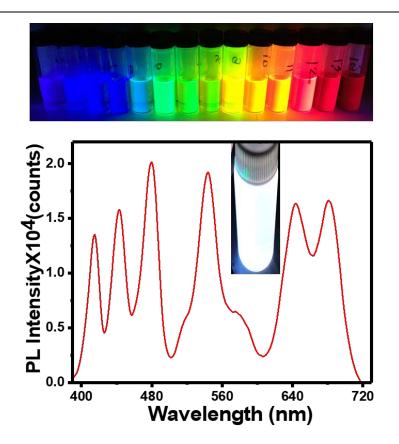
Table S2: (Time correlated single photon counting) TCSPC decay analysis of PbSO₄-Oleate capped CsPbBr₃, CsPbI₃, and CsPbBr₃/CsPbI₃ layered films (Exc. = 370 nm).


Emission originating from CsPbBr₃ was monitored at 520 nm and that of CsPbI₃ was at 675 nm.

Sample	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	τ _{avg} (ns)			
CsPbBr ₃	76	1.1	24	12.4	9.9			
CsPbBr ₃ /CsPbl ₃ layered	93	1.0	7	8.2	3.7			
CsPbl ₃ emission @675 nm								
Sample	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	τ _{avg} (ns)			
CsPbl ₃	92	4.9	8	29.5	13.4			


CsPbBr₃ emission @520 nm

RGB Color combination:


Blue + Green= Cyan Green + Red= Yellow Blue + Red= Magenta Blue + Green + Red= White

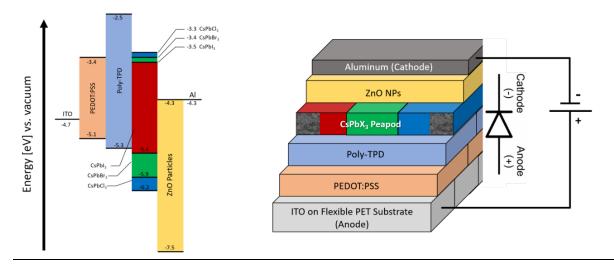

Figure S6: Scheme showing RGB (Red, Green, and Blue) color combination. PbSO₄-Oleate capped nanocrystals were mixed and (A) cyan light was generated by mixing CsPbCl₃ and CsPbBr₃, (B) yellow light was generated by mixing CsPbBr₃ and CsPbI₃, and (C) magenta light was generated by mixing CsPbCl₃ and CsPbI₃. Insets show the photographs of the colloidal solutions and the deposited films on FTO/TiO₂ under UV light.

Figure S7: UV-Vis absorbance spectra for the mixed PbSO₄-Oleate capped CsPbX₃ nanocrystals, which emits white light. CsPbCl₃ excitonic peak is more dominant as it was added in excess compared to bromide or iodide counterpart to account for low quantum yield and charge transfer.

Figure S8: The photograph shows the PbSO₄-Oleate capped CsPbX₃ (X= Cl, Br, I) nanocrystals with varying compositions and thus emission covering the entire visible range. The spectrum shows the generation of white light by mixing different CsPbX₃ compositions to have a better color purity of white light. The inset shows the photograph of colloidal dispersion showing white emission under UV light.

Figure S9: Band diagram and device stack showing how preliminary LEDs have been fabricated. The device architecture and procedures for fabrication were based on a previously reported method¹. The active layer of CsPbX₃ was deposited via EPD onto the ITO substrate after deposition of PEDOT:PSS and Poly-TPD. Values for the conduction band minima and valence band maxima of the materials were taken from the literature.^{10,46}

Figure S10: CsPbBr₃ and CsPbX₃ mixed halide film-based LEDs displaying characteristic green and white light emission. Left panel: LED based on CsPbBr₃ nanocrystals. Middle and Right panels: white light emission from CsPbX₃ LED.

References:

(10) Ravi, V. K.; Markad, G. B.; Nag, A. ACS Energy Lett. **2016**, *1*, 665.
(46)Zaiats, G.; Ikeda, S.; Kinge, S.; Kamat, P. V. ACS Appl. Mater. & Interfaces **2017**, *9*, 30741.